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Celastrol (CLT) is an active ingredient that was initially discovered and extracted from the root of
Tripterygium wilfordii. The potential pharmacological activities of CLT in cancer, obesity, and
inflammatory, auto-immune, and neurodegenerative diseases have been demonstrated in recent years.
However, CLT's clinical application is extremely restricted by its low solubility/permeability, poor bio-
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the oral bioavailability, therapeutic effects or tissue-targeting ability of CLT. This review focuses on the
most recent advances, improvements, inventions, and updated literature of various nanocarrier systems
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1. Introduction

Traditional Chinese herbal plants have long been utilized to
help researchers find new active ingredients. Celastrol (CLT),
also known as tripterine, is one of the most abundant bioactive
compounds obtained from the root bark of Tripterygium wilfor-
dii. During the last few decades, CLT has been described as a
component of traditional medicine that can be applied to treat
a number of disorders, including cancer, obesity, and inflam-
matory, auto-immune, and neurodegenerative diseases by
modulating various molecular targets." Evaluation of the
atomic orbital energy reveals that carbons C, on ring A and Cg
on ring B of CLT are highly susceptible toward a nucleophilic
attack® (Fig. 1). CLT can react with the nucleophilic thiol
groups of cysteine residues and form covalent Michael
adducts. The possible key mechanism is that CLT can exert a
multitude of putative therapeutic effects by affecting the activi-
ties of a broad range of proteins. To date, although all the
studies or trials on CLT were carried out in the pre-clinical
stage, the impressive biological activities and promising
experimental results would undoubtedly support the growing
interest in CLT as one of the top five natural active substances
of the 21st century for future drug development.’
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CLT has been shown in vitro and in vivo to suppress a broad
variety of cancers, such as liver cancer," lung cancer,’ pancrea-
tic cancer,® breast cancer,” prostate cancer,® colorectal cancer,’
ovarian cancer,'® and skin cancer."’ The induction of cell
apoptosis, the suppression of cell proliferation and cell cycle
arrest are the key mechanisms for CLT in cancer treatment.’
CLT has the potential to facilitate the apoptosis of tumor cells
by the regulation of nuclear factor kappa B (NF-kB) signaling™?
or by the development of reactive oxygen species (ROS)"* and
downstream activation of c-Jun N-terminal kinases."* By inhi-
biting the AKT/mTOR/P70S6K signaling pathway, and lowering
the regulation of vascular endothelial growth factor receptors
(VEGFRs), CLT can inhibit cell signaling associated with angio-
genesis."” In addition, it was also demonstrated that CLT can
prevent tumor invasion and cancer metastasis by downregulat-
ing the signal transducer and activator of transcription 6
(STAT6) and CIP2 A/c-MYC signaling pathways,'® or by inhibit-
ing M2-like polarization of tumor-associated macrophages
(TAMs)"” and matrix metalloproteinase-9 (MMP-9)."® Overall, it
is concluded that CLT exhibits its anticancer activity through
multiple pathways.

CLT has been investigated for its preventive benefits and
anti-inflammatory effects in several inflammatory and auto-
immune disorders,'® including allergic asthma,* rheumatoid
arthritis,> systemic lupus erythematosus,> inflammatory
bowel disease,> osteoarthritis,>® and skin inflammation.>®
CLT mainly prevents the production of pro-inflammatory cyto-
kines, NF«B, and adhesion molecules,""*® which are all
involved in inflammation. CLT can also minimize inflam-
mation by promoting the autophagy of mitochondria through
the nuclear receptor Nur77.”” Besides, the efficacy of CLT in
animal models of Alzheimer’s diseases (AD)*® and Parkinson’s
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Fig. 1 Celastrol (I) contains electrophilic sites at position C2 of ring A and C6 of ring B responsible for the binding affinity to thiol groups of cysteine
residues forming covalent Michael adducts () which could affect the function of proteins. Reproduced from ref. 1 with permission from Elsevier,

copyright 2019.

diseases (PD)*° has been reported. CLT’s encouraging effect on
heat shock proteins (HSP), which has been related to the
refolding and reactivation of proteins, as well as the prevention
of aggregate formation, can lead to the alleviation of AD
symptoms.>*?! Also, CLT can prevent cell death in PD through
decreasing the production of ROS, cytochrome c and apoptosis
promotion factors, and reducing the a-synuclein protein which
is considered to be responsible for the pathogenesis of PD by
the activation of autophagy.*

In recent years, CLT has also been exploited to treat obesity
and type 2 diabetes mellitus.>® However, despite the excellent
anti-tumor, anti-inflammatory, neuroprotective, anti-obesity
and anti-diabetic activities of CLT, its further application in
the clinic remains to be restricted by several main drawbacks
including low water solubility (11 ug mL™" at pH 7.4),>* poor
permeability (logP = 5.63),>> reduced oral bioavailability
(absolute bioavailability of 17.06%),?® and off-target side effects
(cardiotoxicity, hepatotoxicity, and neurotoxicity).”” Numerous
conjugates and derivatives of CLT have been introduced and
tested to improve effectiveness and mitigate toxicity.*® In
addition, types of nanotechnology-based delivery
approaches (Fig. 2), such as liposomes,** phytosomes,*® bilo-

several

somes,”’ niosomes,** exosomes,”® polymeric nanoparticles,**
lipid nanoparticles,”® protein nanoparticles,>” mesoporous
silica nanoparticles (MSNs),"® gold nanoparticles (AuNPs),*”
quantum dots (QDs),*® dendrimers,*® micelles,’® micro/nanoe-
mulsions,® nanocrystals®® and inclusion complexes,® have
been found to be suitable for encapsulating or loading of CLT
to provide better solubility and bioavailability,>*>> better
permeability,®®>” stronger therapeutic efficacy and lower
toxicities.>””® A year-by-year diagram illustrating the research
efforts made over the last ten years in this direction is shown in
Fig. 3. This review will narrow our attention on the fabrication
and development of various CLT-based nanocarriers. CLT nano-
formulations might provide new opportunities to improve the
bioavailability and biological activity of CLT.
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2. Nanocarrier based approaches for
CLT delivery

2.1 Vesicular carrier systems

Vesicles are colloidal particles in which an aqueous compart-
ment is surrounded by a concentric bilayer that is composed
of amphiphilic molecules.”® Vesicular systems have been
applied as promising carriers to improve the bioavailability of
encapsulated drugs and provide controlled and sustained
therapeutic action. Several types of vesicular systems including
liposomes, phytosomes, bilosomes, niosomes and exosomes
have been explored for CLT delivery (Table 1).

2.1.1 Liposomes. Liposomes are spherical vesicles made
up of cholesterol and natural non-toxic phospholipids, which
can encapsulate both hydrophilic and lipophilic drugs.®®
Liposomes are the first therapeutic carrier to be approved by
the US Food and Drug Administration (FDA) to deliver anti-
cancer agents. They have received tremendous attention as
drug carriers due to their biocompatibility, biodegradability,
and chemical flexibility, as well as ease of surface modification
with targeting ligands.

CLT was encapsulated into liposomes to address the issue
of limited bioavailability.> In this study, the permeability
efficiency of free CLT and its liposomal formulation was com-
pared in a four-site perfusion rat intestinal model, and the
results showed that CLT-loaded liposomes displayed greater
absorption potential in all intestine segments. Moreover, oral
liposomes encapsulating CLT gave a higher tumor inhibition
rate in a lung carcinoma xenograft model than free drug. In
another study,®" it was found that liposome-based CLT formu-
lation also presented an enhanced bioavailability with higher
Cmax and AUC, longer t;,, and greater biodistribution than
free CLT. Treatment with liposomal CLT could suppress the
growth of glioma cell lines (U251, SHG44, and C6), resulting in
better in vivo antitumor activity and less serious side effects

This journal is © The Royal Society of Chemistry 2021
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Fig. 2 Various types of celastrol-loaded nanoformulations.
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Fig. 3 Various types of celastrol nanoformulations developed over the
past ten years.

than the same dose of free CLT. Wolfram et al.®* fabricated
PEGylated DOPC and DSPC liposomal formulations and com-
pared the stability and encapsulation efficiency between for-
mulations. The results displayed that liposomes prepared
using DSPC exhibited improved shelf-life stability and higher
encapsulation efficiency than those prepared with DOPC.
However, contrary to other studies, the authors revealed that
the DMSO-solubilized raw CLT and liposomal CLT caused a
similar reduction in prostate cancer cell viability and demon-

This journal is © The Royal Society of Chemistry 2021
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strated similar cellular uptake patterns. It should be stated
that DMSO is not recommended for in vivo delivery due to its
non-selective toxicity.

Chen et al.*® designed a novel CLT-loaded liposome coated
with galactose molecules which binds to the asialoglycoprotein
receptor enriched in hepatic parenchymal plasma membranes
to enhance CLT delivery to human hepatocellular carcinoma
for therapeutic purposes. In vitro studies showed that CLT
loaded galactosylated liposome (C-GPL) improved the cellular
uptake of CLT via receptor-ligand interaction, thereby increas-
ing its cytotoxicity against tumor cells. The in vivo antitumor
efficacy of C-GPL was further tested in an AKT/c-Met-triggered
hepatocellular carcinoma mouse model. It was observed that
C-GPL treatment substantially minimized the harm to liver
and effectively prevented the growth of hepatocellular carci-
noma by inhibiting AKT activation, inducing cell apoptosis,
and retarding cell proliferation. Moreover, C-GPL did not
cause significant weight loss and damage to normal organs.

Kang et al.®® developed liposomes encapsulating CLT and
coated with a lymphocyte function associated antigen inserted
domain (LFA-1 I domain) to target ICAM-1 that is over-
expressed in both inflamed immune and vascular cells. They
found the optimization in the affinity and avidity of the LFA-1
I domain on the surface of liposomes could increase the speci-
ficity to inflamed endothelial cells and monocytes with a high
upregulation of ICAM-1. Moreover, these ICAM-1-selected lipo-
somal CLT could shield endothelial cells from lipopolysacchar-
ides challenges, inhibit the infiltration of monocytes and leu-
kocytes in inflammatory sites, and prevent the amplification of
inflammatory signals. It has been reported that myofibroblasts

Biomater. Sci, 2021, 9, 6355-6380 | 6357
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in fibrotic kidney overexpress fibronectin, and that the linear
pentapeptide Cys-Arg-Glu-Lys-Ala (CREKA) can bind specifi-
cally to fibronectin. Based on the knowledge, Li et al.®* recently
designed CREKA-coupled liposomes for the specific delivery of
CLT to the renal interstitium, thereby attenuating unilateral
ureteral obstruction mediated renal fibrosis and reducing the
systemic toxicity of CLT.

Liposomes are able to encapsulate both hydrophilic and
lipophilic drugs for the combination chemotherapy of cancers.
The synergistic effect of drugs could improve their activity
towards tumor cells while maintaining low cytotoxicity towards
normal cells. CLT and irinotecan were co-encapsulated in folic
acid-conjugated liposomes (Lipo/Cs/Ir-FA) by Soe et al.®® for
the specific treatment of breast cancer. The in vitro cell assay
displayed that Lipo/Cs/Ir-FA had significantly improved apop-
tosis in folate receptor-positive breast cancer cells (MCF-7 and
MDA-MB-231), but not in folate receptor-negative lung cancer
cells (A549). After treatment with Lipo/Cs/Ir-FA, breast cancer
xenograft mice showed the greatest tumor growth suppression
as compared to control mice and mice treated with free drugs
or non-folate targeting formulations. Moreover, mice given
Lipo/Cs/Ir-FA did not display body weight loss or organ
toxicity.

Qu et al.®® fabricated multicomponent liposomes (T/CM-L)
co-encapsulating sodium tanshinone IIA sulfonate (STS) and a
small-sized microemulsion of CLT (CM) to enhance anti-breast
cancer therapy. T/CM-L showed synergistic anti-breast cancer
activity through the initial release of STS to normalize the dys-
functional tumor microenvironment, followed by the release of
CM (and its payloads) to kill tumor cells. T/CM-L displayed
greater cytotoxicity against MCF-7 cells and better suppression
of xenograft tumor development than CLT monotherapy or the
standard CLT/STS combination therapy. Most importantly, as
compared to CLT alone, T/CM-L demonstrated lower systemic
toxicity.

2.1.2 Phytosomes. Phytosomes are cell-like nanoassem-
blies produced by reacting specific amounts of phytoconstitu-
ents and phospholipids in a suitable solvent system.®”
Phytosomes have minimized drug leakage and greater physio-
logical stability than other vesicular phospholipid-based struc-
tures like liposomes since the drug’s polar functional groups
can react with the polar head of phospholipids to form hydro-
gen bonds. Phytosomes can improve the solubility of active
compounds in water and lipids, resulting in enhanced per-
meability and absorption, as well as increased bioavailability
and biological activity.®”

Phytosomal CLT formed by the complexation of CLT with
phosphatidylcholine has been reported to result in enhanced
bioavailability and an improved pharmacokinetic profile.** In
the study, the oral administration of phytosomal CLT to
rabbits caused 4-fold and 5-fold increase in AUCy_g and Cjyay,
respectively, as compared to crude CLT. In another study, Zhu
et al.*® fabricated selenium-deposited phytosomes (Se@Tri-
PTs) loaded with CLT to incorporate two anti-inflammatory
components into one single nanosystem to treat arthritis
through a synergistic process. In contrast to selenium-free phy-
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tosomes, Se@Tri-PTs displayed highly efficient uptake by
Caco-2 cells and preferable intestinal epithelial permeability
and significantly enhanced antiarthritic effects.

Freag et al.®® prepared protamine-modified phytosomal CLT
nanocarriers (PRT-TRI-PHY) and then loaded them into lami-
nated chitosan/hydroxypropyl methylcellulose composite
sponges to control drug release and permeation through
buccal mucosa. The ex vivo permeation study using chicken
pouch mucosa showed that sponges loaded with PRT-TRI-PHY
displayed a superior permeation profile with 2.3-fold higher
flux value than the uncoated TRI-PHY counterparts. In a rabbit
in vivo pharmacokinetic study, PRT-TRI-PHY had a ~244%
higher bioavailability than TRI-PHY. This study demonstrated
that a buccal mucoadhesive system containing phytosomes
can be used to deliver CLT penetrating the buccal mucosa to
enhance its bioavailability.

2.1.3 Bilosomes. Bilosomes are a novel form of vesicular
carriers that have been extensively studied for enhancing the
bioavailability of different drugs.®*’° Bilosomes have a similar
structure to liposomes, but with bile salts instead of chole-
sterol inserted into the lipid bilayer. Various research studies
have also reported that bilosomes as an alternative option can
deliver active substances to the tissues with low permeability,
such as the skin and the joint capsule.*"”*

Yang et al.*! developed hyaluronic acid (HA)-decorated bilo-
somes for delivering CLT to inflamed joints selectively to
enhance the bioavailability and anti-arthritic efficacy. CLT-
loaded bilosomes (CLT-BLs) were first fabricated using a thin
film hydration process, and then coated with HA to form
HA@CLT-BLs. The in vivo pharmacokinetic studies demon-
strated that HA@CLT-BLs significantly improved the systemic
and intra-arthritic bioavailability of CLT. As expected,
HA®@CLT-BLs showed remarkably superior antiarthritic
efficacy to uncoated CLT-BLs.

2.1.4 Niosomes. Niosomes are composed of non-ionic sur-
factants and cholesterol,”* and show an amphiphilic bilayer
structure with a polar region on the outside and a non-polar
region on the inside. The non-ionic surfactants such as the
families of Spans, Tweens and Brij have been widely used to
prepare niosomes.”” Niosomes are considered one of the best
alternatives to liposomes due to their inherent enhanced skin
penetration, greater chemical stability and lower costs.

A recent study on CLT-loaded niosomes was reported to
enhance topical permeation and anti-psoriasis activity.*> The
prepared CLT-loaded niosomes had approximately a particle
size of 147 nm and a yield of up to 90%. The in vitro per-
meation studies indicated that CLT-loaded niosomes had
enhanced water-solubility and skin permeation. When evaluat-
ing the therapeutic effect of CLT-loaded niosomes in psoriasis
mouse models, HE-stained skin sections showed that CLT-
loaded niosome treatment significantly alleviated the infiltra-
tion of inflammatory cells, hyperkeratosis and parakeratosis,
thus displaying a much lower scaling and erythema score than
the free CLT group.

2.1.5 Exosomes. Exosomes are nanosized biological vesi-
cles carrying functionally active cargos (such as miRNA,
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mRNA, DNA and proteins) to participate in cell-cell communi-
cation.”” Exosomes have been studied as drug delivery carriers
in recent years due to their nanosize. While exosomes have
been obtained from biological fluids and cell culture media,”
these methods are highly inefficient. It has been shown that
crude mature bovine milk is a biocompatible and cost-efficient
source for the extraction of large amounts of exosomes.*®
Farrukh Aqi et al.”” extracted exosomes from bovine raw milk
and used quick mixing in the presence of ethanol to incorpor-
ate CLT into exosomes. They further investigated the anti-
tumor efficacy of the exosomal CLT formulation against lung
cancer. It was found that exosome loaded CLT demonstrated a
substantially higher degree of antiproliferative activity against
lung cancer cells as compared to the free CLT. Moreover, exo-
somal CLT administered orally reduced the growth of lung
cancer xenografts more effectively. These findings support that
administering CLT in exosomal formulation orally is a feasible
way to effectively prevent the development of lung cancer.

2.2 Nanoparticulate carrier systems

Nanoparticulate carrier systems are colloidal dispersions with
a size ranging from 10 to 1000 nm.”® Nanoparticulate carrier
systems could be based on organic or inorganic materials or
hybrid structures and have been used as an effective strategy to
secure the entity of drugs in the blood circulation, modify
in vivo biodistribution of drugs and deliver drugs to the site of
action in a controlled and sustained manner.”® In recent years,
various nanoparticulate carrier systems for CLT have been pro-
duced, such as polymeric nanoparticles, lipid-based nano-
particles, albumin nanoparticles, silk fibroin nanoparticles,
MSN, AuNPs, QDs, dendrimers and nanocrystals. A summary
of nanoparticulate carrier systems for CLT is given in Table 2.

2.2.1 Polymeric nanoparticles. Polymeric nanoparticles are
made from natural or synthetic polymers, in which the active
compound can be loaded in the solid matrix, or adsorbed or
chemically linked to the surface.”” Polymeric nanoparticles are
divided into nanospheres and nanocapsules and have been
commonly used as drug carriers due to their various benefits,
including ease of preparation and design, high biocompatibil-
ity, a wide range of structural choices and noticeable bio-imita-
tive characteristics.”®

Sanna et al** prepared CLT-loaded poly(e-caprolactone)
nanoparticles by a nanoprecipitation method showing signifi-
cantly increased antiproliferative effects on prostate carcinoma
cell lines with respect to free CLT. Plain CLT-loaded nano-
particles show non-specific distribution after injection and are
easily captured by the reticuloendothelial system (RES), which
inherently results in poor in vivo delivery efficiency. To achieve
better pharmacokinetic and antitumor efficacy of CLT, Yin
et al.”® designed a RES saturation strategy involving the injec-
tion of blank nanoparticles first, followed by CLT-loaded nano-
particles. It was found that preinjection of blank nanoparticles
could prolong the systemic circulation of CLT-loaded nano-
particles, and thus could significantly improve the pharmaco-
kinetics and biodistribution of CLT. In LNCaP tumor xenograft
mice, CLT-loaded nanoparticles treated with RES saturation
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outperformed free CLT and CLT-loaded nanoparticles alone in
terms of antitumor efficacy. With the aim of improving the
water-solubility and drug-ability of CLT, Shan et al®® syn-
thesized a sequence of PEG-CLT derivatives (PEGCs) by conju-
gating various types of PEGs to the carboxyl of CLT through
the Mitsunobu reaction. Interestingly, among these PEGCs,
DC1000 obtained by conjugating PEG with a molecular weight
of 1000 and CLT could be easily dispersed in water to form
self-assembled nanoparticles. It showed the greatest cyto-
toxicity against A549, MDA-MB-231 and SMMC-7221 tumor
cells, and possessed a significantly reduced inhibition rate
without causing death and edema in A549 cell xenograft-
bearing nude mice. These findings revealed that DC1000 was
much safer and more active than free CLT. In another study,
Park et al.®! incorporated CLT into amphiphilic urethane acry-
late nonionomer polymeric nanoparticles functionalized with
the lymphocyte function-associated antigen-1 I domain (LFA-1
I domain) and found that these CLT-loaded nanoparticles
could be taken up selectively by ICAM-1-expressing HeLa cells,
displaying greater cytotoxicity compared with free CLT.

Combinational therapy, which combines chemotherapy and
immunotherapy, is becoming increasingly common in cancer
therapy. Liu et al.®* developed polymeric nanoparticles based
on the amino ethylanisamide (AEAA)-polymer-disulfide bond
(APS) for the co-delivery of mitoxantrone (an inducer of immu-
nogenic cell death) and CLT (an anticancer and antifibrotic
agent) for the chemoimmunotherapy of desmoplastic mela-
noma. AEAA is a Sigma receptor ligand with a high affinity for
melanoma and tumor-associated fibroblasts. In vivo studies
demonstrated that APS nanoparticles targeting the Sigma
receptor resulted in considerably more drug distribution in the
tumor than free drug distribution. Furthermore, the codelivery
system greatly promoted immunogenic cell death-mediated
immunotherapeutic effects and normalized the fibrotic and
immunosuppressive tumor microenvironment in diseased
mice.

Nanoparticles camouflaged by the cell plasma membrane
provide a novel strategy to selectively deliver therapeutic pay-
loads for treating cancer and inflammatory disorders.*> Cao
et al.>® prepared a neutrophil camouflaged nanosystem (NNPs)
by coating membranes of neutrophils on CLT loaded
PEG-PLGA nanoparticles for the targeted treatment of pancrea-
tic carcinoma. CLT-loaded NNPs could distribute specifically
to the tumor site and significantly inhibit tumor growth of
pancreatic ductal adenocarcinoma-bearing mice. Compared
with nanoparticles without cell membrane coating and free
CLT, CLT-NNPs showed the most prolonged survival and mini-
mized liver metastasis. Similarly, Zhou et al.®* demonstrated
the targeted therapy of CLT-loaded NNPs against malignant
melanoma. CLT-loaded NNPs displayed significantly enhanced
cytotoxic activity and apoptosis-inducing effect in the
B16F10 melanoma cell line and dramatically increased antitu-
mor efficacy in B16F10 tumor-bearing mice xenografts. During
inflammation, neutrophils are able to mobilize rapidly to the
site of inflammation in response to migration signals.®® Based
on the natural merits of the neutrophil membrane, the same
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research group utilized CLT-loaded NNPs for targeted acute
pancreatitis (AP) treatment.®> CLT-loaded NNPs could accumu-
late preferentially in inflamed pancreatic tissue. As compared
to the other three control groups, CLT-loaded NNPs greatly
decreased the levels of pancreatic myeloperoxidase and serum
amylase in AP rats. In addition, AP rats treated with CLT-
loaded NNP showed the largest reduction in ascites weight
and wet/dry ratio. More importantly, the systemic toxicity of
CLT in AP rats was significantly reduced by utilizing NNPs as
the delivery carrier.

2.2.2 Lipid-based nanoparticles. Lipid-based
particles, another attractive colloidal drug delivery system, are
usually prepared by dispersing lipids in water or an aqueous
solution of surfactants.®® Lipid-based nanoparticles are able to
carry the poorly water-soluble drugs or lipophilic drugs and
can enhance the bioavailability of the encapsulated drugs,
improve the percutaneous penetration of drugs and potentiate
them for targeting the desired tissue or cells to maximize the
bioactivities of the drugs.

Nanostructured lipid carriers (NLCs) were developed as a
topical delivery vehicle to enhance the skin penetration of
CLT.* 1t was found that encapsulating CLT into NLCs resulted
in a prolonged release profile and enhanced drug accumu-
lation into the upper skin layers. To optimize CLT-loaded
NLCs for topical antimelanoma therapy, the effect of the
surface charge of NLCs on in vitro skin penetration and the
in vivo therapeutic efficacy of CLT were carefully evaluated by
Chen et al.®® They used different solid and liquid matrices to
prepare cationic, anionic, and neutral NLCs. The skin per-
meation experiment indicated that the cationic NLCs delivered
the most CLT skin permeation amount, which was 1.35 and
1.95 times higher than the neutral and anionic NLCs, respect-
ively. In vitro cellular assays displayed that the cationic NLCs
had a higher uptake by B16BL6 cells and better cytotoxicity
than the neutral and anionic NLCs. Similarly, percutaneous
administration of the cationic NLCs provided greater in vivo
antimelanoma efficacy in a B16 melanoma tumor model.
These findings suggest that cationic NLCs are promising deliv-
ery systems of CLT for topical anti-melanoma treatment.

Zhou et al.® reported that encapsulating CLT into NLCs
could not only decrease the cytotoxicity of CLT against Caco-2
cells, but also improve drug absorption across intestinal
epithelia. Another research by the same group revealed that
the oral bioavailability of CLT has been further improved by
coating cell-penetrating peptides on the surface of NLCs.>® The
results indicated that cell-penetrating peptide-coated CLT-
loaded NLCs (CT-NLC) outperformed the uncoated NLCs for
the oral delivery of CLT. Yuan et al.*® found that CT-NLC effec-
tively inhibited prostate tumor cell proliferation in vitro.
Furthermore, CT-NLC showed greatly increased antitumor
efficacy while causing less toxicity in the mouse model of pros-
tate cancer.

Apart from the above reported NLCs, CLT-loaded lipid
nanospheres constituted of soybean oil, lecithin and sodium
oleate also notably improved the oral bioavailability and intes-
tinal permeability of CLT.>® In another study, the lipids

nano-
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extracted from broccoli were used to fabricate CLT-loaded lipid
nanoparticles (CLT-BLNs) for enhancing the oral bio-
availability of CLT.”” As compared to CLT-loaded common
lipid nanoparticles (CLT-CLNs), oral administration of
CLT-BLNs exhibited superior intestinal permeability and
higher bioavailability. The study provided new insight that
food-originated materials could be used to construct nano-
carriers for better oral delivery of drugs with poor
bioavailability.

2.2.3 Protein-based nanoparticles. Nanoparticles made of
albumin have attracted a lot of attention as versatile drug deliv-
ery carriers due to their high drug binding ability, high stabi-
lity, biodegradability, non-immunogenicity, and biocompat-
ibility. Ovalbumin, bovine serum albumin and human serum
albumin (HSA) are the most commonly used albumins for the
preparation of nanoparticles.”® Hydrophobic drugs like CLT
can be easily encapsulated into albumin nanoparticles due to
its strong affinity to albumin.

Hakala et al.®" utilized a microfluidic co-flow method to
generate CLT-loaded HSA nanoparticles with a homogeneous
size distribution by adjusting the flow rates. The obtained
albumin nanoparticles enhanced the water solubility of CLT
and decreased its cellular toxicity. Our previous study found
CLT had potent effects against mesangioproliferative glomeru-
lonephritis, but its off-target distributions resulted in severe
cardiotoxicity, hepatotoxicity and neurotoxicity.®” To improve
its efficacy and safety, we attempted to deliver CLT selectively
to mesangial cells by encapsulating CLT into HSA nano-
particles (CLT-AN).*” Our results showed that CLT-AN, with an
optimal size of 95 nm, could cross the fenestrations of the
endothelium and accumulate in mesangial cells, thus posses-
sing better capacity than CLT to ameliorate the acute and pro-
gressive glomerular injuries in anti-Thy1.1 nephritic rats. More
importantly, CLT-AN presented lower drug accumulation in
non-target organs and tissues than free CLT, reducing CLT-
related systemic toxicities. Gong et al®® constructed
HSA-Kolliphor HS 15 nanoparticles (HSA-HS15 NPs) for selec-
tively delivering CLT to inflamed sites to treat rheumatoid
arthritis. CLT-HSA-HS15 NPs greatly improved the pharmacoki-
netic profile of CLT, with significantly higher plasma concen-
tration, prolonged blood circulation time and increased
AUC,_, as compared to free CLT and even CLT-HSA NPs.
Moreover, compared with liposomes and HSA NPs, HSA-HS15
NPs exhibited longer and greater retention in inflamed joints
due to the inflammatory targetability of albumin, the added
HS15 and the ELVIS effect of nanoparticles. However, the inter-
esting results were that adding HS15 could significantly
enhance safety but had no substantial contribution to improv-
ing efficacy. The authors suspected that HS15 shielded the
affinity between HSA and inflammatory cells in inflamed sites,
which might limit the efficacy of CLT-HSA-HS15 NPs. In their
other work,”® they found for the first time that palmitic acid-
functionalized bovine serum albumin nanoparticles (PAB NPs)
could target activated macrophages more effectively via scaven-
ger receptor-A than bovine serum albumin nanoparticles (BSA
NPs) targeting the same cells via CD44. In an adjuvant-
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induced arthritis rat model, CLT-PAB NPs greatly alleviated
rheumatoid arthritis symptoms at a lower CLT dose with better
safety as compared to CLT-BSA NPs. Hu et al.’! reported an
innovative work about hyaluronic acid coated cationic albumin
nanoparticles (HNPs) that were designed for the co-delivery of
CLT and 1-methyltryptophan for pancreatic cancer chemoim-
munotherapy. HNP had a unique hollow structure with an
average size of ~300 nm, which could be reduced to a smaller
particle size in the presence of hyaluronidase. Based on the
size decreasing effect and the CD44 mediated interaction,
HNP showed significantly enhanced accumulation in both the
xenograft pancreatic tumor and the orthotopic pancreatic
tumor site, and thereby had remarkably enhanced tumor inhi-
bition in both tumor models through downregulation of the
immunosuppressive tumor microenvironment.

Silk fibroin (SF), derived primarily from silkworms, was
accepted as a biomaterial by the US FDA in 1993.°> SF based
nanoparticles have attracted much attention to be used as a
carrier due to its outstanding mechanical properties, biocom-
patibility, biodegradability, and structural re-adjustment flexi-
bility. Onyeabor et al.’® encapsulated CLT into SF nano-
particles by the desolvation method and achieved dramatically
improved pharmacokinetic properties. In another study, Ding
et al.”” produced triptolide and CLT loaded silk fibroin nano-
particles (TPL-SFNPs and CLT-SFNPs) and evaluated their
cytotoxicity and synergistic effect in MIA PaCa-2 and
PANC-1 human pancreatic cells. TPL-SFNPs and CLT-SFNPs
hindered colony formation and induced apoptosis more effec-
tively than free triptolide and CLT. Moreover, combination
treatment with TPL-SFNPs and CLT-SFNPs showed consider-
ably greater anticancer efficacy compared with TPL-SFNPs or
CLT-SFNPs alone.

2.2.4 Inorganic nanoparticles. Inorganic nanoparticles
have gained prominence in recent decades as they offer
unique features as compared with their organic and polymeric
counterparts.”® Numerous inorganic nanoparticles have been
reported like MSN, AuNPs and QDs, etc., in the field of nano-
technology and nanomedicine.®

MSN has gotten a lot of recognition for its application in
drug delivery and biomedicine due to its excellent mesoporous
structure, flexible pore size, and easy of surface modifi-
cation.'” Choi et al.*® reported PEGylated polyaminoacid-
capped CLT-loaded MSN (CMSN-PEG) for mitochondria-tar-
geted drug delivery. CMSN-PEG exhibited a pH-responsive,
slower, and continuous release pattern. It could induce signifi-
cant apoptosis in BT-474, SCC7 and SH-SY5Y cells via its
sustained release characteristics. As compared to free CLT,
CMSN-PEG therapy markedly increased the expression of the
apoptosis proteins corresponding to mitochondrial apoptosis
and displayed excellent in vivo antitumor activity, as evidenced
by the remarkable increment in the apoptotic markers, and
diminished proliferation markers. Another study conducted by
the same research group successfully prepared anticancer drug
combination nanoparticles (ACML) with CLT encapsulated in
the MSN and axitinib in PEGylated lipidic bilayers for multi-
targeted cancer therapy.'®" The results showed that ACML had
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synergistic and superior antitumor efficacy and involved more
efficiently improved effects on angiogenesis and mitochondrial
function than either drug administered alone in both tumor
cell lines in vitro and tumor-xenograft mouse model in vivo.
Niemel et al.'®® modified glucose moieties, as affinity ligands,
onto the surface of CLT loaded MSN (MSN-Glu) for maximiz-
ing the cellular uptake by cancer cells. Cellular uptake assays
confirmed that MSN-Glu could efficiently enhance cellular
uptake by the targeted HeLa and A549 cancer cells but not
healthy MEF cells. More importantly, when CLT was loaded
into MSN-Glu, its apoptosis induction effects were significantly
enhanced. Similarly, they utilized folic acid functionalized
CLT-loaded MSN for specific targeting.'®® The authors
reported that MSN could deliver CLT specifically to folate
receptor positive HeLa cells, with only minor off-target effects
in folate receptor negative A549 cells.

AuNPs are one of the most commonly used inorganic nano-
particles. The tuneable sizes, easy synthesis, and good optical
properties make them a promising tool to develop drug deliv-
ery and imaging systems for therapeutic and diagnostic appli-
cations.'®® Law et al.” had recently engineered folic acid deco-
rated CLT loaded AuNPs (FCA) to enhance the anticancer
activity of CLT. It was found that FCA exhibited higher cellular
uptake efficiency and caused more severe apoptosis than the
CLT AuNPs and CLT alone in both 2D and 3D breast cancer
models. QDs are widely utilized for labeling, imaging, targeted
drug delivery, and photodynamic therapy.'® Li et al’®
developed fluorescent nanocomposites based on CLT and
cysteamine modified cadmium-tellurium QDs (Cys-CdTe QDs)
for cancer cell labeling and targeted treatment. Cys-CdTe QDs
with the positively charged surfaces could interact with electro-
negative CLT molecules to self-assemble and form the drug
nanocomposite CLT-Cys-CdTe. The in vitro release study
showed that CLT-Cys-CdTe nanocomposites had a sensitive pH
triggered release profile with relatively slow and sustained
release at pH 7.4 but fast release at pH 6.0. The CdTe QDs were
found to be easily internalized into cancer cells for real-time
labeling and tracing. CLT-Cys-CdTe nanocomposites signifi-
cantly enhanced drug accumulation in K562 cells and K562/
A02 cells, thereby increasing CLT’s cytotoxicity. CLT-Cys-CdTe
nanocomposites also could greatly overcome the multidrug re-
sistance of K562/A02 cells by arresting the cell cycle at the G2/
M-phase and promoting cell apoptosis.

2.2.5 Dendrimers. Dendrimers are a new type of highly
branched core-shell nanostructure synthesized in a layer-by-
layer fashion named generations.'’® Dendrimers as nano-
carriers have attracted much attention due to their unique
tree-like morphology, high loading capability and poly-
valency.'®” Many active pharmaceutical agents can be chemi-
cally or physically attached to dendrimers.'®® Poly(amido-
amine) (PAMAM) dendrimers have been investigated the most
to date, with their surface groups that can be modified for the
synthesis of cationic, anionic or neutral dendrimers with
increasing generations (G0-G10).

In a study by Boridy et al.'®® CLT was conjugated to the
amino termini of PAMAM dendrimers (CLT/G4-NH,) or
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hydroxyl termini of PAMAM dendrimers (CLT/G4-OH) to aid its
solubilization, reduce cytotoxicity, and increase anti-inflamma-
tory potency in lipopolysaccharide-stimulated microglial cells.
The authors showed that G4-NH, increased the solubility CLT
more effectively than G4-OH, and CLT/G4-NH, displayed stron-
ger cytotoxicity against microglia than CLT alone while exhibit-
ing minimal anti-inflammatory activity. In contrast, CLT/G4-
OH could inhibit the release of proinflammatory cytokines
without reducing microglial cell viability. These findings
support that the G4-OH dendrimer is a better nanocarrier for
delivering CLT to microglia that are overly activated in the
pathological brain.

Ge et al.*® reported a smart bioconjugated nanosystem com-
posed of epithelial cell adhesion molecule (EpCAM) aptamer,
PEG, and G5 PAMAM dendrimers to selectively deliver CLT
into EpCAM-upregulation tumors to enhance the antitumor
effectiveness and reduce the toxicity. Taking advantage of the
enhanced permeability and retention (EPR) effect and the
active targeting effect of dendrimers, the multifunctional den-
drimer-CLT bioconjugates produced superior apoptosis-indu-
cing effects than free CLT in EpCAM-positive SW620 colorectal
cancer cells both in vitro and in nude mice. Moreover, the bio-
safety of bioconjugate testing in xenograft mice and zebrafish
models revealed significantly reduced local and systemic
toxicity.

2.2.6 Nanocrystals. Nanocrystals are a carrier-free nano-
system that only contain pure drug crystals and a small
amount of surfactant and/or polymer for stabilization.'*
Nanocrystals have the highest drug loading as compared to
other nanoformulations. They can greatly improve drug solubi-
lity and bioavailability while avoiding carrier related toxicity,
making them an important technology for effective drug
delivery.

CLT has been reported with the ability of overcoming multi-
drug resistance (MDR) by suppress the activation of
P-glycoprotein (P-gp)''® and promoting tumor cell apoptosis.
To enhance the solubility and bioavailability of CLT and over-
come the MRD of doxorubicin (DOX), CLT was selected by
Xiao et al.>* to conjugate with DOX to synthesize a carrier-free
nanocrystal for potential synergistic combination chemo-
therapy. At an optimal molar ratio of 1:4 (DOX to CLT), the
CLT/DOX nanocrystal with a spherical morphology demon-
strated fabulous stability and tumor acidic microenvironment
sensitive drug release. It was found that the CLT/DOX nano-
crystal could maximize the water-solubility of CLT and dra-
matically increased cellular drug accumulation by suppressing
P-gp expression. As compared to free DOX, free CLT, and the
CLT/DOX mixture, the CLT/DOX nanocrystal caused consider-
ably more apoptosis and autophagy, resulting in a more
efficiently synergistic therapeutic effect.

2.3 Micellar systems

Polymeric micelles are macromolecular assemblies with a
hydrophobic inner core and a hydrophilic outer shell that
form spontaneously in aqueous solution from block copoly-
mers or graft copolymers at a concentration above the critical
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micelle concentration."™* Polymeric micelles have been exten-
sively explored as a novel form of drug delivery carriers,
especially for the effective delivery of hydrophobic drugs that
can be covalently bound or physically entrapped in the center
of the micelles.""* The summary of CLT-loaded polymeric
micelles is given in Table 3.

2.3.1 Pluronic P123-based micelles. Peng et al.** prepared
CLT-loaded self-assembled Pluronic P123 polymeric micelles
having a uniform size distribution and high encapsulation
efficiency. The CLT-loaded micelles could slowly release CLT
and only 70% of CLT was released from the micelles during
24 h. The authors further conjugated model allergen oval-
bumin (OVA) on the surface of CLT-loaded micelles
(OVA-NMs-CLT) to construct a novel vaccine for allergen-
specific immunotherapy.”® It was demonstrated that
OVA-NMs-CLT therapy reduced the levels of OVA-specific IgE,
histamine and Th2 cytokine, as well as inhibited the infiltra-
tion of inflammatory cells in the lungs of mice with allergic
asthma. Moreover, OVA-NMs-CLT treatment remarkably
lowered the OVA sIgE/OVA slgG2a ratio. The authors specu-
lated that the immunomodulatory activity of the loaded CLT,
the morphological characteristics (spherical shape and small
particle size) and the hypoallergenic property of OVA-NMs-
CLT collectively contributed to the enhanced anti-allergic
bioactivity. In their another work, the authors conjugated the
anti-FceRIo Fab fragment to the surface of CLT-loaded
micelles to specially kill mast cells and basophils for targeted
allergy treatment.""” The anti-FceRIa Fab CLT-loaded micelles
demonstrated enhanced cellular uptake and higher apopto-
sis-inducing activity against KU812 cells than unmodified
micelles. In vivo distribution in a mouse model of allergic
asthma showed that anti-FcRI Fab-conjugated micelles
enhanced the lung distribution of micelles through the
ligand-receptor specific interaction. Also, anti-FceRIa Fab
CLT-loaded micelles exhibited a higher in vivo anti-allergic
effect than unmodified micelles.

2.3.2 PEG-conjugated copolymer-based micelles. Li et a
developed CLT-loaded poly(ethylene glycol)-block-poly (e-capro-
lactone) (PEG-PCL) polymeric micelles (CNMs) and investi-
gated the effects of CNMs on corneal neovascularization and
retinoblastoma. It was found that CNMs significantly alle-
viated suture-induced corneal neovascularization in the rat
cornea by suppressing the infiltration of macrophages and the
expression of VEGF and MMP-9.""> When administered intra-
peritoneally to mice bearing human retinoblastoma xeno-
grafts, CNMs significantly prevented tumor development by
inducing cell apoptosis,''® and reduced retinoblastoma angio-
genesis by inhibiting the HIF-1a/VEGF pathway.''” In another
study, Zhao et al.''® prepared CLT-loaded PEG-PCL micelles
using a nanoprecipitation method, and evaluated its anti-
obesity and anti-inflammatory potency in diet-induced obese
mice. Oral administration of CLT-loaded micelles was shown
to be as effective as regular CLT in reducing lipid metabolic
dysfunctions and inflammatory reaction in diet-induced obese
mice, and exhibited less toxicity without causing any injury to
mice.
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CLT-loaded polymeric micelles made of CLT and the meth-
oxyl poly (ethylene glycol)-b-poly(i-lysine) polymer were devel-
oped by a simple “in situ chemical conjugation-induced self-
assembly” technique.''® The CLT-loaded polymeric micelles
could slowly release CLT and about 60% of the CLT was
released after 48 h. The CLT-loaded polymeric micelles were
efficiently taken up by B16F10 tumor cells, resulting in fabu-
lous cytotoxicity. The in vivo antitumor evaluation indicated
that the CLT-loaded polymeric micelles had remarkably stron-
ger antitumor activity and lower side effects in B16F10 tumor-
bearing mice compared to free CLT. Allen et al.**° reported
that CLT-loaded poly(ethylene glycol)-b-poly( propylene sulfide)
(PEG-b-PPS) micelles had high NF-xB inhibition with a half
maximal effective concentration (ECs,) nearly 50000 times
lower than that of free CLT. Furthermore, CLT-loaded micelles
could significantly reduce TNF-a secretion by RAW 264.7 cells
after LPS stimulation, and inhibited the infiltration of neutro-
phils and monocytes within atherosclerotic plaques of Idlr /-
mice. In another work, An et al.'®' utilized PEG-PPS micelles
for CLT delivery (C-PEPS) to treat rheumatoid arthritis. It was
found that C-PEPS was discovered to be capable of inhibiting
LPS-activated inflammatory responses in RAW264.7 cells by
blocking the Notch1l and NF-xB pathways. Moreover, C-PEPS
could accumulatively distribute in the inflamed joints and alle-
viated the major rheumatoid arthritis-associated symptoms
without inducing obvious toxicity in major organs.

Li et al. synthesized CLT and a ginsenoside Rh2-conjugated
PEG derivative (CLT-PEG-G Rh2) which was able to form CLT-
loaded polymeric micelles (CG-M) when reaching its critical
micellar concentration (1 x 107> M)."**> Under physiological,
conditions, CG-M was stable, but it can readily disassemble
and release CLT and G Rh2 in acidic and enzymatic environ-
ments. In pharmacokinetics analysis, the parameters ¢, and
AUC for the CG-M were 1.03- and 2.44-times higher than those
for non-micelle control, respectively, indicating that the CG-M
had a longer circulation period and thereby showed a poten-
tially enhanced EPR effect. In cellular studies, CG-M displayed
significantly higher cellular uptake, greater apoptosis induc-
tion and stronger antiproliferative activity against A549 cells.

A reduction-sensitive polymeric micellar system was devel-
oped by Guo et al.'** based on a copolymer poly[thioctic acid-
grafted poly(ethylene glycol)/(benzyl amine)] (PTEB), for retino-
blastoma cell-targeted CLT delivery. The cell assays indicated
that CLT-PTEB micelles with excellent reduction-responsive be-
havior could effectively accelerate the uptake of CLT by the
human retinoblastoma cells and cause enhanced cell
apoptosis.

2.3.3 Other micelles. Zhao et al.'** reported CLT-loaded
avp3-ligand tetraiodothyroacetic acid-modified stearic acid-g-
chitosan oligosaccharide polymeric micelles (TET-CSOSA/CLT)
for inhibiting breast tumor metastasis and development simul-
taneously. Through the avf3 receptor-mediated pathway,
TET-CSOSA exhibited dramatically higher cell uptake in tumor
cells compared to unmodified CSOSA, it was observed to accu-
mulatively distribute in lung metastasis and primary 4T1
tumor tissues via the avp3 receptor-mediated interaction. More
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impressively, TET-CSOSA/CLT could simultaneously inhibit
primary breast tumor invasion as well as the development of
lung metastasis by suppressing the NF-kB signaling pathway.

Tan et al.">® reported CLT-loaded (4-carboxybutyl) triphenyl-
phosphonium bromide conjugated stearic acid-g-chitosan
oligosaccharide polymeric micelles (CTPP-CSOSA/CLT) for
mitochondrial targeting and pH-sensitive drug release to treat
cancer. Owing to grafting CTPP, CTPP-CSOSA/CLT displayed
more effective mitochondria targeting as well as faster drug
release in mitochondria. CTPP-CSOSA/CLT greatly enhanced
ROS levels, allowing A¥m to decrease and more cytochrome c
to be released into the cytoplasm, and then induced the sub-
stantial apoptosis of tumor cells. The in vivo distribution study
showed that the distribution of CTPP-CSOSA micelles in tumor
tissue was also improved by modifying the lipophilic cation
CTPP. CTPP-CSOSA/CLT micelles were further found to inhibit
tumor growth most effectively with no noticeable abnormal-
ities in the CTPP-CSOSA/CLT micelle treated mice.

Elhasany et al.'®® designed a multi-functional micellar
nanomedicine (SPIONs/CS-loaded SFZ/zein-ChS PMs) by
encapsulating CLT and sulfasalazine (SFZ), and oleic acid-
capped superparamagnetic iron oxide nanoparticles (SPIONs)
into the hydrophobic core of zein-chondroitin sulphate (zein-
ChS) micelles. The combination of magnetic targeting and the
active targeting effect of ChS increased the uptake of the
micelles by MCF-7 cancer cells, resulting in a higher cyto-
toxicity against MCF-7 breast cancer cells. Moreover, in the
in vivo experiments, SPIONs/CS-loaded SFZ/zein-ChS PMs
showed superior anti-tumor activity compared to non-magneti-
cally micelles-, free drug-treated and positive control groups.

2.4 Emulsified drug delivery systems

Micro/nanoemulsions are transparent thermodynamically
stable dispersions made of water, oil, surfactant and co-surfac-
tant having droplet sizes smaller than 100 nm.'*” Micro/
nanoemulsions systems are simple to manufacture and can
incorporate hydrophobic drugs into the oil phase, thereby
enhancing their solubility and bioavailability. The summary of
CLT-loaded micro/nanoemulsions is given in Table 4.

Qi et al.'*® formulated a liquid self-microemulsifying drug
delivery system (SMEDDS) containing CLT, which was then
built up into the solid dispersible tablets using microcrystal-
line cellulose KG 802 as the adsorbent by a wet granulation
compression method. The solid tablets could disperse in dis-
tilled water within ~3 min After oral administration to rats, the
relative bioavailability of CLT SMEDDS and SMEDDS dispersi-
ble tablets compared to the aqueous suspensions of CLT was
569 + 7.07% and 558 + 6.77%, respectively.

A transferrin-functionalized microemulsion encapsulating
coix seed oil and CLT (Tf-CT-MEs) was fabricated by Chen
et al. for the improved treatment of cervical cancer.’® In vitro
cellular assays demonstrated that Tf-CT-MEs increased the cel-
lular uptake, thus allowing for enhanced cytotoxicity towards
HeLa cells. Due to the advantages of small particle size (40.02
+ 0.21 nm) and transferrin modification, Tf-CT-MEs displayed
improved tumor penetration and greater anti-cervical cancer
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activity in HeLa 3D tumor spheroids. Guo et al.** further eval-
uated the in vivo therapeutic effectiveness of Tf-CT-MEs in
HeLa tumor-bearing xenograft mouse models. In the study, Tf-
CT-MEs demonstrated superior anticancer potency while dis-
playing lower toxicity in vital organs. Similarly, intravenously
injectable, transferrin-modified microemulsions carrying both
p-elemene and CLT (Tf-EC-MEs) have been reported for the
combination therapy of lung cancer.’*® The codelivery system
exhibited synergistic antiproliferative effects on cultured cells
in vitro, as well as improved efficacy in A549-bearing xenograft
mouse tumor models via active tumor targeting. Moreover, Tf-
EC-MEs did not result in the apparent toxicity associated with
free CLT therapy. Zhao et al."®*' incorporated CLT, brucea oil,
and glycyrrhizin into a single microemulsion system, which
was then decorated dually with transferrin and SA-R6H4 cell-
penetration peptide (Tf/SA-R6H4-TBG-MEs) to enhance ovarian
cancer therapy. It was demonstrated that Tf/SA-R6H4-TBG-MEs
had the most potent inhibition of in vitro cell proliferation and
in vivo tumor growth, as well as the longest survival period
among all the treatment groups. Moreover, Tf/SA-R6H4-
TBG-MEs efficiently reduced liver and kidney toxicity.

2.5 Other nano-formulations

Inclusion complexes are made up of a mixture of drug mole-
cules that are located in the cavity of host molecules. To
improve the solubility of CLT, the inclusion complexes of CLT
with monopolyamine-modified B-cyclodextrin (f-CD) (H1) and
the polyamine-bridged bis(p-CD) (H2) were produced by Yang
et al.>® Complexation with H1 and H2 dramatically increased
CLT’s water-solubility, as evidenced by a 52.1- and 60.4-fold
improvement over CLT, respectively. Moreover, as compared to
the positive control of cisplatin, the H1/CLT inclusion complex
produced superior cytotoxicity in five tumor cells, and CLT
related side effects were slightly diminished when it was com-
plexed with H1. The study offers the possibility of enhancing
the physicochemical properties of CLT, which would be useful
in its final clinical trials for cancer treatment.

3. Discussions and future
perspectives

CLT holds great promise among natural agents due to its pleio-
tropic biological activities. However, its unfavorable physico-
chemical and pharmacokinetic properties such as poor solubi-
lity, weak bioavailability, and systemic toxicity compromise its
therapeutic advantages hindering its clinical application. To
overcome these drawbacks, it seems that encapsulation into
specific nanocarriers can be of great interest and will fully
exploit its potential applications. This comprehensive litera-
ture survey on CLT loaded nanocarriers explicitly indicates that
this approach could enhance the physicochemical properties,
bioavailability, biological activities and/or reduce the toxicity
of CLT.

The improved bioavailability effects of various types of CLT
nanoformulations given orally, intravenously and intraperito-
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administration for the improved bioavailability of CLT.

neally are shown in Fig. 4 and Table 5. Overall, various CLT-
loaded nanocarriers administered through different routes
maintain CLT plasma concentrations for a more extended
period of time and improve other pharmacokinetic para-
meters, thus providing better bioavailability. CLT is water in-
soluble®* and has a LogP of 5.63, indicating that it is a
Biopharmaceutics Classification System (BCS) Class IV-type
drug with low solubility/permeability, suggesting CLT may be
poorly absorbed through the intestinal mucosa. As shown in
Fig. 4, compared to other nanocarriers administered orally,
lipid-based nanoparticles have been the most representatively
used nanocarriers to improve CLT delivery to overcome the
issues of poor absorption and limited oral bioavailability. The
high affinity of the lipid material used here with the cell mem-
brane, which effectively increases the transmembrane influx
and caveolae/clathrin-mediated endocytosis, is thought to be
responsible for the improved absorption of CLT in lipid-based
nanoparticles.”>® Furthermore, the favored lymphatic trans-
port of lipid nanocarriers that allows them to bypass the liver
metabolism is another advantage for better absorption.>>>”>8

The present review also addressed findings on the biologi-
cal activities of CLT after encapsulation into nanocarriers
(Fig. 5). Nanocarriers encapsulating CLT have increased its
anti-inflammatory properties in acute pancreatitis,®> glomeru-
lonephritis,®” renal fibrosis,** arthritis,*®®*> psoriasis,*> and
allergic asthma.’®''® Furthermore, encapsulated CLT also
reveals remarkable advancements in anti-atherosclerotic,"*°
antiangiogenic,"'*'"> and anti-obesity properties.''® Likewise,
nanocarriers have been most commonly used to enhance the
anticancer activity of CLT against lung cancer, breast cancer,
prostate cancer, pancreatic cancer, colorectal cancer, cervical
cancer, ovarian cancer, glioma hepatocellular carcinoma, mel-
anoma, squamous cell carcinoma, leukemia and retinoblas-
toma. Among all these cancer diseases, lung cancer and breast
cancer seem to be the most studied, followed by prostate
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cancer and melanoma (Fig. 5). Different CLT nanoformula-
tions with their route of administration for in vivo improved
antitumor efficacy of CLT are shown in Fig. 6. As a promising
nanocarrier, polymer micelles have been most widely applied
to enhance the anti-tumor therapeutic effect of CLT. For the
tumor treatment of CLT nanoformulations, intravenous
administration remains the most commonly used route by
which maximum bioavailability could be obtained.

The nanocarriers described above also allowed for the sim-

ultaneous delivery of other bioactive ingredients besides CLT,

6374 | Biomater. Sci., 2021,9, 6355-6380

such as other phytochemicals and conventional chemothera-
peutic agents. In addition, the surface of the nanocarriers
could be decorated with ligands to receptors and other specific
targets excessively upregulated in targeted cells, enabling the
active targeted delivery of CLT and thereby showing enhanced
efficacy and decreased off-target toxicity. Stimuli-responsive
and triggered release systems based on the differences in the
pH of blood and intracellular mitochondria have been
designed to realize rapid CLT release at mitochondrial target
sites to increase the tumor inhibition effectiveness. Several

This journal is © The Royal Society of Chemistry 2021
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recent reports also highlight novel cell membrane biomimetic
nanoparticles for the delivery of CLT to achieve enhanced
inflammation and cancer therapy. Given that CLT also pos-
sesses remarkable neuroprotective effects, and still no reports
on CLT nanoformulations on this aspect to date, we believe
the combination of CLT with nanotechnology will be explored
further as potential therapeutic approaches for neurodegenera-
tive disorders in the future.

Overall, the current comprehensible evidence on drug deliv-
ery systems collected from the above reports undoubtedly open
up a new avenue for poorly bioavailable drugs like CLT. Many
questions, however, remain unanswered. For example, a wide
range of CLT nanoformulations with different features are
available, but the detailed characterization including particle
size, zeta potential, entrapment efficiency, drug-loading
efficiency or storage stability of these nanoformulations
remains largely unexplored. Thorough characterization of the
CLT nanoformulations should be carefully carried out in the
future. Some reported studies also have seemed to have some
shortcomings, such as the lack of in vivo experiments. Given
that in vitro findings do not always give rise to comparable out-
comes in vivo, further research is needed to ensure that the
nanoformulations perform as well in vivo. In addition, there is
also a lack of details on the pharmacokinetics, biodistribution,
toxicity and biocompatibility of certain CLT nanoformulations.
As a result, for advance research on CLT nanoformulations,
the gap in this field must be filled.

4 Conclusions

In summary, advances in nanodelivery of CLT over the past 10
years shed light on the promise CLT carries when it is appro-
priately delivered. They equally highlighted the need for a
thorough characterization of the physicochemical and bio-
pharmaceutical properties of such nanoformulations. Their
safety and efficacy profiles should be extensively studied in an
in vivo experimental setup before their clinical application for
the treatment of a particular disease can be realized.
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