
Analyst

PAPER

Cite this: Analyst, 2021, 146, 3633

Received 9th March 2021,
Accepted 28th April 2021

DOI: 10.1039/d1an00412c

rsc.li/analyst

Deriving accurate molecular indicators of protein
synthesis through Raman-based sparse
classification†

Nicolas Pavillon *a and Nicholas I. Smith a,b

Raman spectroscopy has the ability to retrieve molecular information from live biological samples non-

invasively through optical means. Coupled with machine learning, it is possible to use this large amount

of information to create models that can predict the state of new samples. We study here linear models,

whose separation coefficients can be used to interpret which bands are contributing to the discrimi-

nation, and compare the performance of principal component analysis coupled with linear discriminant

analysis (PCA/LDA), with regularized logistic regression (Lasso). By applying these methods to single-cell

measurements for the detection of macrophage activation, we found that PCA/LDA yields poorer per-

formance in classification compared to Lasso, and underestimates the required sample size to reach

stable models. Direct use of Lasso (without PCA) also yields more stable models, and provides sparse sep-

aration vectors that directly contain the Raman bands most relevant to classification. To further evaluate

these sparse vectors, we apply Lasso to a well-defined case where protein synthesis is inhibited, and show

that the separating features are consistent with RNA accumulation and protein levels depletion.

Surprisingly, when features are selected purely in terms of their classification power (Lasso), they consist

mostly of side bands, while typical strong Raman peaks are not present in the discrimination vector. We

propose that this occurs because large Raman bands are representative of a wide variety of intracellular

molecules and are therefore less suited for accurate classification.

1 Introduction

Raman spectroscopy is an optical technique that possesses the
ability to retrieve highly specific information based on the
vibrational modes of the probed molecules. Its non-invasive-
ness and high specificity make it a technology of choice in
various domains that include, for instance, quality control1 or
drug development.2 Raman is also used in the context of
biology and medical applications, but the wide variety of mole-
cular species present in the intracellular environment or
tissue, depending on the scale of observation, often makes the
measurement less sensitive to the specific molecules of inter-
est for a particular process under study. While some appli-
cations can exploit resonant responses and achieve sufficient
signal to allow ‘classical’ spectroscopy analysis based on band

shifts and local intensity changes, such as in the case of blood
investigation based on hemoglobin3,4 or heme-based com-
pounds,5 most studies have to rely on statistical tools to derive
reliable results.

Methods such as principal component analysis (PCA) have
been used extensively to analyze Raman data, where the large
amount of data points per spectra—typically in the order of a
thousand—makes it an ideal candidate for the use of multi-
variate analysis tools and chemometrics.6 In the biomedical
context, Raman spectroscopy is employed more as a classifi-
cation tool in conjunction with machine learning algorithms,
where the use of supervised learning methods are taking advan-
tage of the high information content of Raman spectra, while
compensating for the relatively low measurement sensitivity of
molecules of interest. Such an approach has been successfully
employed for various medical diagnostic applications,7 cellular
phenotyping,8 or delineation of diseased tissue in cancer
treatment.9,10 It is also extensively used in more fundamental
research where it can be used to study specific biological pro-
cesses, including cellular death,11–13 cellular response,14 infec-
tion detection15 and pathogen identification16,17

On the other hand, Raman spectroscopy has a relatively
slow recording rate, which is imposed by the long exposure
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times required to retrieve with reasonable signal-to-noise ratio
the low intensity signals emitted by biomolecules. This
implies that it is often challenging to measure large numbers
of samples, which are often required in biology to derive rele-
vant findings. In the context of single-cell measurements,
recent advances have however demonstrated the ability to
measure over thousands of cell samples with this
technology.18–20

Classification with spectroscopic data based on supervised
learning often results in a compromise between the specificity
of the model, its stability when applied to new data, and inter-
pretability. In this article, we are focusing on linear methods,
which provide very easy to interpret vectors in the mathemat-
ical sense, as the model coefficients can be directly understood
as representing a given class. However, even in such a simple
case, the coefficient distribution within vectors is often
complex, making the actual spectroscopic interpretation,
which involves relating a given class with underlying molecular
species, a challenging task.

We first study the performance of different linear classifi-
cation approaches, both in terms of performance (accuracy,
specificity), and interpretability of the resulting vector. We
show in particular how regularized methods yield sparse
models that are easier to interpret, and use that approach to
study the relevant markers involved during protein synthesis.
We apply the algorithms to spectral data acquired from single
cells (macrophage-like cell line), where conditions are deter-
mined by their immune activation state induced in vitro,
coupled with drug-induced protein synthesis inhibition. In
particular, we study the impact of PCA on the classification
characteristics, by comparing the combination of PCA with
linear discriminant analysis (LDA) and regularized approaches
applied directly to spectral data, namely least absolute shrink-
age and selection operator (Lasso).

The feature vectors provided by the Lasso approach are sig-
nificantly more sparse than the original spectra, since a large
portion of the wavenumbers are set to zero by the regulariz-
ation process that suppresses variables if they do not signifi-
cantly contribute to classification performance. This makes
the separation vector features different from usual Raman
data, possibly complicating interpretation. To study how these
sparse vectors can be interpreted, we apply Lasso to well-
defined conditions, where we induce immune activation,
which is known to promote the expression of pro-inflamma-
tory signaling proteins, and compare this condition with a
case where protein synthesis is inhibited. Contrary to expec-
tations, the results show that the vectors that provide the most
accurate classification do not rely on the main Raman bands
characteristic of a cellular spectrum, and instead rely on
side-bands and information away from large peaks. This
initially counter-intuitive result highlights an interesting
aspect of the use of Raman data to classify targets, and we
hypothesize that the largest spectral bands are less useful for
classification since they are representative of too many mole-
cular species. We also show that the side bands selected for
the classification vector are consistent with the known biologi-

cal effect under study here, namely protein synthesis
inhibition.

2 Material and methods
Cell culture and stimulation

Raw264 (Riken BioResource Center) are cultured in Dulbecco’s
modified Eagle medium (DMEM, Nacalai) supplemented with
10% fetal bovine serum (Gibco) and penicillin/streptomycin
(Sigma-Aldrich) with 10 000 units and 10 mg mL−1 diluted at
10 mL L−1, respectively. Cells are plated on 10 cm tissue-
culture dishes and incubated at 37 °C in a humidified atmo-
sphere with 5% CO2. For observation in the Raman system,
cells are first detached from the dish with a solution contain-
ing 0.25% trypsin and 1 mM ethylenediaminetetraacetic acid
(Nacalai) for approximately 5 minutes at 37 °C. The cell sus-
pension is then plated at a density of 30 000 cells per cm2 on
quartz dishes (FPI) pre-coated with poly-L-lysine (PLL, Sigma-
Aldrich) by immersing the surface in a 0.01% PLL solution
(Sigma-Aldrich) for 30 min at room temperature (RT). Cells are
then incubated for 5–6 hours to allow them to adhere to the
dish substrate. They are then stimulated by replacing the
culture medium with fresh DMEM containing lipopolysacchar-
ide (LPS) from E. coli O111:B4 (Sigma-Aldrich) and/or cyclohex-
imide (CHX, Sigma-Aldrich). Cells are then incubated for
20–21 hours before measurements.

Raman measurements

The cell culture on quartz dish is washed 2–3 times with phos-
phate buffered saline (PBS, Nacalai) supplemented with 5 mM
of D-glucose and 2 mM of MgCl2 (Nacalai) just before measure-
ment with the Raman microscopy system, which has been
described previously.21,22 Briefly, a 532 nm laser (Verdi,
Coherent) is employed as an excitation laser, which is focused
onto the sample with a 40× objective (0.75 and 0.95 NA for LPS
and CHX experiments, respectively), yielding a power at the
sample of 174 and 278 mW μm−2, respectively. The back-scat-
tered light is collected by the objective, separated from exci-
tation light by a dichroic and a notch filter (Semrock) before
being injected into a 500 mm Czerny-Turner spectrometer
(Andor) with a 300 lp mm−1 grating that spreads the spectral
information onto a scientific CMOS detector (Orca 4.0,
Hamamatsu) to measure the vibrational spectrum in the range
535–3075 cm−1. The spectrum of one single cell is acquired
with an exposure time of 3 seconds.

Cells are imaged with a quantitative phase imaging (QPI)
off-axis digital holography system23 that is employed to selec-
tively target cells in the field of view. Cells are illuminated with
a focused beam that rapidly scans a region covering approxi-
mately 30–90% of the cell body that includes both cytosol and
nucleus during the exposure for each spectra so as to retrieve a
more representative single-cell spectrum, as previously
described.24
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Data processing

Raman spectra are first baseline corrected with cubic spline
interpolation, and to account for possible day-to-day vari-
ations, data sets from different days are calibrated by interpo-
lating them on a common grid based on a spectrum of pure
ethanol measured each day. The silent region
(1800–2700 cm−1) is then removed, yielding a signal composed
of 640 variables out of the original 1024 data points.

All processing is then performed with the R program25

(version 4.0.1). Principal component analysis, linear discrimi-
nant analysis and Student’s t-tests are performed with built-in
functions. Receiver operating characteristic (ROC) calculations
and logistic regression, regularized with Lasso are performed
with the pROC26 and glmnet27 packages, respectively. Other
calculations are based on scripts developed internally.

In the case PCA is applied before classification, the
decomposition is based on the training data, and the derived
PCA parameters (centering, scaling, loading vectors) are
applied to the test data to ensure portability of the model.

When generating a model with Lasso, the regularization
parameter λ is selected by running 10-fold cross-validation,
and using the binomial deviance as a performance metric (see
Fig. S1†). To further reduce the amount of used variables
while ensuring high accuracy, the selected λ corresponds to
the value that increases deviance by less than one standard
deviation compared to the average minimum.

To compare the performance of different models, we
employ the cross-entropy (CE), which measures the distance
between the expected probabilities derived from the model
and the actual ones. The advantage of such a metric compared
to the classification accuracy is that it provides the distances to
the ideal values, rather than a simple binary indicator, and
this produces a higher overall consistency.

3. Results and discussion

In the first part of the article, we study the performance of
classification algorithms, in particular by comparing regular-
ized models with standard linear classification methods, and
study the influence of employing PCA as a processing step
before performing classification.

Classification methods are applied either directly to
recorded spectra, or to data first decomposed by PCA to separ-
ate the spectral information in orthogonal components,
ordered by decreasing importance before applying supervised
classification. In particular, we study the combined method
PCA/LDA, which has been very popular as a classification tool
in vibrational spectroscopy thanks to its relative simplicity and
its ability to limit the amount of variables used for classifi-
cation based on explained variance. This is particularly suit-
able for low sample sizes, where LDA cannot be employed
directly. We compare PCA/LDA with a regularized approach,
which limits the amount of variables employed in the statisti-
cal model by including a regularization term to reduce the
influence of variables that do not significantly contribute to

the classification accuracy. In particular, we use the Lasso
method, which employs an L1 regularization term28 that has
the property of reducing the weight of variables to zero unless
they are relevant for classification.

LPS activation induces minute changes in the cellular
spectrum

We first study the performance of the different analysis and
classification approaches described above by considering the
effect of LPS on the Raman spectra of macrophage-like
Raw264 cells, which we studied in previous works.14 Cells
stimulated for approximately 20 hours with 100 ng mL−1 LPS
are compared with control conditions. Average spectra are
shown in Fig. 1, where only minor differences can be identi-
fied by simple inspection. This is expected since the molecular
changes occurring upon LPS stimulation are less than, for
example, molecular differences between different cell types.19

The difference spectrum between control and LPS is displayed
in Fig. 5B, along with other experimental conditions.
Representative spectra of single cells for both control and LPS
conditions are displayed in Fig. S2,† where individual differ-
ences can be identified.

The data is composed of measurement sessions spread
across 5 days over an interval of approximately 6 months (3
days in December 2017 and 2 days in August 2018). To esti-
mate the performance of the classification algorithms, one day
of the dataset is kept aside for use as an independent batch
for testing the models. Furthermore, to also assess the long-
term stability of the models, another batch of measurements
taken around one year later (April 2019) is also used as an
additional separate test data set.

PCA/LDA yields lower accuracy and underestimates sample
size requirements

Based on the data described above, we created models to clas-
sify cells exposed to LPS compared to control conditions,
based either on PCA/LDA or the Lasso approach. As PCA/LDA
is often used for small sample sizes, we assess the classifi-
cation performance for increasing training data sizes by com-
puting the resulting CE, as shown in Fig. 2. To account for the

Fig. 1 Baseline-corrected average Raman spectra from Raw264 cells,
for both control and LPS-exposed cells (N is 2835 and 2686, respect-
ively). Shaded regions represent the standard deviation, LPS spectrum is
shown with an offset for visibility. The difference spectrum between the
two conditions is displayed in Fig. 5B.

Analyst Paper

This journal is © The Royal Society of Chemistry 2021 Analyst, 2021, 146, 3633–3641 | 3635

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
A

pr
il 

20
21

. D
ow

nl
oa

de
d 

on
 6

/1
0/

20
25

 2
:5

4:
25

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1an00412c


variability that can occur due to the choice of subset, the calcu-
lations are repeated 10 times with random selection of the
training subset.

In the case of PCA/LDA, the amount of variables is limited
by including only PCs that explain 90% of the data. This yields
a test CE that gradually improves and rapidly reaches a plateau
of around 0.355 with a training set size of approximately 600
samples (see Fig. 2A). On the other hand, the Lasso approach
(see Fig. 2B) appears to start stabilizing at 0.22 with around
1000 samples, but then continues to improve with increasing
training data size, reaching 0.162 at full training size, and it
appears that further improvement could be possible. In the
Lasso case, the training CE curve shape is unusual as it
decreases with data size. This is due to the fact that the regu-
larization parameter λ is adjusted at each step, so that the
training curve here corresponds to cross-validated
performance.

This result demonstrates that PCA/LDA can yield reduced
performance in classification compared to Lasso, even when
the testing accuracy remains high in both cases (here we
obtain 93.9% and 96.0% of testing accuracy, respectively).
And, while PCA/LDA performs better here at very small sample
sizes, this holds true only for sample sizes below 125, where
PCA/LDA has not yet reached optimal performance. Moreover,
the evolution of performance with sample size has often been
proposed as a metric to determine the required sample sizes
for optimum accuracy.29 As shown in Fig. 2, results derived
from PCA/LDA calculation may give the wrong impression that
the optimal size has in fact been reached at around 500

samples, while other methods can already perform better by
that point, and continue to significantly improve with increas-
ing data sizes. One possible reason for the continuous
improvement of Lasso models is that PCA/LDA limited by var-
iance reaches a maximum of around 100 variables and then
gradually saturates with sample size, whereas Lasso continues
to increase the amount of used variables linearly by adjusting
of the variable λ (see Fig. S3†).

Inclusion of PCA in models does not contribute to better
classification

To study more specifically the influence of using PCA on the
prediction models, we next compare the Lasso method either
applied directly to the spectral data (as previously), which we
refer to as ‘Direct Lasso’, or applied to PCA-decomposed data,
denoted as ‘PCA/Lasso’ (in contrast to the use of PCA/LDA in
the previous section). As shown in Fig. 3, the performance of
both approaches is very comparable, as illustrated by the pre-
dicted scores on test data (see Fig. 3A), as well as ROC curves
(see Fig. 3B).

Some differences can be identified between the two
methods when studying the CE as a function of the regulariz-
ation parameter, as shown in Fig. 3C. While the curves are
rather consistent between the two sets of test data in the case
of direct Lasso, there is a significant loss of performance for
the second set in the case of PCA/Lasso. Furthermore, there is
also a shift in the optimal λ value, implying that more vari-
ables are required to maintain performance, illustrating a
reduced stability of the model.

Interestingly, the Lasso average computation time (on 10
runs, 2.9 GHz i7-7820HQ CPU) is shorter when applied to PCA
scores (9.5 ± 0.2 seconds) compared to 12.4 ± 0.1 s for direct
Lasso. This can be explained by the fact that PCA loading
vectors are orthogonal, accelerating the convergence for the
Lasso procedure. However, when also taking into account the
actual PCA computing time, the PCA/Lasso requires in total
15.4 ± 0.2 s, making it slower overall than direct Lasso.

It can also be seen that the PCA/Lasso approach outper-
forms PCA/LDA (shown in the first section of results). This can
be explained by the fact that Lasso selects PCs within the
whole range of variables, while the variance limit implies that
only the first 113 out of 640 PCs are used. Interestingly, this
shows that the use of high-order coefficients in the case of
Lasso does not necessarily create a less stable model. Also a
low-order PC is not necessarily providing a strong separation
as illustrated by the fact that PCA/Lasso selects only 55 vari-
ables out of the 113 variables within the 90% variance limit
(see Fig. S4†).

These results overall indicate that there is no benefit in
employing PCA during the creation of statistical models for
prediction. It can even result in some loss of stability, also
coupled with an increase in the model complexity, as both
PCA loading vectors as well as Lasso coefficients must be used
in conjunction to retrieve prediction scores.

Nevertheless, these results overall demonstrate the ability of
generating highly stable models that can be employed to

Fig. 2 Performance of classification measured by cross-entropy for (A)
PCA/LDA with limitation to 90% of explained variance, compared to (B)
Lasso with optimization of λ at each step with cross-validation. Average
of 10 runs with different random selection of subsets, the shaded
regions represent the standard deviation.
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predict the immune activation state of individual cells after
stimulation purely based on Raman data, despite the high
complexity of such cellular changes. It is possible to achieve
stability across data taken over a span of at least 8 months,
with an independent day within the range of measurements
that includes training data, and then with data recorded
approximately one year later.

Direct Lasso provides sparse, less noisy separation vectors

One very valuable feature of classification models based on a
linear separation such as LDA or logistic regression is that the
resulting coefficients can be used directly; it is possible to
retrieve the classification scores by multiplying the coefficients
with the input data. This implies that these coefficients can be
interpreted as a ‘separation vector’ that indicates which vari-
ables distinguish the experimental conditions under study.
The vector obtained by PCA/Lasso for LPS stimulation is
shown in Fig. 4A, where multiple features can be identified,
although the vector is rather noisy due to the inclusion of
high-order PCA loading vectors by the classification model.

On the other hand, the vector derived from the direct Lasso
model (see Fig. 4C) has sparse features due to the nature of

the L1 regularization, so that all present features have a signifi-
cant role in the separation, and finer features are easier to
identify thanks to the absence of background noise.
Nevertheless, the two Lasso and PCA/Lasso vectors share mul-
tiple identical features, which are more easily visible by
looking at a smoothed version of the PCA/Lasso one (quadratic
Savitzky–Golay filter, window size 16, see Fig. 4B), which indi-
cates a certain consistency in the molecular basis of the classi-
fication. Furthermore, the most prominent features are also
consistent with previously reported results, where PCA/Lasso
has been employed to retrieve such vector and interpret the
molecular species involved in the case of LPS-exposed cells.14

One striking point in the features employed for separation
is the absence of significant coefficients in the strong regions
of the Raman spectrum, such as the C–H stretching region
(2870–3000 cm−1) or the strong bands representative of bio-
molecules in the fingerprint region (CH2 interaction,
1420–1480, CC, CO, 1550–1700 cm−1). Furthermore, the largest
features in the separation vector in Fig. 4C are located outside
the main bands and even occur within regions with the smal-
lest intensity. This is unexpected, as it is known that LPS
stimulation induces multiple signaling cascades that result in

Fig. 3 Comparison of performance for Lasso applied either (1) on PCA scores or (2) directly on spectral data. (A) Activation scores for test data
(both for a close independent day (Aug. ‘18) and data acquired approximately 1 year later (Apr. ‘19). (B) ROC results for both methods, showing com-
parable performances. (C) Cross-entropy as a function of the regularization parameter, showing how the best λ changes depending on the type of
test data. The optimal λ as determined by cross-validation is shown by a dashed line. The corresponding amount of used variables is shown on the
top axis.
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the secretion of pro-inflammatory proteins (cytokines),30

which could then contribute in such Raman bands.

Inhibition of protein synthesis yields large spectral changes

As shown above, the direct Lasso method uses statistical ana-
lysis and produces a separation feature vector that is sparse,
and demonstrates the classification does not rely on the stron-
gest and most common Raman bands. This is then atypical
compared to many methods of Raman classification. To better
understand the link between the identified separation vector
and the underlying molecular differences between cell con-
ditions and induced by biological functions, we also per-
formed experiments within a well-understood model, where we
specifically inhibited protein synthesis during cell activation
through the application of cycloheximide (CHX), which blocks
RNA translation. We stimulated Raw264 cells with 50 ng mL−1

LPS, and employed simultaneously a concentration of 1 μg
mL−1 CHX. These concentrations ensure that the secretion of
IL-6 remains close to baseline levels, while minimizing cyto-
toxic effects that are known to occur during co-exposure of LPS
and CHX31 (see Fig. S5† for details). The resulting conditions
are therefore either Control/LPS to study the cellular immune
response (as studied above), or LPS/LPS + CHX to observe the
inhibition of pro-inflammatory proteins.

The resulting spectra are shown in Fig. 5A, where the
Raman spectra are again very similar between the two con-
ditions. However, with LPS and CHX, very significant changes
can be identified when looking at the difference of the average
spectra normalized at 2933 cm−1 (see Fig. 5B), where an overall
decrease in most bands is present, consistent with the block-
age of a primary cellular function. These differences are
indeed much clearer than the ones occurring purely upon LPS
exposure, where most features are significantly smaller, apart
from the large difference at 2850 cm−1. It can be surprising to
find only negative features in the case of CHX blockage, as an
accumulation of mRNA could be expected to occur upon inhi-
bition of its translation into proteins, but it is also known that
gene expressions can vary under CHX exposure, and that such
effects can be pathway-dependent.32 This in turn can create an
imbalance in the secreted cytokines as certain signaling pro-
teins can be released by macrophages without requiring de
novo protein synthesis.33

Fig. 4 Separation vectors leading to the activation scores displayed in
Fig. 3. (A) PCA/Lasso case, where the vector is obtained by combining
PCA loading vectors and Lasso coefficients. The noise is due to the
inclusion of high-order components. (B) Smoothed version of the PCA/
Lasso vector. (C) Sparse vector obtained in the case of direct Lasso.

Fig. 5 (A) Baseline-corrected average Raman spectra from Raw264
cells, for both LPS and LPS + CHX conditions (N is 2569 and 2512,
respectively). Shaded regions represent the standard deviation, LPS
spectrum is shown with an offset for visibility. (B and C) Comparison of
control/LPS (see Fig. 1) and LPS/LPS + CHX (see Fig. 5A) conditions,
shown for the (B) average difference spectra and (C) the absolute value
of the two-tail Student’s t-test for each Raman shift. The dashed line
shows the threshold for p < 0.001.
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To further understand the contribution of each Raman
shift to the separation of classes, we also employ the Student’s
t-test, applied individually to each wavenumber value. The
absolute value of the t parameter is displayed in Fig. 5C, for
both experimental conditions. It can be seen that while most
values are highly significant (the |t| value corresponding to p <
0.001 is represented by a dashed line), the significance is
indeed lower in the C–H stretching region, which can be attrib-
uted to the larger variations in this range. Interestingly, LPS vs.
control results appear to be more significant, although the
classification performance is lower than when blocking
protein synthesis, as discussed below. There is also not much
correlation between significance and the separation vector dis-
played in Fig. 4C, as its main features (1045 cm−1 negative
peak, 1370/1420 cm−1 differential shape) are not linked with
larger |t| values. Overall, these results validate the non-intui-
tive choice of features outside the main Raman peaks in order
to have robust and accurate classification.

Raman classification vector relies on molecular indicators
consistent with known CHX effects

We then generate a statistical model to classify cells exposed to
LPS and blocked with CHX, by employing the direct Lasso
approach as described previously, and applying the model to
one independent day of experiment. The resulting ROC curve
is displayed in Fig. 6A, which corresponds to an overall accu-
racy of 96.8%, slightly higher than in the case of LPS versus
control. The resulting separation vector, shown in Fig. 6B, has
122 non-zero values against 162 in the case of LPS vs. control,
showing that the model requires less features to reach a higher
accuracy, a sign of better stability. As before, there is very little
correlation between the vector and the significance of the
Raman shifts. This can be explained by the fact that while sig-
nificance identifies the ability of variables to distinguish the
average of both populations, the classification model selects a

variable depending on its ability to separate as many individ-
ual samples as possible.

As previously, the selected regions in the separation vector
are not located in main region of the spectrum. Furthermore,
the most prominent bands that occur in a resonant cellular
Raman spectrum (cytochrome c, phenylalanine ring stretch-
ing, etc.) are not present here. It is interesting to note that the
non-zero regions are essentially contained in groups, despite
the correlation that occurs between neighboring wavenumbers,
which should contribute to reduce the likelihood of selecting
close values under a penalized algorithm. This shows that
specific regions in the spectrum are the most powerful to
efficiently separate the classes under study. A tentative band
assignment is provided in Table S1,† where bands are separ-
ated by their sign—positive and negative contributions being
representative of LPS + CHX and LPS conditions, respectively—
and ordered by decreasing strength of the largest value in the
band. As it is challenging to assign meaning from sparse
regions where other peaks might be present in the original
spectrum but not retained in the separation vector, assign-
ments are expressed as possibilities.

It can be seen from this analysis that while there are
different possible assignments, most positive bands can be
linked to nucleobases such as adenine (720, 1375, 1485 cm−1),
guanine (1485 cm−1) or uracil (780, 1234 cm−1), ribose-phos-
phate (865, 1018 cm−1) or DNA/RNA backbone (phosphate,
1091 cm−1). This would be consistent with the accumulation
of RNA material that occurs upon the blockage of mRNA trans-
lation into proteins. On the other hand, the negative bands are
less clear in their assignments, which display more variety.
Nevertheless, while some weaker bands could be attributed to
nucleobases (uracil, 645 cm−1 or guanine, 1325 cm−1), most
bands seem to be related either to protein structure (α-helix,
933 cm−1), amino-acids (carboxyl groups, 1404 cm−1), or
amino-acids residues (tryptophan 1548 cm−1 or tyrosine/
phenylalanine, 1181 cm−1), along with DNA/RNA structure

Fig. 6 (A) ROC curve for the LPS versus LPS + CHX model. (B) Separation vector corresponding to the model, with the values of the most prominent
peaks displayed.
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(ribose-phosphate, 920 cm−1 or A-form helix 815 cm−1). This
again would be consistent with expected effects of CHX, where
its absence is characterized by bands related to the presence of
proteins, along with other components possibly due to differ-
ences in DNA/RNA constituents.

While it is possible in this case to interpret the LPS/LPS +
CHX separation vector thanks to its relative simplicity com-
pared for example with the control/LPS vector in Fig. 4, it
remains difficult due to the selectivity of the bands that rep-
resent only a fraction of the peaks of a given molecular com-
pound, which is a collateral cost of choosing them strictly
based on their classification specificity. On the other hand, a
straightforward PCA decomposition also provides a certain
degree of separation, as illustrated in Fig. S6,† where scores
are plotted for the first twelve PCs. These scores are related to
loading vectors whose shape is closer to ‘standard’ Raman
spectra (see Fig. S7†), which might therefore be easier to inter-
pret, although this of course comes at the cost of specificity, as
even the PC providing the clearest separation (PC2) reaches
only an accuracy of 71.2%. It should be noted that modifi-
cations to PCA were also recently proposed to improve separ-
ation by accounting for instrument-based biases,34 although
this requires some degree of supervision in the otherwise
unsupervised PCA.

4 Conclusions

While PCA can provide very valuable information in the
context of exploratory analysis, we have shown that its use for
the purpose of classification based on spectroscopic data is
not beneficial. First, classical linear discrimination as per-
formed by PCA/LDA yields less accurate results than other
linear methods such as regularized logistic regression by
Lasso. The automatic selection of variables provided in this
case performs significantly better than a limitation to lower
components based on intrinsic data variance, as employed in
PCA-based dimensionality reduction approaches. Secondly, it
was shown that the use of PCA does not improve performance
compared to classification applied directly to the original vari-
ables, i.e. wavenumbers. Furthermore, the resulting separation
vector, which can be used to predict the state of new samples
through direct dot product in case of linear models, is noisier
when based on PCA classification compared to the sparse
vector obtained otherwise, making the identification of separ-
ating features for interpretation harder.

The results were here obtained in the case of changes
induced in a homogeneous population of cells through
immune activation, which should therefore be relatively subtle
compared to cases where different cell types or strains are
compared, for instance. Nevertheless, the models derived here
were shown to be highly accurate (>95%) and stable across
measurements acquired over a year apart. The immune acti-
vation involves multiple complex and concurrent biological
processes that make the interpretation of the separation vector
difficult. To validate the meaningfulness of the classification,

we therefore studied a simpler case where the synthesis of pro-
inflammatory proteins was pharmacologically blocked.

While the study of the spectral differences upon protein
synthesis inhibition clearly shows an overall reduction of most
bands in the average spectrum with very high significance (p <
0.001) across all wavenumbers, the separation vector displays
features that are outside of the strongest regions in the spec-
trum. This shows that the classification ability of a Raman
shift is not related to the average difference it bears between
the studied classes, nor to the statistical significance of this
difference. Even in a case where the synthesis of a specific type
of molecular compound—here proteins—is blocked, the most
prominent bands representative of proteins are not present in
the separation vector. One likely explanation is that such
bands, whose origins lie in rather common molecular inter-
actions, can be representative of a wide variety of molecules,
and thus cannot act as accurate variables for classification.

Nevertheless, an analysis of the bands present in the separ-
ation vector provides a view that is consistent with the under-
standing of the mechanisms involved, where the specificity
and relative strength of the bands present in the sparse vector
help the interpretation. The inhibition of LPS-induced protein
synthesis is represented mostly by bands related to nucleo-
bases and ribose-phosphate complexes, indicative of an excess
of RNA, which is consistent with the blockage of mRNA trans-
lation induced by cycloheximide. On the other hand, the
observation of LPS application alone points towards an excess
of proteins, as shown by the presence of bands related to
amino-acids residues and protein structure.

The sparse classification vector derived from the Raman
spectra provided by Lasso can therefore provide biologically
relevant information by highlighting the specific bands that
most contribute to the separation of the experimental con-
ditions under study, even if the most classical bands known to
appear in spectra of biological molecules are not used in the
classification.
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