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Detection of acquired radioresistance in breast
cancer cell lines using Raman spectroscopy and
machine learning†
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Radioresistance—a living cell’s response to, and development of resistance to ionising radiation—can lead

to radiotherapy failure and/or tumour recurrence. We used Raman spectroscopy and machine learning to

characterise biochemical changes that occur in acquired radioresistance for breast cancer cells. We were

able to distinguish between wild-type and acquired radioresistant cells by changes in chemical compo-

sition using Raman spectroscopy and machine learning with 100% accuracy. In studying both hormone

receptor positive and negative cells, we found similar changes in chemical composition that occur with

the development of acquired radioresistance; these radioresistant cells contained less lipids and proteins

compared to their parental counterparts. As well as characterising acquired radioresistance in vitro, this

approach has the potential to be translated into a clinical setting, to look for Raman signals of radioresis-

tance in tumours or biopsies; that would lead to tailored clinical treatments.

Introduction

In the UK, about 15% of all newly detected cancers are breast
cancers, making it the most prevalent of all cancers.1,2 Risk
factors include age, genetics, lifestyle and environmental
factors.2 Immense progress in molecular analysis and genetic
screening has led to the classification of breast cancers into
different subtypes: luminal A, luminal B, normal breast like,
human epidermal growth factor receptor-2 (HER-2+), basal and
claudin-low tumours, and depending on the level of hormone
receptors and HER-2 expressed on tumour cells,3–5 these sub-
types are also referred to as either hormone receptor positive
(HR+) or hormone receptor negative (HR−) tumours.6,7 Based
on incidences in Scotland from 2009–2016 (N = 31 099), 85%
of these were HR+/HER2− and HR−/HER2−, whereas 15%
were of HR+/HER2+ and HR−/HER2+ subtypes;8 A similar
trend is observed in the USA, where 78% of all breast cancer
incidences between 2013 and 2017 were of HR+/HER2− and
HR−/HER2− subtypes.9 Disease prognosis and responsiveness
to radiotherapy in breast cancer has been shown to be
subtype-specific.10–13 While molecular profiling of these sub-

types is well-understood and achieves reasonable prognostic
results,14–17 the link between the subtypes and their response
to this particular therapy isn’t well understood; therefore, it is
of increasing importance to understand the relationship
between individual tumours’ distinct molecular profiles and
their differentiated response to extended (adjuvant) radiother-
apy; this would help identify patients that would benefit most
from this treatment.

Small amounts of tumour biomolecules are present in
the bloodstream, revealing changes related to the tumour;
molecular profiling of these tend to give accuracies ranging
between 80–95% for most cancer types tested.18 RS has
been shown to diagnose stage II–IV breast cancer in blood
plasma with accuracy >99%.19 In future studies, our
approach could also be applied to monitor real-time bio-
chemical changes in tumours during (radiation) treatment
by analysing the corresponding biochemical changes in
liquid biopsies of patients.

In genomics or molecular diagnostics, cancer cells can be
screened for the presence and level of target molecules or
genes (biomarkers); this method of molecular/genomic profil-
ing achieves accuracies of between 75–78%,10 and 87.5% for
predicting tumour recurrence after radiotherapy;10,20 improv-
ing these accuracies to above 95% would be a major contri-
bution in personalised medicine.

Ionising radiation utilises X-rays or protons with the poten-
tial to cause damage to genetic material, which can result in
the inhibition of cancer cell growth and eventually cell
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death.21 About 83% of breast cancer patients are treated with
radiotherapy as part of their treatment regimen.22 Numerous
studies have shown that adjuvant radiotherapy (after breast
conserving surgery) can attain survival rates that are compar-
able to mastectomy, with the additional advantages of rela-
tively mild toxic effects compared to other treatment options
and favourable aesthetic outcome.23–25 Despite these suc-
cesses, a number of breast cancer patients develop locoregio-
nal recurrences after their radiotherapy treatment course, and
although cancer recurrence after radiotherapy can be as a
result of residual untreated tumour cells,26 it can also be
caused by cells that have survived the radiation treatment by
developing either innate resistance (e.g. cancer stem cells) and/
or acquired de novo resistance.27

Studies have shown that multiple factors are involved in
highly complex mechanisms that result in the development of
acquired radioresistance; key aspects include modification of
signalling pathways that enhance DNA damage response,
increased oncogenic miRNA production, cancer stem cells, epi-
thelial-to-mesenchymal transition (EMT), metabolic altera-
tions, and changes in the tumour microenvironment.28–32

Examples of approaches that are applied in cancer research to
detect (acquired) radioresistance include DNA microarray
tests, immunohistochemistry, and cell proliferation assays, in
which the profiling of specific target molecules (biomarkers) is
used to determine the prognosis of the disease and/or predict
the outcome of an individual sample to a particular treatment
or a combination of treatments.33–35

Raman spectroscopy (RS) provides a label-free and non-
destructive approach of measuring the chemical composition
of materials using a laser, resulting in light losing some
energy to excite vibrations in molecules. A spectrum of red-
shifted light reveals the molecular ‘fingerprint’ (i.e. chemical
analysis) of the specimen; resulting in peaks at characteristic
vibrational frequencies specific to chemical bonds, and can be
evaluated to determine the concentration of specific molecules
in the specimen.36 Despite the complexity of malignant tissue,
which also comprises of a condensed network of normal cells,
immune cells, blood vessels and a dense matrix of connective
tissue, RS can discriminate cancerous vs. healthy tissue with
accuracies above 90%,37–39 and can distinguish between
benign, primary, and secondary tumours ex vivo.37 RS has also
been extensively used in liquid biopsies for diagnosis, and to
discriminate between cancerous and non-cancerous tissue
in vivo intraoperatively.40,41

Most studies that utilised RS have investigated the short-term
(e.g. up to 3 days) effect of radiation in human cancer cells and
tissue.42–45 One particular study examined biochemical changes
induced by radiation in an array of breast cancer cells using RS
and multivariate analysis, it described changes in Raman pro-
files that show subtype-specific response to radiation.46 A recent
study utilised surface enhanced Raman spectroscopy (SERS)
using gold nanoparticles to improve Raman signals and was
able to clearly discriminate between radiosensitive and radiore-
sistant murine lymphoma cells by significantly enhancing
subtle chemical differences between the two sublines.47

Fewer studies have applied RS to examine long-term radi-
ation-induced biochemical changes in cells or tissue. One
study that utilised RS in acquired radioresistant oral cancer
phenotypes, described changes in proteins and nucleic acids,
possibly due to alterations of the cell signalling cascades
induced by radiation.48 A number of studies have looked at the
immediate effects of radiation to cells and tissue of different
cancers,43–46,48,49 but none has so-far characterised long-term
acquired radioresistance in breast cancer using RS.

Radiation is mostly prescribed in small fractions of the
total prescribed dose—usually about 60 Gy final dose adminis-
tered over a number of days. The development of the radiore-
sistant cell lines was carried out by weekly exposure of the
wild-type cells to clinically permissible fractioned radiation
doses, starting with an initial dose and cumulatively increas-
ing it every week to a final radiation dose of 57 Gy as described
in a previous study.34

The aim of the present study is to investigate possible
common changes in chemical composition that occur after
the development of acquired radioresistance in both HR+ and
HR− breast cancer cells. This study is aimed at detecting
changes induced by radiotherapy in vitro, but the ultimate
aim of the research is to predict resistance to radiation at the
earliest stage (with a tissue biopsy or blood plasma), and
translate this to a clinical setting to improve tailoring of thera-
pies and reduce deaths. In this study, we used in vitro cell
lines to establish whether a clear Raman signal can be
measured as cells develop radioresistance. It is likely that only
a subset of cancer cells within a tumour can develop acquired
radioresistance after treatment, and if we can detect clear
differences between wild-type and radioresistant cells, then we
may be able to detect changes within tissue and predict radio-
resistance at the diagnosis stage in a clinical setting. It is
therefore necessary, before advancing into tissue and liquid
biopsies, to understand the fundamental changes in a variety
of cancer cell lines from the two most prevalent breast cancer
subtypes according to their hormone-status (i.e. HR+/HER2−
and HR−/HER2−).

Three breast cancer cell lines were utilised for this study,
two HR+/HER2−: MCF-7 (luminal A), ZR-75-1 (luminal B),
and one HR−/HER2−: WT-MDA-MB-231 (claudin-low) originat-
ing from different people;50 for each one a radioresistant
(RR) phenotype was created: RR-MCF-7, RR-ZR-75-1 and
RR-MDA-MB-231. Noteworthy is that both the two HR+-derived
RR phenotypes (i.e. RR-MCF-7 and RR-ZR-75-1) lost their
hormone-receptor expression but overexpressed epidermal
growth factor receptor (EGFR) upon attainment of radioresis-
tance. In addition to the changes observed with their recep-
tors, our RR cell lines have been shown to significantly
increase their migration and invasion capabilities with the
attainment of radioresistance.34 While over 90% of breast
cancer patients die as a result of metastatic rather than
primary disease,51 understanding the progression of treat-
ment-resistance and metastasis, and devising time-efficient,
cost-efficient and highly accurate early-detection techniques, is
of great importance and would save many lives.
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To the best of our knowledge, no study has yet described
matching spectral changes that are attributed to acquired
radioresistance, and none has been able to describe these
spectral differences by classifying acquired radioresistant cell
lines from their wild-type in an array of both HR+ and HR−
breast cancer cell lines with a validation score of 100%.

Materials and methods
Cell lines

The human breast cancer cell lines (MCF-7, ZR-75-1,
MDA-MB-231, and the RR phenotypes) were all provided by
Mark Gray, Roslin institute, University of Edinburgh. The
radioresistant cells in our study were generated from their par-
ental cells by exposing them to weekly radiation, starting with
an initial dose of 2 Gy and increasing this dose by 0.5 Gy every
week for 12 weeks, which equates to a cumulative radiation
dose of 57 Gy as previously described.34

Cell culture and preparation

Unless stated otherwise, all cell culture reagents were
obtained from Gibco™, ThermoFischer Scientific. Cells were
grown in Dulbecco’s modified Eagle’s medium (DMEM) sup-
plemented with 10% foetal calf serum (FCS), 5 ml of pen–
strep (50 U ml−1 penicillin, 50 mg ml−1 streptomycin) to
70–90% confluence before being harvested. They were then
washed in phosphate buffered saline (PBS) before adding 3 ml
TrypLE™ Express Enzyme and incubating for 5–10 minutes.
TrypLE™ was diluted with growth media in the ratio 1 : 3.
This mixture was then centrifuged at 300g for 5 minutes. The
pellet was re-suspended in 10 ml PBS and centrifuged at 300g
for 5 minutes. The pellet was re-suspended in 10% formalin
for 10 minutes and centrifuged at 300g for 5 minutes. The
pellet was again re-suspended in 10 ml PBS and centrifuged
at 300g for 5 minutes. 10 µl of the pellet was pipetted onto
the surface of a gold mirror (Thorlabs, Inc)52 and allowed to
dry completely. Samples were then ready for Raman spectral
acquisition.

Ionising radiation

Irradiation was performed 24 hours after seeding the cells in
the 96-well plates. The cells were treated with doses ranging
between 0.5–10 Gy using a Faxitron RX-650 (Faxitron X-ray
Corporation, IL, USA).

Sulforhodamine b (SRB) assay

An SRB assay is used to determine the density of surviving
cells by measuring the amount of cellular protein bound by
the SRB dye;53,54 the intensity of dye correlates to the amount
of cellular protein, hence the cell density in that particular
well. Breast cancer cells were seeded into 96-well plates and
were routinely incubated. 144 h after irradiation, cultures were
fixed by addition of 50 µl cold 25% TCA (trichloracetic acid)
solution per well at 4 °C for 1 hour, after which they were
washed with water and dried overnight. 50 µl SRB dye solution

was added to each well, thereafter the plates were placed on a
rocker for 30 minutes. They were then washed with 1% glacial
acetic acid and dried overnight. 150 µl Tris buffer solution was
added to each well and placed on a rocker for 1 hour. The
samples were analysed at 540 nm by a plate reader (BP 800
Biohit).

Raman spectroscopy

We used a Renishaw InVia Raman microspectroscopy system
coupled to an upright microscope stage and a laser source
with an excitation wavelength of 785 nm. A Leica 20× magnifi-
cation lens (NA = 0.4) was under-filled to produce a spot dia-
meter (∅) ∼10 µm. Spectra were acquired by performing repeat
measurements on 100 different regions per pellet by scanning
over a spectrum range of 380–1800 cm−1, and each of the 100
spots was illuminated with an exposure time of 200 s.

Data analysis

Autofluorescence baseline was removed using an asymmetric
least squares baseline correction protocol and Raman spectra
were normalised to the amount of biological material within
each sample.55 Thereafter, cosmic ray spikes were removed
by averaging each wavenumber and isolating any samples
which had exceeded the standard deviation of the remaining
values by at least a factor of four. A Savitzky–Golay filter was
applied for smoothing. Raman spectra were then split into
training and test groups at the ratio of 2 : 1 respectively.
Principal component analysis (PCA) was performed with the
spectra from the training set. Next, linear discriminant ana-
lysis (LDA) was performed on the first 30 principal com-
ponents. This process was repeated on the test data set
using the eigenvectors and discriminant vectors obtained
from the training data set for all transformations. The train-
ing set was used to construct machine learning models for
classification of the data. Mann–Whitney–Wilcoxon test two-
sided with Bonferroni correction was applied to compare the
test-set values of the wild-type cell lines to their parental
values. The program for this analysis was written in python
3.7, using the scikit learn module for machine learning
analysis.

Results and discussion
Radiation

In the current work, we investigated the response to radiation
of the parental cells (WT) and radioresistant phenotypes (RR)
using SRB assays. Radioresistance of the paired cell clones was
assessed by comparing the effects of radiation on cell prolifer-
ation in the RR cell lines and their parental (WT) clones. The
WT and RR cell lines displayed varied radiation responses to
increased radiation doses as illustrated in the concentration
response curves in Fig. 1.

Significant resistance to radiation was observed in the RR
cells compared to the WT cells. The half-maximal inhibitory
concentration (IC50), the measure of how much the function of
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a biological component is inhibited by half, were in the range
of 2.86 to 5.42 Gy for the WT cells as compared to 8.08 to >10
Gy for the RR cells.

Raman spectroscopy

Raman spectra of 100 different spots on a mapped region of
each cell pellet from the 6 cell lines were acquired. The spectra
were averaged as depicted in ESI Fig. 1.† The difference
spectra (RR–WT), plotted in Fig. 2, highlights the biochemical
differences that have occurred between the parental and the
RR phenotypes. An assignment of these changes in chemical
composition is presented in Table 1, according to a database
of biological molecules.36

Each measurement point in Fig. 3 is from a different
region of a pellet – one pellet for each of the six cell lines.
All samples were subject to the same culture conditions, so
the variation between cell lines is attributed to changes in
biochemical composition within cells lines from different
patients. Variation between members of the same group
will be partly attributed to the heterogeneity of the sample
(with small sampling volumes) and partly due to the noise
within individual spectra. A high degree of clustering and
clear separation between wild type and radioresistant cells,
repeated for all three RR cell types, mean that artefacts or
variations in culture conditions do not explain the observed
separations.

Fig. 1 The effects of radiation on proliferation assessed through SRB assays. Breast cancer cells were treated 24 hours after seeding, and cultured
for 144 hours post-radiation (A: MCF7 cells. B: ZR-75-1 cells. C: MDA-MB-231 cells). Data expressed as mean ± standard error of mean (SEM); n = 3;
6 replicates per experiment. *P ≤ 0.03, **P ≤ 0.008, ***P ≤ 0.005, ****P ≤ 0.0001 (2-way ANOVA followed by Holm–Sidak’s multiple comparison
test performed, comparing each RR mean value to its parental mean value).

Fig. 2 Average Raman spectra (offset for clarity) for wild-type and radioresistant cell lines. The difference spectrum is created by subtracting the
average spectrum of the (WT) parental cells from the average spectrum of the radioresistant (RR) cells.
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We see significant negative peaks at 1131 cm−1, 1300 cm−1,
1445 cm−1, 1460 cm−1 and 1670 cm−1 associated with lipids.
Negative bands linked to lipids have been shown in irradiated
human NSCLC xenografts49 and breast cancer cell lines.42

Lipid alteration is a well-known hallmark in breast cancer.56

Furthermore, negative peaks at 429 cm−1, 702 cm−1,
1445 cm−1 and 1670 cm−1 indicate lower cholesterol levels in
our RR cells, and is shown in cancer cells that efflux chole-
sterol in order to enhance plasma membrane fluidity and epi-
thelial to mesenchymal transition (EMT).57 Since our RR cells
have been shown to overexpress EMT markers while downregu-
lating epithelial markers, they also display increased meta-
static traits. This signifies the possibility that they could have
developed mechanisms to remove cholesterol from their
plasma membranes in order to facilitate their newly-adopted
aggressive and migratory characteristics associated with
increased treatment resistance and metastasis.

The changes in the heights of spectral peaks associated
with proteins observed in this study, correlate with changes
observed in protein and functional assays with the same
tumour models, which showed altered downstream signalling
pathways related to cell survival, a more invasive EMT,34 and
further work by this group has shown increased DNA damage
repair.

Principal component analysis (PCA) of the two principal
components with the highest spectral variation between the
classes (as shown in ESI Fig. 3†) was used to simplify and visu-
alise the differences in the Raman spectra of the two main
classes (WT and RR). Each data point on the 2D scatter plot
represents a spectrum acquired from one of 100 locations on a
pellet. Just by observing their positions on the 2D plot, it is
clear that the two main classes: WT and RR, are distinguish-
able by the formation of two separate clusters as depicted in
ESI Fig. 2.†

PCA was able to show how well the RR phenotypes could be
distinguished from the WT by RS, but it couldn’t show differ-

Table 1 Assignment of vibrational modes36 in the Raman difference
spectra in Fig. 2

Raman shift
(cm−1)

Variation from
WT to RR Biomolecules

429 Decrease Cholesterol
621 Decrease Phe (p)
643 Decrease Tyr (p)
702 Decrease Cholesterol
719 Decrease Phospholipids
760 Decrease Try (p)
815 Decrease Pro, Tyr (p)
828 Decrease Tyr (p)
853 Decrease Tyr (p)
1004 Decrease Phe (p)
1032 Decrease Phe (p)
1094 Decrease Lipids
1131 Decrease Lipids
1156 Decrease C–C, C–N stretching (p)
1175 Decrease C–H bending Tyr (p)
1210 Decrease Tyr and Phe (p)
1260 Decrease Amide III (p)
1300 Decrease Lipids
1445 Decrease Lipids
1460 Decrease Lipids
1585 Decrease Proteins
1605 Decrease Phe, Tyr, CvC (p)
1660 Decrease Amide I band (p)
1670 Decrease CvC stretch (l)

p: protein, l: lipids, Phe: phenylalanine, Tyr: tyrosine, Pro: proline.

Fig. 3 PCA–LDA scatter plot for Raman spectra of wild-type (WT) and radioresistant (RR) breast cancer cells. A classification accuracy of 100% is
achieved in correctly classifying the radioresistant from the wild-type as depicted by the dividing line. The plotted points depict both 2/3rd of the
training set (filled markers) and 1/3rd test set data (open markers).
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ences within the cell lines (i.e. subclasses) with sufficient
clarity. We therefore applied a supervised method: linear dis-
criminant analysis (LDA) on the first 30 principal components,
hence PCA–LDA. This method minimises the differences
within (sub) classes while maximising their intra-class differ-
ences. Plotting the first two linear discriminant factors
revealed clear separation between the two main classes (WT
and RR) as well as within the WT subclasses as shown in Fig. 3.

The predictive power of the model was tested by applying
an algorithm that randomly selects one-third of all spectra
from all pellets as test data and plots the results together with
the training set (two-thirds of data). A validation accuracy of
100% was achieved by correctly plotting the test set onto the
main PCA–LDA training set plot significantly distinguishing
the WT and RR cell lines (ESI Fig. 4;† p-value = 6.591 × 10−34).
We also saw the formation of a distinct cluster of all three RR
subclasses, indicating radiation-induced biochemical changes
that are common to the RR phenotypes regardless of their orig-
inal hormone status.

This finding is corroborated by gene-expression analysis
and functional assays of a previous study that described a
similar pattern highlighted by genetic markers and proteins
that are known to regulate the transition from an epithelial to
a mesenchymal phenotype of the HR+-derived cells, and is
strongly linked to enhanced migratory capabilities with the
development of acquired radioresistance in our RR cells.34

Individual spectra from all samples are plotted together in ESI
Fig. 5.†

Conclusion

Raman spectroscopy, a label-free non-destructive technique,
was used to examine changes in chemical composition associ-
ated with the development of acquired radioresistance in HR+
and HR− breast cancer cells. We show that RS together with
machine learning can achieve high accuracies in the discrimi-
nation of all parental cell lines from their acquired radioresis-
tant phenotype—cells that are associated with negative treat-
ment outcomes (as shown in Fig. 1) and increased migration
and invasion capabilities.34 Regardless of the hormone status
and subtype of the parental cells, the RR phenotypes are
shown to have similar difference spectra as well as the for-
mation of a single cluster on the PCA–LDA scatter plot,
suggesting that these cells undergo common biochemical
changes in the process of acquiring radioresistance.

A recent study34 with the same cell lines, which utilised a
gene-expression assay routinely used in clinics to help predict
treatment response, could not discriminate between the
WT-MDA-MB-231 and its radioresistant phenotype, demon-
strating the relevance of Raman spectroscopy and machine
learning as a potential complementary approach to improving
the detection accuracies currently achievable with the conven-
tional assays utilised in many clinics. Compared to the gene
expression profiling test, our results could discriminate
between the WT and RR cell lines. Other conventional clinical

assays like the antibody dependent ELISA, western blotting,
immunohistochemistry might be effective in targeting specific
molecules, but may also present significant shortcomings in
profiling for acquired radioresistance, a process which requires
sensing of multiple biomolecules simultaneously and with
clinically-applicable accuracies. A major challenge with most
clinical assays is however, the level of sensitivity and specificity
achievable, which is a key decisive factor in advising suitable
treatment options and improving survival rates of patients.

To our knowledge, this study is first of its kind to show
similar changes in Raman spectra (and therefore chemical
composition) in the process of acquired radiation resistance in
both hormone-dependent and independent breast cancer cell
lines using machine learning, and it is the first to accurately
discriminate between the parental and radioresistant pheno-
types (i.e., with 100% classification accuracy for 198 members
of the test set). Our findings suggest that we may be able to
observe similar differences between tumours not yet exposed
to radiation, by acquiring spectra of patient biopsies. This
would lead to personalised clinical treatments as a comp-
lementary tool with the potential to substantially improve
accuracies in predicting radioresistance in individual tumours
by applying it to tissue diagnosis before radiation. A Raman
test on tissue biopsies could also help predict a patient’s
response to various other treatments as well as radiotherapy;
this would personalise treatment by enabling the choice of
treatments which gave positive patient outcomes in tissue
with a similar chemical composition (Raman spectrum).
Furthermore, this approach could also be used to investigate
real-time changes in liquid biopsies (e.g. blood plasma) during
radiotherapy treatment by detecting changes associated with
the development of acquired radioresistance.
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