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Exploring AdaBoost and Random Forests machine
learning approaches for infrared pathology on
unbalanced data sets†‡

Jiayi Tang, Alex Henderson * and Peter Gardner

The use of infrared spectroscopy to augment decision-making in histopathology is a promising direction

for the diagnosis of many disease types. Hyperspectral images of healthy and diseased tissue, generated

by infrared spectroscopy, are used to build chemometric models that can provide objective metrics of

disease state. It is important to build robust and stable models to provide confidence to the end user. The

data used to develop such models can have a variety of characteristics which can pose problems to many

model-building approaches. Here we have compared the performance of two machine learning algor-

ithms – AdaBoost and Random Forests – on a variety of non-uniform data sets. Using samples of breast

cancer tissue, we devised a range of training data capable of describing the problem space. Models were

constructed from these training sets and their characteristics compared. In terms of separating infrared

spectra of cancerous epithelium tissue from normal-associated tissue on the tissue microarray, both

AdaBoost and Random Forests algorithms were shown to give excellent classification performance (over

95% accuracy) in this study. AdaBoost models were more robust when datasets with large imbalance were

provided. The outcomes of this work are a measure of classification accuracy as a function of training

data available, and a clear recommendation for choice of machine learning approach.

Introduction
Infrared pathology

In recent years there has been increasing interest in augment-
ing conventional pathology, utilising light microscopy of
stained tissue, with automated, label-free methodologies. At
the forefront of these methods is infrared spectroscopy.

Research has shown that infrared spectroscopy, hyperspec-
tral imaging, coupled with machine learning, can be used to
distinguish cancerous and normal samples and, in some
cases, the type of cancer and histological grade can also be dis-
tinguished. This methodology has been applied to a wide
range of tissue types including prostate,1–4 lung,5,6 colon,7–10

bladder11 and breast.12–19

These hyperspectral images can be composed of many
thousands of pixels, each of which contains a full infrared
spectrum of the sample under observation. Given that most

human tissue is composed of essentially the same chemical
species, advanced chemometric methods are required to clas-
sify the composite tissue types present; in particular, those
that exhibit diseased characteristics. When attempting to
develop a chemometric model, care must be taken to ensure
its stability under different performance conditions. Typically,
exemplar tissue samples will be examined by a trained pathol-
ogist and analysed using infrared spectroscopy. The pathol-
ogist will indicate regions of interest, while the spectroscopist
identifies these regions in the data, before submitting them to
the model-building process. The tissue under examination can
have varying degrees of cell type, both in terms of naturally
occurring diversity and those cells modified by the disease
under investigation. Therefore, the data collected can have a
variety of composition which presents an additional problem
in the model-building process. In this paper we explore the
influence of this composition using two machine learning
algorithms.

Machine learning

Machine learning (ML) is a branch of artificial intelligence. It
allows a computer to learn from data and to improve decision
making with experience. ML refines a model that can be used
to predict outcomes of inquiry, based on previous learning.
There are two types of machine learning: supervised and unsu-

†Data and source code availability: Processed data and MATLAB source code:
https://doi.org/10.5281/zenodo.4730312. Raw data in Agilent IR mosaic file
format: https://doi.org/10.5281/zenodo.4986399
‡Electronic supplementary information (ESI) available. See DOI: 10.1039/
d0an02155e

Department of Chemical Engineering and Analytical Science, Manchester Institute of

Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1

7DN, UK. E-mail: alex.henderson@manchester.ac.uk

5880 | Analyst, 2021, 146, 5880–5891 This journal is © The Royal Society of Chemistry 2021

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
M

ay
 2

02
1.

 D
ow

nl
oa

de
d 

on
 7

/2
4/

20
25

 3
:1

9:
55

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

www.rsc.li/analyst
http://orcid.org/0000-0002-4135-0942
http://orcid.org/0000-0002-5791-8555
http://orcid.org/0000-0003-4034-3764
http://crossmark.crossref.org/dialog/?doi=10.1039/d0an02155e&domain=pdf&date_stamp=2021-09-22
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0an02155e
https://pubs.rsc.org/en/journals/journal/AN
https://pubs.rsc.org/en/journals/journal/AN?issueid=AN146019


pervised. For supervised learning, a labelled set of input–
output pairs is provided to the algorithm which then learns a
model which can reproduce this mapping.20 Unsupervised
learning can be described as knowledge discovery. Here, the
objective is to find hidden patterns in data.20 There are no
defined answers, as there is no specific existing pattern to
find.20,21

In the field of spectroscopy, a number of studies have com-
bined FTIR hyperspectral imaging data with the Random
Forests™ classification algorithm. Leslie et al. applied it on
lymph node histopathology in 2015,22 Mittal et al. used
Random Forests on a four-class classification for digital breast
histopathology17 and simultaneous cancer and tumour micro-
environment detection.23 Pilling et al. also showed that for
biopsy tissue mounted on glass substrates, Random Forests
could give classification accuracies over 95%.4

Random Forests. The Random Forests™ algorithm is a
supervised machine learning technique based on an array of
decision trees (Fig. 1). Random Forests is one of many ensem-
ble methods, that construct a group of classifiers and then
sort previously unseen data by taking a vote of predictions
made by the set of weak learners; in this case decision trees.24

This type of ensemble approach is termed bagging. Ensemble
methods are well established as a way of obtaining a highly
accurate classifier by combining many less accurate ones.24 In
the case of Random Forests, the weak classifier is a decision
tree. During the model building process, the Random Forests
algorithm creates many decision trees, as required, each with a
different sub-sample of the available variables. Each decision
tree will develop its own route to classification. The trees are
then tested using unseen data and the outcome of each tree is

recorded. A majority vote amongst all the trees in the forest is
taken and the overall model ‘votes’ on the outcome.25

AdaBoost. Random Forests has generally been the preferred
machine learning method in the bio-spectroscopy field.
However, alternative ensemble methods have yet to be
explored. One such ensemble approach, boosting, again uses a
weak learner internally, but here uses a triplet of learners,
each with a different, but related input. Boosting can be used
iteratively to improve classification performance. The most
well-known boosting method is the Adaptive Boosting
(AdaBoost) algorithm of Freund and Schapire.26,27 AdaBoost
was the first practical boosting algorithm and remains one of
the most widely used and studied, with applications in numer-
ous fields.28 The AdaBoost approach involves a user defined
number of iterations. In each iteration a triplet of weak lear-
ners is applied to the entire training set and the outcome com-
pared to the expected sample labelling. An error function is
then determined which provides a weighting applied to each
spectrum for the next iteration. This has the effect of down-
weighting spectra that were correctly classified in the previous
iteration and up-weighting those that were misclassified.
Subsequent iterations will then focus on spectra that have yet
to be correctly classified. To determine the predicted class of a
previously unseen test subject, each of the weighted weak lear-
ners, from each iteration, are provided with the unseen data
and a weighted majority vote is taken on their decision.29 This
is shown schematically in Fig. 2.

Adaboost is considered more effective at handling an unba-
lanced dataset than Random Forests, since the minority class,
which is much more likely to be misclassified, can be given
higher weighting in subsequent iterations, and can improve

Fig. 1 Simplified Random Forests method. (A) Features in the training data are divided into multiple subsets and used to train individual decision
trees in the forest. (B) When an unknown input X is introduced to the trained forest, each tree will make its own prediction. The final prediction is
decided by majority voting of all trees. (C) An example of how a decision tree makes a prediction, where blue squares represent samples in class A
while orange squares represent samples in class B, and t1 and t2 are two example features used at nodes.
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the performance of weak learners regardless of whether train-
ing data is balanced or unbalanced.30

Unbalanced data

In the real world, it is highly unlikely that there will be the
same number of spectra of each class in any training data set,
without specific pre-processing to that effect. Biased results
can be produced if directly applying classification to these
data.31,32 Studies, using a number of different approaches,
have been conducted in various fields, to reduce the influence
of unbalanced data sets in model predictions.30,33–35

In terms of clinically related studies, data encountered for
classification is often unbalanced. In the case of cancer biopsy
samples, the class of interest, possibly dysplastic or cancerous
epithelial cells, may be small compared with the total number
of cells within the tissue sample which may consist of predo-
minately stroma. Therefore, application of hyperspectral image
analysis, where the pixels are arranged in a grid pattern, will
result in the number of spectra from each cell type (class)
being unequal.36

If a classification model is established to separate epi-
thelium cells from stroma, a very unbalanced dataset will be
obtained, which is inherently biased. When the number of
samples in one class (majority) largely exceeds the number of
samples in the other (minority), data mining algorithms tend

to favour the majority class. The minority class, which is fre-
quently the class of interest (positive class), can have poor
classification accuracy due to the biased model. Therefore,
techniques are required to ensure that a model can efficiently
identify minority classes.

Different methods, for example weighting, can be employed
to alleviate bias. Here, we explore re-sampling methods.37

There are two commonly used re-sampling methods: under-
sampling and over-sampling. The class distribution can be
balanced by either duplicating selected members of the min-
ority class (over-sampling), or removing selected examples
from the majority class (under-sampling).36 Under-sampling
and over-sampling can be performed in different ways.30

Random under-sampling balances two classes by randomly
removing data from the majority class to match the number of
samples in the minority class. Random over-sampling repli-
cates samples in the minority class until the number of
samples matches that of the majority class.

In this work we compare the classification accuracy of
models developed using two machine learning techniques—
AdaBoost and Random Forests—to data from infrared spectro-
scopic analysis of human breast tissue biopsies, where that
data has unbalanced class structure, and also when under-
and over-sampling strategies have been employed to mitigate
this.

Methodology
The sample

A formalin fixed, paraffin embedded, breast tissue microarray
(TMA) – ID BR20832 – was used for this study (US Biomax,
Rockville, MD, USA). The human tissue was collected under
approved HIPPA protocols and approved for commercial
product development. The TMA contained 15 pathologically
indicated non-malignant cores and 192 malignant cores: in
total 207 breast tissue biopsy cores, each 1 mm in diameter.
Each core was biopsied from a different patient. A 5 μm thick
section was floated onto a standard histology glass slide and
stained using haematoxylin and eosin (H&E). An adjacent
section of the same thickness was floated onto a BaF2 slide for
infrared spectroscopic analysis. This IR sample was not
dewaxed, reducing the likelihood of inducing chemical
changes during deparaffinization, and decreasing spectral Mie
scattering due to the closer refractive index values between
paraffin and sample.38

Fifty cores were selected from the TMA, which included
forty cores with stage II breast cancer and ten normal-associ-
ated breast tissue cores: histological normal tissue adjacent to
the tumor (NAT) from non-malignant cores.39

Data acquisition

FTIR scans were obtained in transmission mode using an
Agilent Cary 670-IR spectrometer fitted with a liquid nitrogen-
cooled 128 × 128 focal plane array (FPA), mercury cadmium
telluride (MCT) detector. An Agilent Cary 620-IR imaging

Fig. 2 A schematic of the AdaBoost process. Blue triangles and orange
squares represent features, with the size of the features representing
weighting. Iteration 1, all features carry equal weight. Iteration 2, cor-
rectly classified features (in iteration 1) down-weighted, incorrectly
classified feature up-weighted. Iteration 3, correctly classified features
(in iteration 2) down-weighted, incorrectly classified feature up-
weighted. The combination of the iterations produces a final classifier
that is strong.
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microscope, with a ×15 Cassegrain objective, was coupled to
the spectrometer. The instrument produced a resultant field-
of-view of 704 × 704 μm, with a corresponding pixel size of
5.5 μm.

The FTIR instrument is fitted with a sealable enclosure, sur-
rounding the sample stage and optics, through which dry air
is continuously delivered. The relative humidity within this
chamber was reduced to zero percent prior to any data acqui-
sition. This has the benefit of removing any water vapour that
might be otherwise present in the optical path and sub-
sequently recorded as part of the sample’s spectrum. Before
imaging, background scans were taken from a region, selected
to be clean and paraffin free, in the form of a single FPA tile
with 128 co-added scans at a spectral resolution of 5 cm−1. For
tissue analysis, 96 co-added sample scans were measured.
Chemical images of each core were acquired as a 2 × 2 mosaic;
each mosaic taking approximately 15 minutes to collect.
Interferograms were processed using Happ–Genzel apodisa-
tion with two levels of zero filling and a spectral range of 900
to 3800 cm−1.

Data pre-processing

All data were pre-processed using MATLAB® R2017a (The
MathWorks Inc., Natick, MA, USA). Infrared spectra for each
biopsy core were extracted from the mosaic as a 256 × 256 ×
1478 hypercube, where each hypercube consisted of 65 536
spectra, each with 1478 data points.

FTIR chemical images of each of the breast tissue cores
were generated and compared to the H&E stained sections.
Fig. 3 shows examples of both H&E stained and infrared hyper-

spectral images of a cancerous core, and a core containing
normal associated tissue. Examples of the manually annotated
regions, from which spectra were extracted, are indicated on
the infrared images. Regions of epithelium were identified
according to World Health Organisation (WHO) documen-
tation: WHO Classification of Tumours in the Breast.40

Principal components-based noise reduction was used to
improve the signal-to-noise ratio of raw spectra from each
annotated area; the first 80 principal components being
retained. Spectra were quality tested to remove data obtained
from areas with little or no tissue, based on the intensity of
the amide I band; spectra having absorbance between 0.1 and
2 being retained. Spectral regions describing the absorption
bands of paraffin wax were removed with spectral ranges 1000
to 1319 cm−1, 1481 to 1769 cm−1, and 2986 to 3569 cm−1

being retained for further processing. Each spectrum was then
converted to its first derivative using the Savitzky–Golay algor-
ithm, based on a fourth order polynomial, with a window size
of 19 data points. Further spectral ranges were then deleted
from the derivatized data to remove the end regions, which
can be influenced by the derivatization process, to leave a data
set comprising the spectral ranges: 1019–1300, 1500–1750 and
3005–3550 cm−1. No spectral normalisation was performed
since all tissue samples were part of the same tissue microar-
ray, and thus have the same thickness.

Training and test sets

The data was separated into two collections: training data and
independent test data. The training data contained 32 cancer-
ous and 8 normal-associated cores, 40 in total, while the inde-
pendent test data contained 8 cancerous and 2 normal-associ-
ated cores, 10 in total. Each core originated from a different
patient. To eliminate the effect of different size of annotation
areas contributing differently to each other in the model, the
same number of pixels (327) were randomly selected from each
core to match with the minimum number of pixels in the 40
cores, and maximising the use of different cores from different
patients.

Independent test set. From the TMA we identified eight
cores as being cancerous tissue and two cores with normal-
associated tissue (NAT). Spectra from annotated regions in
these cores were extracted and used to form an independent
test set. This independent test set was used for all model
assessment procedures and comprised 1352 cancer-related
spectra and 338 normal-associated tissue spectra: 1690 spectra
in total. These ten cores were removed from that analysis pool
to prevent crossover between model building and model
assessment. Recall that each core is from a separate patient.

Training sets A: same overall training set size, unbalanced
class sizes, unique spectra. Five training sets were generated
from the pool of training data using the process shown in
Fig. 4. We randomly selected 2500 spectra of cancerous tissue
and 2500 spectra of normal-associated tissue from our collec-
tion of annotated spectra. We removed 500 spectra from the
normal-associated pool, and randomly selected an additional
500 cancerous spectra from the annotated collection.

Fig. 3 (A) Sample image of cancerous core (i) bright field H&E image
and (ii) annotated infrared image. (B) Sample image of NAT core (i) bright
field H&E image and (ii) annotated infrared image, where red indicates
cancerous epithelium, purple indicates cancerous stroma, green indi-
cates NAT epithelium and orange indicates NAT stroma.
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Combining these produced a training set with 5000 spectra,
but instead of there being 2500 of each type, there were 3000
cancerous spectra and 2000 normal-associated spectra. A
further three training sets were generated, in each case adding
new cancerous spectra, while removing normal-associated
spectra, as shown in Fig. 4 and Table 1.

Training sets B: different overall training set size, balanced
class sizes (under-sampled), unique spectra. Starting in the
same manner as for training sets A, we randomly selected 2500
spectra of cancerous tissue and 2500 spectra of normal-associ-
ated tissue. These two sets of spectra were combined to form a
balanced training set with 5000 spectra. To simulate scenarios
in which there are a limited supply of spectra in the minority
class, we reduced the number of normal-associated tissue
spectra by randomly removing 500 spectra. The majority class,
cancer, was then under-sampled by randomly removing 500
spectra to produce an equal number of spectra (2000) in both
the majority (cancer) and minority (NAT) classes. These were combined to generate a smaller, but equally balanced training

set with 4000 spectra. This under-sampling was repeated a
further three times to produce balanced training sets with 3000,
2000 and 1000 spectra in total (Fig. 5). These training sets
contain unique spectra, and their composition is shown in
Table 2.

Training sets C: different overall training set size, balanced
class sizes (over-sampled), minority class duplicated.
Over-sampling is the addition of examples into the
minority class. There are a variety of approaches to this,
including:

1. Determine the difference in the size between the majority
class and minority class. Replicate each of the spectra in the
minority class enough times to match this difference. Append
the replicates to the minority class.

Fig. 4 Schematic showing the process involved in generating training sets A, with equal overall size, but an imbalance in composition. All spectra
are unique.

Table 1 Composition of training sets A: unbalanced classes of same
overall size and unique composition. Rows indicate the composition of
each training set, with coloured squares indicating the number of cancer
spectra (orange) and normal-associated tissue spectra (blue)

Table 2 Composition of training sets B: balanced classes of different
total size, but unique composition, generated by under-sampling the
majority class to match the number in the minority class. Rows indicate
the composition of each training set, with coloured squares indicating
the number of cancer spectra (orange) and normal-associated tissue
spectra (blue)
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2. Randomly select spectra from the minority class until the
total equals the size of the majority class. This is sampling
with replacement.

3. Determine the difference in size between the majority
class and minority class. Randomly select spectra from the
minority class enough times to match this difference. Append
the replicates to the minority class.

4. Perform an interpolation of one or more spectra in the
minority class, and append these to that class, to increase the
number of spectra available.

The first approach allows for an (almost) equal number of
each minority spectrum to be present in the over-sampled
training data. The fully random nature of the second approach
means that not all spectra in the original minority class may
be included in the over-sampled set. There will be no guaran-
tee of the degree of duplication of each minority class spec-
trum. The possibility that any of the original minority may be
missing in the outcome means information is being lost. The
third approach is a modification of the second. Here the entire
minority class is included in the outcome, with the remainder
being topped up randomly. No information is lost. The fourth
approach does not duplicate spectra exactly; rather it creates
interpolated versions of minority class spectra. This is
expanded upon in the paper by Blagus and Lusa41 where they
describe their Synthetic Minority Oversampling Technique
(SMOTE) method.

In this study we used approach number three. This has the
advantage of ensuring each member of the minority class is
represented in the training set. Starting in the same manner
as for training sets A and B, we randomly selected 2500 spectra
of cancerous tissue and 2500 spectra of normal-associated
tissue. These two sets of spectra were combined to form a

balanced training set with 5000 spectra. The generation of the
cancerous epithelium component of the training sets followed
the same pattern as training sets A: For each set an additional
500 spectra were randomly selected from the pool of annotated
spectra. To generate the subsequent NAT part of each training
set, 500 spectra were removed from the first set, producing
2000 spectra. From these 2000 were randomly selected 1000
spectra which were appended to the 2000 to create a NAT train-
ing set of 3000 spectra. The 3000 cancerous spectra and 3000
NAT spectra were combined to produce a balanced training set
of 6000 spectra.

Further training sets were generated in a similar manner.
The cancerous component was topped up using previously
unselected spectra from the overall pool. The NAT component
was first reduced in number by deleting 500. Then, the differ-
ence in size between the cancerous component and NAT com-
ponent was calculated. The requisite number of spectra (this
difference) was then randomly selected from the current,
depleted NAT component. In this way, the heavily unbalanced
classes, for example 4500 versus 500, had their NAT component
topped up by sampling 4000 times from the pool that only
contained 500 spectra (Fig. 6). This has the effect of creating a
large degree of duplication in the NAT class, with no control
over the distribution of that sampling. Indeed, the same spec-
trum could be added 4000 times (Table 3).

Results

The AdaBoost algorithm was employed to construct models
from the various training sets developed above. The same data
were then used to construct models using the Random Forests

Fig. 5 Schematic showing the process used to generate training sets B, with equal class size, but different total number of unique spectra.
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algorithm for comparison. All models were tested using the
same independent test data set. In all cases each experiment
was repeated five times to assess variability.

AdaBoost results

The AdaBoost.M1 algorithm, from the Statistics and Machine
Learning Toolbox within MATLAB, was selected. AdaBoost.M1
is appropriate since only a two-class problem is considered
here. 500 iterations were applied with a learning rate (to train
an ensemble using shrinkage) equal to 1.

Same overall training set size, unbalanced class sizes,
unique spectra. Using Training sets A, we have training data
with unbalanced ratios ranging from 50 : 50 to 90 : 10, cancer
to normal-associated spectra respectively. AdaBoost models
were constructed from these data, tested using the indepen-
dent test set, and the results are shown in Fig. 7. The median
accuracy of each of the five repeats is also indicated on the
plot, with the median being selected as a robust statistic in the
presence of outliers.

Both cancer and NAT spectra are classified with over 95%
accuracy for the initial case of balanced classes containing
2500 spectra each. As the class imbalance grows the accuracy
of the NAT class decreases while that of the cancer class grows

until they cross between the 80 : 20 and 90 : 10 ratios, corres-
ponding to 4000 : 1000 and 4500 : 500, cancer : NAT spectra
respectively. Even at this final, large imbalance the classifi-
cation accuracies are still over 94%. This indicates that the
AdaBoost method is robust to class imbalance.

Different overall training set size, balanced class sizes
(under-sampled), unique spectra. Recall that the training data
here (Training sets B) comprises an equal number of cancer-
ous and normal-associated spectra, but with differing total
number of spectra: 5000 to 1000. Therefore, each of these
training data are balanced using the under-sampling
methodology.

Fig. 8 shows the classification accuracy of each data set.
The classification accuracy of the normal-associated spectra is
approximately 99% with 2500 spectra of each class and
remains very high even when reduced to 500 spectra each.
Conversely, the classification rate of cancerous spectra drops
from ∼96% to ∼86% as the total number of spectra drop. This
experiment was extended, reducing the numbers of spectra in
each class much further. The results are shown in Fig. 9.
When the number of spectra in each class is reduced below
100, the classification rate of cancer spectra drops to zero and
that of normal-associated tissue rises to 100%. In both these

Fig. 6 Schematic showing the process used to generate training sets C, with equal class size, but different total number of spectra. Some normal-
associated tissue spectra are unique while others are replicates, generated by over-sampling.

Table 3 Composition of training sets C: balanced classes of different total size generated by over-sampling. Rows indicate the composition of each
training set, with coloured squares indicating the number of cancer spectra (orange) and normal-associated tissue spectra (blue). Cells labelled U
indicate unique spectra, while those labelled D indicate duplicates
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cases, the classification rate of normal-associated tissue
remains high, while that of cancer spectra falls, until the
model fails completely. It appears that the normal-associated
tissue spectra are being correctly classified, but some of the
cancer spectra are also being classified as normal-associated.
As the number of spectra decreases, this reaches a critical
point where all spectra are classed as normal-associated and
therefore all cancer spectra are misclassified.

Different overall training set size, balanced class sizes (over-
sampled), minority class duplicated. Generating balanced

classes by under-sampling reduces the total number of spectra
available to the learner. An alternative approach is over-
sampling. Here we explore the outcome of over-sampling on
the classification rate of data with different initial class sizes.

Using Training sets C above, we duplicated normal-associ-
ated spectra to match the number of cancer spectra, for
different initial class sizes. AdaBoost models were then con-
structed from these training sets and tested using the indepen-
dent test set. The results are shown in Fig. 10. Here the x-axis

Fig. 8 AdaBoost classification accuracy using training sets B, with
balanced classes of decreasing size, generated by under-sampling. All
spectra are unique. Blue triangles show normal-associated tissue (NAT)
results, orange circles show cancer tissue results. The lines represent
the median of NAT repeats in blue and cancer repeats in orange.

Fig. 7 Classification accuracy of AdaBoost with unbalanced training
sets A. All spectra are unique. Blue triangles show normal-associated
tissue (NAT) results, orange circles show cancer tissue results. The lines
represent the median of NAT repeats in blue and cancer repeats in
orange.

Fig. 9 Classification accuracy of AdaBoost with balanced classes of
decreasing overall size. All spectra are unique. Blue triangles show
normal-associated tissue (NAT) results, orange circles show cancer
tissue results. The lines represent the median of NAT repeats in blue and
cancer repeats in orange.

Fig. 10 AdaBoost classification accuracy with different unbalanced
class ratios being balanced using the over-sampling approach. Training
sets C, where the minority class contains duplicates. Blue triangles show
normal-associated tissue (NAT) results, orange circles show cancer
tissue results. The lines represent the median of NAT repeats in blue and
cancer repeats in orange.
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shows the initial class ratio, prior to over-sampling. Each train-
ing set becomes balanced, but the number of spectra also
increases. For example, for a scenario with an initial ratio of
50 : 50, the training set comprises 2500 of each class giving a
total of 5000 spectra. Contrast this with an initial ratio of
90 : 10 which, following the oversampling exercise results in
9000 spectra.

The outcome here is similar to that produced by the unba-
lanced Training sets A, shown in Fig. 7, where the classifi-
cation accuracy of the NAT class decreased slightly with
increasing class imbalance, with the accuracy of the cancerous
class increasing slightly. When the class sizes are balanced
(50 : 50) the normal-associated spectra show a classification
rate of ∼99%, and the cancerous spectra, a rate of ∼96%. As
the class imbalance grows, spectra in the minority class are
randomly duplicated to ensure the numbers are the same in
each class. The difference between this and under-sampling is
that all the data from the majority class are unique, while
those from the minority class will contain duplicates.
However, under-sampling reduces the total number of spectra
to twice the number in the minority class, while over-sampling
increases the total number to twice that of the majority class.
Therefore, in this case the 90 : 10 training set contains 4500
unique cancer spectra, but only 500 unique NAT spectra, the
additional 4000 NAT spectra being randomly selected
duplicates.

Random Forests results

Previous studies have employed the Random Forests algorithm
to explore classification of cancerous and normal-associated
tissues. For comparison purposes, we took the same test and
training sets, generated above, and constructed a range of
models using the Random Forests approach. The performance
and outcomes were then assessed.

The Random Forests algorithm incorporated into the
MATLAB Statistics and Machine Learning Toolbox was used
(fitcensemble.m, with the appropriate parameters). 500 trees
were used to train the classifier. The minimum node size to
split was left at the default value of one.

Same overall training set size, unbalanced class sizes,
unique spectra. With unbalanced training data comprising the
same total number of spectra, Training sets A above, the
outcome again begins with a similar classification rate of
approximately 94% for each class. However, as shown in
Fig. 11, as the imbalance in the data increases, it is the cancer-
ous spectra that exhibit improved classification accuracy, while
the normal-associated tissue class drops in accuracy to a mean
of ∼76% with increased standard deviation. This indicates that
Random Forests has difficulty in managing heavily unbalanced
classes.

Different overall training set size, balanced class sizes
(under-sampled), unique spectra. Fig. 12 shows the percentage
of test data correctly classified for the Random Forests algor-
ithm when trained using balanced data sets containing
unique spectra: Training sets B. The 50 : 50 training data set,
containing 2500 spectra of cancerous tissue and 2500 spectra

of normal-associated tissue, indicates a similar classification
accuracy of approximately 94% for each class type, with the
cancer spectra showing a slightly smaller standard deviation.
As the total number of spectra in these balanced training sets
decreases to 1000, the classification of normal-associated
tissue improves, while that of cancerous tissue decreases. The
standard deviation of classification rate for the cancer spectra
also increases. This could be due to the limited number of
spectra in the highly under-sampled cases leading the algor-
ithm to construct overfitted models.

Fig. 11 Classification accuracy of Random Forests with unbalanced
training sets A. All spectra are unique. Blue triangles show normal-
associated tissue (NAT) results, orange circles show cancer tissue
results. The lines represent the median of NAT repeats in blue and
cancer repeats in orange.

Fig. 12 Random Forests classification accuracy using training sets B,
with balanced classes of decreasing size, generated by under-sampling.
All spectra are unique. Blue triangles show normal-associated tissue
(NAT) results, orange circles show cancer tissue results. The lines rep-
resent the median of NAT repeats in blue and cancer repeats in orange.
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When the total number of spectra is further reduced, the
Random Forests classifier retains a level of performance over
70% until there are only 50 spectra of each class in the training
data, as shown in Fig. 13. Note that in contrast to AdaBoost,
the model does not fail completely. However, with the NAT
spectra indicating approximately 100% accuracy, the cancer
spectra fall to ∼50%, which is the equivalent of random
chance in a two-class model.

Different overall training set size, balanced class sizes (over-
sampled), minority class duplicated. In the scenario where the
minority class is over-sampled to produce balanced class sizes,
Training sets C above, the Random Forests algorithm produces
an outcome similar to that from unbalanced data, as shown in
Fig. 14. The correct classification rate is almost equal for the
two classes until a ratio of 70 : 30 is reached, whereupon the
majority cancer class accuracy increases, and the minority
normal-associated class falls. Again, as seen with AdaBoost,
the over-sampled data behaves in a similar fashion to the
unbalanced data shown in Fig. 11.

Discussion

The first observation is that with 2000 or more spectra, we can
correctly classify over 90% of the spectra, regardless of the
sampling method, or algorithm employed. This indicates that
infrared spectroscopy is a useful tool for the detection of can-
cerous tissue, in the presence of normal-associated tissue, in
breast cancer diagnosis.

The models constructed from unbalanced data using
AdaBoost showed good consistency across a wide range of
class imbalance. Therefore, this study would suggest that there
is no need to perform re-sampling of data, prior to analysis,
when using this algorithm; with the proviso that sufficient
training examples are available.

Under-sampling involves the removal of data from the
majority class, which is likely to have the effect of constructing
a less accurate model as the total number of spectra decreases.
This can be seen in Fig. 8 and 9 for AdaBoost, and Fig. 12 and
13 for Random Forests. Limited training data prevents the
derived models from learning the breadth of variability
required to correctly predict the test data, and therefore any
previously unseen data in operation.

Both AdaBoost and Random Forests showed similar trends
in classification accuracy when comparing unbalanced data
with its over-sampled version. With increased imbalance there
is a large duplication of examples in the minority class.
Therefore, although there appear to be sufficient spectra in the
minority class, its variability is low. When the algorithm
attempts to learn from these data it is presented with a
majority class containing wide variability, capable of capturing
the entire space of that tissue type, but a minority class with
insufficient variability relating to its tissue type. The model
overfits the minority class which then performs poorly when
attempting to predict a range of test data. This could explain
the difference in standard deviation of the cancer (majority)
and NAT (minority) repeated examples, at 90 : 10 initial class
ratio, in Fig. 10 and 14.

Over-sampling also increases the total number of spectra
that the algorithms must manage, due to the replication of
spectra in the minority class, thereby increasing the compute
resource and analysis time required.

Fig. 13 Classification accuracy of Random Forests with balanced
classes of decreasing overall size. All spectra are unique Blue triangles
show normal-associated tissue (NAT) results, orange circles show
cancer tissue results. The lines represent the median of NAT repeats in
blue and cancer repeats in orange.

Fig. 14 Random Forests classification accuracy with different unba-
lanced class ratios being balanced using the over-sampling approach.
Training sets C, where the minority class contains duplicates. Blue tri-
angles show normal-associated tissue (NAT) results, orange circles show
cancer tissue results. The lines represent the median of NAT repeats in
blue and cancer repeats in orange.
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Comparison between AdaBoost and Random Forests
approaches

When comparing AdaBoost with Random Forests, it is clear
from Fig. 7 and 11 that AdaBoost is the more robust method
when presented with unbalanced data. However, both algor-
ithms require over 100 spectra of each class to perform with
greater than 80% classification accuracy. With modern infra-
red imaging instrumentation this level of data is easily
acquired, but the tissue samples must contain sufficient
cancer cells in the sampled region to develop a useful model.

AdaBoost is an iterative algorithm and so both the model
building exercise, and unseen data prediction, are linear.
Random Forests generates many decision trees, each indepen-
dent. Therefore, Random Forests is amenable to parallel pro-
cessing on modern computer processors, thus speeding up
both model building and predictive analysis.

Conclusions

Both AdaBoost and Random Forests algorithms have been
shown to give excellent classification performance, on the
order of 95% accuracy, in separating infrared spectra of cancer-
ous epithelium tissue from normal-associated tissue on the
tissue microarray used in this study. Further work is required
to determine whether this is a typical result when assessing
model transfer across samples, instruments, and laboratories.

AdaBoost is shown to be a robust algorithm in the presence
of data of unbalanced composition, out-performing Random
Forests at larger degrees of imbalance.

Given the stability of the AdaBoost algorithm on unba-
lanced data we suggest that the re-sampling approaches dis-
cussed in this paper may not be required.
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