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Self-absorption corrected non-invasive
transmission Raman spectroscopy (of biological
tissue)†
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The first near infrared window in biological tissue (λ ∼ 700–950 nm) is of great interest for its potential to

safely deliver light based diagnosis and therapeutic interventions, especially in the burgeoning field of

nano-theranostics. In this context, Raman spectroscopy is increasingly being used to provide rapid non-

invasive chemical molecular analysis, including bulk tissue analysis by exploiting the near infrared window,

with transmission Raman spectroscopy (TRS). The disadvantage of this approach, is that when probing

depths of several centimetres self-attenuation artefacts are typically exhibited, whereby TRS spectra can

suffer from relative changes in the “spectral features” due to differential absorption of Raman photons by

the various constituents of biological tissues. Simply put, for a homogenous substance with increasing

thickness, spectral variances occur due to the optical properties of the material and not through changes

in the chemical environment. This can lead to misinterpretation of data, or features of interest become

obscured due to the unwanted variance. Here we demonstrate a method to correct TRS data for this

effect, which estimates the pathlengths derived from peak attenuation and uses expected optical pro-

perties to transform the data. In a validation experiment, the method reduced total Raman spectral inten-

sity variances >5 fold, and improved specific peak ratio distortions 35×. This is an important development

for TRS, Spatially Offset Raman Spectroscopy (SORS) and related techniques operating at depth in the

near IR window; applicable to samples where there is large sample thickness and inter- and intra-sample

thickness is variable i.e. clinical specimens from surgical procedures such as breast cancer. This solution is

expected to yield lower detection limits and larger depths in future applications such as non-invasive

breast cancer diagnosis in vivo.

Introduction

The biological near infrared (NIR) window is a spectral region
within biological materials where the optical properties exhibit
lower scattering (µs) and absorption (µa), as well as lower levels
of auto florescence,1,2 compared with the visible spectral
region. This window is often broken down into two sub
regions, NIR-I (700–950 nm) and NIR-II (1000–1700 nm). The
NIR windows are especially important for a number of bio-
medical imaging modalities including fluorescence imaging,
and spectroscopy techniques including Raman spectroscopy.

Raman spectroscopy is of particular interest as it is at a new
frontier of novel theranostics,3 i.e. the combination of optical
diagnostics and photothermal therapies mediated by nano-
structures.3 These techniques aim to complement existing
tomographic techniques e.g. MRI, CT and PET where there are
either safety concerns (ionising radiation), or they yield
limited temporal, spatial or chemical information.

Deep Raman spectroscopy (DRS) is a group term for closely
related innovative techniques for non-invasive and non-
destructive probing deep into samples using Raman spec-
troscopy, the principal techniques are spatially offset Raman
spectroscopy (SORS)4 and transmission Raman spectroscopy
(TRS).5 What these techniques share is a separation between
laser illumination and collection zones on the sample surface.
In SORS the two zones are generally on the same side of the
sample surface, while TRS illumination and collection is separ-
ated by the sample itself, i.e. being on opposite sides of the
sample. These approaches exploit diffuse scattering of light in
the material being probed and allow a retrieval of chemical
signals up to several cm in depth. There are continuously new
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and sophisticated ways of carrying out DRS,6–9 yet the basic
premise remains the same. DRS has seen a broad range of
applications in a number of fields including pharmaceutical
analysis and security,10 cultural heritage11 as well as extensive
biomedical applications.12–14

Over time the sophistication of signal retrieval has
increased from identifying a single compound,5,15 to multi-
plexed signal recovery,13 physical property signal recovery16

and depth localisation.17–21 A number of publications have
demonstrated how differential optical properties in a scatter-
ing medium, i.e. tissue, between different Raman components
can also be exploited for depth localisation. These examples
have been demonstrated in well-controlled samples, wherein
the sample has typically a uniform thickness in transmission
geometry.19–21 However, in the real world there is often little
control of the sample thickness, when performing deep
Raman on biological samples. This variation can arise undesir-
ably in two key ways, firstly with thickness variation within a
sample during Raman mapping, secondly due to differences
in thickness between different samples. Both of these
phenomena can lead to differences in the Raman spectra as a
function of thickness and composition, due to the optical pro-
perties experienced by Raman photons propagating through
the material as a function of wavelength. For example, two
Raman bands sufficiently separated in wavelength might
experience significantly different optical properties therefore
one can be more attenuated than another over increasingly
large propagation distances. Previous DRS studies have noted
this phenomena,22–24 having been highlighted in one TRS
experiment at λex 830 nm, with Raman spectra having shown
significant loss of signal above 1250 cm−1 when the sample
thickness increased from 20 mm to around 50 mm.22 While,
other work specifically noticed the relative loss of the amide I
signal23,24 in their spectra, and had to remove this region
entirely from the subsequent multivariate data analysis.
However, these works lacked extensive signal collection, i.e.
multiple spatial locations over a sample with varying thick-
ness. Therefore, the mechanism of how changes in thickness
in samples vary with complex attenuation profiles and thus
affect the collected Raman spectra was not fully realised and
otherwise useful data could not be utilised.

Moreover, self-attenuation of conventional Raman signal
has been observed in solution based surface enhanced Raman
spectroscopy (SERS), where there was competition between
extinction due to absorption of light mediated by nano-
particles and the SERS enhancement these provide.25,26

Previous work has also addressed some limitations of Raman
spectroscopy and factors which can distort its quantitative
capabilities, when applied to measurements in diffusely scat-
tering media.27–31 The work of Reble et al.29 demonstrated
absolute Raman scattering coefficients were restored under
back scattered Raman geometry. While the work of Barman
et al.30 also investigated distortions arising from multiple scat-
tering events. In addition, studies using both SORS31 and
TRS,32 discussed how the optical properties can affect
sampling depth and recovered signal distributions respect-

ively. However, these studies have not addressed the influence
of sample geometry or how the optical properties can distort
the recovered spectra themselves.

This perturbation to the spectra can often overwhelm and
easily mask many other, more subtle, changes to Raman spec-
tral signatures of biological relevance, e.g. the presence or
absence of disease and represent a fundamental limitation of
DRS. The spectral distortions are particularly problematic for
common analytical tools used in spectroscopic analysis such as
Principal Component Analysis (PCA), which is often used as an
important initial step to reduce data complexity prior to
application of more advanced machine learning algorithms/
regression techniques. In PCA for example, these distortions
give rise to high ranked contributions (eigenvectors), or the dis-
tortion features are mixed with other eigenvectors that relate to
chemical features of interest. This acts to complicate and con-
found development of robust numerical models, thereby redu-
cing overall sensitivity and the maximal depth DRS can probe.

A useful term for describing the combined influence of the
optical properties of a medium is effective transport coefficient
(µeff ), where μeff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μa:μ′s

p
.33–35 This term describes the com-

bined influence of both absorption coefficient µa and the
reduced scattering coefficient µ′s, where µ′s = µs(1 − g) and g is
the measure of anisotropy i.e. the mean cosine of scattering
angles. Therefore, having an approximate knowledge of µeff (λ)
of the material being investigated alongside the sample thick-
ness, one can consider how significant, if at all, the spectral
distortions are likely to be. Some materials will exhibit a flat
profile i.e. uniform attenuation across a spectral window, while
others contain a gradient, or worse a complex profile, which
gives arise to distortions in relative peak intensities.

Here we demonstrate the effect that variation in sample
thickness has on the Raman spectra measured with TRS and
how this is dependent on the optical properties of the medium
being probed, rather than solely the chemical composition.
Moreover, the severity of the distortions, as expected, differ
between common biological materials i.e. protein-rich, lipid-
rich. Finally, we demonstrate that with limited a priori infor-
mation i.e. approximate optical properties, the Raman spec-
trum can be restored, thereby reducing spectral variation due
exclusively to material thickness and therefore enhancing the
underlying differences arising in the chemistry that could
otherwise be obscured. This effect can be observed, even in
materials with homogenous chemistry. This work builds on
previous studies that have noticed similar phenomena.22,25,26

Materials and methods

Transmission Raman measurements were carried out on a
custom built system, of which a similar system has been pre-
viously described.36,37 In summary, an 808 nm solid state laser
(Innovative Photonic Solutions, Monmouth Junction, NJ, US)
was coupled to illumination optics via an optical fibre. Two
808 nm laser clean up filters (LL01-808-25, Semrock,
Rochester, New York, US) filtered the laser output prior to
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focusing into a ∼15 mm diameter beam on the sample
surface. The sample stage platform consisted of a fused quartz
window (2 mm thickness), sitting on a motorized stage (8MTF,
Standa), providing full XY positioning control with a range of
102 mm in both directions. The collected signal was filtered by
3 edge filters, and focused into a Holospec 1.8i (Kaiser Optical
Systems, Ann Arbor, Michigan, USA). The spectrometer con-
tains a custom high dispersion grating providing a spectral
range of ∼600–1200 cm−1 and a 1 mm slit, providing an
effective spectral resolution of ∼15 cm−1. The spectrometer
was coupled to a deep depletion CCD detector (Andor BR-DD
iDus 420) to record the Raman signals.

Sample preparation included cutting commercially avail-
able blocks of lard (pork fat) into either flat segments of a
uniform thickness, or cutting these into an approximate wedge
shape. Additionally, we used calcium hydroxyapatite (HAP)
(Sigma Aldrich) contained in a quartz cell (Starna Scientific) as
a target chemical component placed on top of lard samples,
on the surface with the laser beam incident upon it. This has
previously been used in studies as a substitute for in vivo
breast calcifications.37,38 For all Raman measurements a laser

power of 2 W was used, delivering a power density at the
sample surface of ∼12 mW mm−2. We performed TRS mapping
experiments, i.e. spectra were gathered from multiple spatial
points across the sample, under the following parameters; each
spatial location was probed with 3 TRS spectra consisting each
of (0.05 s × 20) accumulations, while for static measurements 20
spectra of (0.05 s × 20) accumulations were acquired.

All data was processed in Matlab 2017a undergoing the fol-
lowing pre-processing steps. Firstly a median filter was applied
to the data to remove the presence of cosmic rays, and the data
was then averaged to leave one mean spectrum per spatial
location. A linear baseline was then subtracted from the data
prior to vector normalisation.

Results and discussion

The optical properties of fat (µa and µ′s) for the near-IR spec-
tral window ∼700–950 nm (Fig. 1A), show that while scattering
has an inverse relationship with wavelength i.e. decreases
monotonically as a function of increasing wavelength, the

Fig. 1 (A) Optical properties (µa and µ’s) of fat between 650 nm and 1100 nm. (B) Optical properties (µa and µ’s) of fat between 850 nm and 900 nm,
equivalent to the spectral range of 600–1250 cm−1 using an λex 808 nm and our high dispersion Raman grating. (C) The combined optical properties
contribution of µa and µ’s of fat termed µ effective (µeff ) over the Raman spectral range (purple) while in orange a transmission Raman spectrum of
lard (1 cm thick). Optical properties data (A and B) was adapted with permission from the work of Mosca et al.40
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absorption conversely has a more complex profile, which
varies across the spectrum.39 Therefore, undertaking trans-
mission Raman measurements in a sample containing a high
proportion of fat, it is important to take the absorption profile
into account. Looking at the approximate Raman spectral
range of the 808 nm system described within this paper (Fig. 1B),
it is clear there is a significant change in the wavelength depen-
dent optical properties. Moreover, as is shown (Fig. 1C), when
the Raman spectrum of lard is overlaid with the combined
optical properties term µeff, it is clear to see how different regions
of the TRS spectrum will be experiencing significantly different
attenuation especially if sample thickness changes.

A block of lard was shaped so that it had a varied thickness
(1–4 cm), while being reasonably homogenous in the overall
chemical composition (Fig. 2B). Transmission Raman spectra
were acquired in a grid map over the block of lard, with 200
spatial points recorded in total (Fig. 2C). As can be seen, even
post processing and normalising the TRS data, a major differ-
ence in variance remains in the spectra. Most notable exhibi-
ted by the relative intensity variation between the two peaks
highlighted with (*) as a function of sample thickness. These
two bands are assigned to C–C bending modes of the lipid
skeleton,41,42 and relative changes would not be expected nor-
mally within a relatively homogeneous sample.

This is evidenced clearly by plotting the peak intensity
ratios as a function of sample thickness. As the thickness
increases the intensity of the 1068 cm−1 decreases relative to
the 880 cm−1 peak (Fig. 2D).

In contrast, low variation in the peak ratio is observed when
scanning across as denoted by directional arrow X (Fig. 2B)
with no sample thickness variation, with a similar standard
deviation in the intensity of ∼0.011 seen for each subsequent
line. This is also seen in Fig. S1A,† where each box and
whisker plot contains the data measured in each row, with all
showing similar variance as the ratio changes. However, scan-
ning up and down (as denoted by directional arrow Y, Fig. 2B),
through lesser or greater thicknesses of material shows a great
variance in the intensity along the line, the standard deviation
is ∼0.08, i.e. approximately 8× larger (Fig. S1B†) and here there
is a consistent spread of data in the box and whisker plot. In
summary this indicates a low level of contributions from
Raman spectral noise and sample spatial chemical heterogen-
eity, and the dominant changes attributable to sample thick-
ness. This is in agreement with what might be expected when
considering the optical properties of the sample i.e. the µeff.

In the next set of experiments, we measured the TRS
spectra of a series of lard slices of uniform thickness. The sec-
tions were stacked on top of each other so to create an increas-
ingly thick transmission pathway. The ratio of two main
Raman peaks previously discussed (880/1068 cm−1) are plotted
against the overall sample thickness and shown in Fig. 3A. A
clear linear relationship (in the central zone of the sample)
can be established between the peak ratio and overall thick-
ness of the sample, this data was then used as a simple cali-
bration set for predicting thickness based on this ratiometric
change. There was little variance within each measurement at

Fig. 2 (A) Schematic diagram of Transmission Raman Setup. (B) Image of sample stage with arrow indicating laser beam pathway with Raman signal
collection underneath sample i.e. a uniform block of lard with heterogeneous dimensions ranging from 4 to 1 cm thickness. (C) Transmission Raman
spectra (TRS) of lard collected in a map of 200 spectra ranging from 1 cm thickness to 4 cm, average spectrum (black), σ red, (*) indicates relative
peak intensities that significantly change with thickness (880 cm−1 & 1068 cm−1). (D) Peak ratio of lard (880 cm−1/1068 cm−1) changing as a function
of lard thickness.

Analyst Paper

This journal is © The Royal Society of Chemistry 2021 Analyst, 2021, 146, 1260–1267 | 1263

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
D

ec
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 1

/3
1/

20
26

 9
:2

2:
13

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0an01940b


a given thickness, <0.5% around the average. From this we
were able to estimate sample thickness for all the TRS spectra
from the mapping experiment (Fig. 2B).

Knowing the thickness for each TRS spectrum, we were
then able to properly apply a correction function utilising µeff
for the spectral range of the measurements (Fig. 3B) to correct
for the spectral distortion. For this we used µeff as our attenu-
ation coefficient, and pathlength ℓ, is half the sample thick-
ness. The spectrum arising from TRS is comprised of multiple
phenomena, firstly the excitation beam attenuates as it travels
through the sample, usually in a exponential decay fashion.
Therefore, the amount of Raman events decrease the further
from the illumination point (deeper) with the sample. The
Raman spectra generated are then attenuated to differing
degrees depending on the total propagation distance, and the
wavelength dependent optical properties have a varying influ-
ence. In short, the most Raman events occurs at the sample
surface, however these Raman photons are the most likely to
be maximally distorted. Conversely, Raman photons generated
at the exit surface are most likely to be undistorted, however
there will be significantly fewer (thickness depending).
However, a simplification to account for the assumed bulk
transmission Raman signal origin,43 can be utilised.
Therefore, rearranging the transmittance equation T = e−μeffℓ

allowing us to create a correction function that relates the
sample thickness and the optical properties.

The corrected spectra (Fig. 3C) show considerably less var-
iance than present originally. This is further demonstrated in
plots of spectral variance (Fig. 3D) in the data before (blue)
and after correction (red). While some peak variance remains,
as expected, it has greatly been diminished across the whole
spectrum. Overall, full spectral intensity variance is reduced by
a factor of ∼5.5. Moreover, specifically looking at the peak ratio
of interest (880/1068 cm−1) this itself has been reduced 35
times. The reduction of this spectral distortion, due to physical
properties of the sample, now enables a more accurate charac-
terisation of any underlying chemical properties, provided by
the Raman scattered signal, which might previously be
masked by the interfering spectral distortions. This, in practi-
cal terms, is expected to enable TRS to detect with higher sen-
sitivity more subtle spectral changes, e.g. those associated with
a medical condition. While less variance is observed in the cor-
rected spectra (Fig. 3C), no prior information of the pure spec-
trum is used in the reconstruction, therefore over or under cor-
rection can occur. Therefore, the corrected spectrum might
not necessarily match that of the pure, undistorted Raman
spectrum. It is noted that the goal of the correction procedure
is to minimise variance in the Raman data set rather than

Fig. 3 (A) TRS peak intensity ratio of lard (880 cm−1/1068 cm−1) plotted as a function of lard thickness [∼7–48 mm] with a line of best fit. (B)
Correction profile as a function of predicted thickness. (C) Corrected Transmission Raman spectra (TRS), average spectrum (black), σ red, (D) spectral
variance as a function of wavenumber (cm−1) for TRS lard spectra pre and post correction.
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recovering a ‘perfect’ undistorted Raman spectrum one would
have obtained when measuring, for example, a very thin
sample with negligible signal self-absorption.

To evaluate the robustness of this approach to derive more
accurately the chemical information about the sample an
additional dataset was investigated as is shown (Fig. 4A). This
dataset was collected from a smaller wedge-shaped block of
lard (with a maximal thickness of 3 cm) that had a quartz cell
containing HAP placed upon it (representing a detected spec-
tral component – e.g. calcification associated with a breast
cancer lesion). TRS spectra of the maps are shown pre- and
post-correction (Fig. 4B and C). As can be seen visually, post-
correction acts to limit the spectral variability of the lard par-
ticularly in the region where you would expect to see the main
HAP peak (PO4 symmetric stretch), centered at ∼960 cm−1.
Furthermore, when comparing the variance (Fig. 4D), the pre-
correction spectral features (blue) are dominated by distortions
due to optical properties; while, post correction (Fig. 4D red)
HAP dominates the variance plot relative to the attenuation
distortions, indicating a considerably enhanced sensitivity to
detect such desirable chemical signatures.

When a common analytical tool used in spectroscopy such
as principal component analysis (PCA) is applied to the data-

sets, the principal component (PC) loadings (Fig. S2A†), which
are weighted for the variance explained, you can see the correc-
tion decreases considerably the influence of the background
distortions and increases the relative presence of HAP in PCs 1
& 2. Moreover, looking at the variance explained in the PCs,
the correction increases HAP’s relative importance from 16%
to 43% (Fig. S2B†).

Conclusions

Here we have demonstrated within the first NIR spectroscopy
optical window, a general region of lower absorption and scat-
tering within biological tissue, TRS spectra are susceptible to
distortions due to the optical properties of the bulk sample
and Raman photons achieve differential transmittance across
the detected spectral range. In a homogenous sample of fat
over a range of 1–4 cm, large Raman spectral distortions are
observed as thickness increases. By the application of a correc-
tion function that utilises the effective attenuation co-efficient
µeff and the approximate optical properties of fat, the spectral
distortions could be significantly reduced (35×). This finding
is vitally important for the general applicability of TRS,

Fig. 4 (A) Image of lard with a gradual change in thickness along the length of the quartz cell containing hydroxyapatite. (B) Raman spectra of a
lard/HAP phantom measured in a map configuration (TRS), average spectrum (black), σ red. (C) TRS data of lard/HAP phantom, corrected for spectral
variation of optical properties. (D) Comparison of variance of pre and post corrected data.
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in situations where inter- and intra-sample thickness can
differ, as it considerably increases the sensitivity of TRS in
these circumstances. Relevant deep Raman applications
include non-invasive disease diagnosis44,45 such as cancer
detection in vivo, non-invasive neurotransmitter quantification,46,47

glucose sensing48 and blood sensing,49 to name but a few.
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