Issue 16, 2021

Alkaline-earth metal substitution stabilizes the anionic redox of Li-rich oxides

Abstract

Anionic oxygen redox chemistry in Li-excess transition metal oxides has emerged as a new paradigm to increase the energy density of rechargeable batteries. However, the anionic redox of oxygen mostly forms the O–O bond, leading to partly irreversible discharge. To address this issue, we demonstrate a new strategy to achieve dual functions of activating cation activity and enhancing oxygen anion redox activity in Li2MnO3 through a light metal (Mg, Ca and Al) substitution of Li. Our first-principle thermodynamic calculations show that Mg2+ substitution in Li2MnO3 prefers locating at the Li+ site, which induces the formation of reductive Mn-ions with electrochemical activity. The substituted local structure of (Li–O–Mg)/2(Li–O–Mn) becomes more electrochemically stable than the specific Li–O–Li local structure in Li2MnO3, which effectively retards O–O combination. Therefore, the reversible capacity (245 mA h g−1) of the optimal substituent compound Li1.5Mg0.5MnO3 is significantly improved compared with that (115 mA h g−1) of Li2MnO3. More importantly, this substitution strategy can be effectively extended to other Li-rich electrodes such as Li3VO4 and Li3NbO4 with Mg-substitution activating cationic redox. The study opens a new avenue in improving the reversible capacity of Li-rich cathode materials through low-cost element substitution.

Graphical abstract: Alkaline-earth metal substitution stabilizes the anionic redox of Li-rich oxides

Supplementary files

Article information

Article type
Paper
Submitted
11 Jan 2021
Accepted
27 Mar 2021
First published
28 Mar 2021

J. Mater. Chem. A, 2021,9, 10364-10373

Alkaline-earth metal substitution stabilizes the anionic redox of Li-rich oxides

H. Li, X. Zhao, Y. Li, Y. Gan, W. Qiu, J. Wang and J. Liu, J. Mater. Chem. A, 2021, 9, 10364 DOI: 10.1039/D1TA00282A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements