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We report on the convenient synthesis of a CNC pincer ligand composed of carbazole and two mesoionic
carbenes, as well as the corresponding lithium- and magnesium complexes. Mono-deprotonation affords
a rare "naked” amide anion. In contrast to the proligand and its mono-deprotonated form, tri-deprotonated
s-block complexes show bright luminescence, and their photophysical properties were therefore
investigated by absorption- and luminescence spectroscopy. They reveal a quantum yield of 16% in
solution at ambient temperature. Detailed quantum-chemical calculations assist in rationalizing the
emissive properties based on an Intra-Ligand-Charge-Transfer (ILCT) between the carbazolido- and
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Introduction

Carbazole-based dyes have a rich history as photo-sensitizers,'
photo-initiators and -catalysts,*” host materials for Organic
Light-Emitting Diodes (OLEDs),*® triplet emitters,'™"" and
Thermally Activated Delayed Fluorescence (TADF)"**® materials.
Recent remarkable achievements comprise the emissive prop-
erties of two-coordinate coinage metal complexes.'*** There,
embedding copper(i) in a push-pull electronic environment
provided by a m-acidic carbene® and a m-donating carbazolido

ligand (Fig. 1, I), resulted in a 100% quantum yield of the
474 nm luminescence and an excited state lifetime of 2.8 ps.*
The surprising efficiency of these “carbene-metal-amido”
complexes relies on a prompt Reverse Inter System Crossing
(RISC) mechanism.*** Furthermore, the donor-bridge-
acceptor substitution pattern, as it is known from organic dyes,
enhances the transition probability, and thus favors fluores-
cence over non-radiative decay channels.’”” We became inter-
ested in carbazolyl bridged pincer-type NHC ligands®**™** as
promising candidates to stabilize multiple bonded late transi-
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pioneered by Bezuidenhout**** (CNC pincer, C: mesoionic car-
bene MIC; III and IV) and Kunz®® (CNC pincer, C: N-hetero-
cyclic carbene NHC; V). Mesoionic carbenes,*”> in general, and
1,2,3-triazolinylidenes, in particular, excel through their
donating properties’®’” and, as such, are expected to stabilize
high-valent transition metals.

Despite the fact that they are much less popular than
conventional NHCs** and less explored in photochemistry, they
increasingly attract attention.’>”*®* During our initial coordi-
nation experiments with the 1,2,3-triazolinylidene decorated
carbazolide obtained by deprotonation of 3, we noticed strong
luminescence upon deprotonation (vide infra). Intriguingly,
Kunz had already noticed luminescence for lithium carbazolyl
bridged dicarbenes, however, these systems have not been
studied spectroscopically yet (Fig. 1, III and V).>>%*¢%%° Bezui-
denhout and co-workers reported the photochemical properties
of T-shaped and linear coinage metal complexes (Fig. 1, IV).*>
They found that the luminescence wavelength is tunable by the
judicious choice of the metal. Thereby, the copper() complex
emitted in the blue- (quantum yield ¢°™ = 0.8%), the silver(1) in
the orange- (9™ = 2.4%), and the gold(1) complex in the green-
(™ = 0.6%) regions of the spectrum. The protonated
proligand showed emissive properties as well (green,
@™ = 2.0%). Heinze et al.®* described, for example, “alkali-
blue” emissive pyrrolates (Fig. 1, VI). A quantum yield of 1% was
achieved through an efficient ILCT (Intra-Ligand-Charge-
Transfer) thanks to the templating effect of the alkali
metals.””> Blue luminescence was also observed by Roesky et al.
in the case of iminophosphonamide alkali metal complexes
(Fig. 1, VII) with a solid-state quantum yield of up to 36%.%
Agapie and co-workers introduced lithium bridged dipyridyl
dipentacene pyrrolates as efficient singlet fission molecules.**

Inspired by these reports and the surge of interest in
photochemistry with complexes of earth-abundant metals,®
report herein a carbazolide bridged mesoionic biscarbene
pincer ligand and a detailed investigation on the luminescent
properties of its (earth-)alkali complexes. These complexes
show excellent quantum yields of up to 16% at ambient
temperatures in solution. Using quantum chemical calcula-
tions, we elucidate the effects of rigidity and planarity on the
luminescence quantum yield and the excitation/luminescence
wavelengths.

> we

Results and discussion
Proligand synthesis

Searching for an alternate route to design tridentate carbazole-
triazolylidene ligands, avoiding the use of potentially hazardous
and explosive tert-butylhypochloride as suggested by Bezui-
denhout and co-workers,* we initially examined the alkylation
of classical triazoles, as has been reported by Limberg, Hecht
and Brooker.**** This strategy proved also successful in case of
carbenaporphyrins.” In the present case, neither the use of
methyl iodide nor Meerwein's salt (triethyloxonium tetra-
fluoroborate) or methyl triflate yielded the desired carbazole-
bistriazolium salts in reasonable yields. Instead, mixtures
with predominantly N-carbazole-methylation were observed.
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Scheme 1 Proligand synthesis via intramolecular cyclization. TBTA =
tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyllamine, NaOAsc = sodium
ascorbate.

6-chlorohex-1-yne (2.3 eq)

t 1
Bu Bu CuSO; (10 mol%)

N3 H N3

2

To avoid the undesired N-carbazole alkylation, we conse-
quently adopted an intramolecular alkylation strategy (Scheme
1).¢ The synthesis of 1 was achieved following nitration,
reduction, and azotation of commercially available 3,6-di-tert-
butylcarbazole.®* Using standard CuAAC (Cu-catalyzed Azide-
Alkyne Cycloaddition) conditions with 6-chlorohex-1-yne led to
clean 2. The formation of the product was apparent from the
disappearance of the characteristic azide stretching resonance
at 2099 cm ' (Fig. S11) and by the characteristic low-field "H
NMR resonance at 6 = 7.98 ppm indicative for a triazole
heterocycle (Fig. S21). Adding excess of potassium iodide and
heating the mixture in acetonitrile to reflux for two days gave the
N-fused triazolium salt 3 in essentially quantitative yields. The
cyclization was evident by several features in the NMR spectra,
namely (i) the low-field shift of the triazolium-5H resonance in
the "H NMR spectrum from 6 = 7.98 ppm (2) to 6 = 8.91 ppm (3),
(ii) the low-field shift of the methylene protons' resonance of the
former -CH,Cl group from ¢ = 3.64 ppm (2) to 6 = 4.79 ppm (3),
and (iii) the coupling of this methylene group to one of the
triazolin nitrogen atoms according to two-dimensional "H-"°N
HMBC spectra (Fig. S6 and S111). X-ray quality crystals®” of 3
were obtained by slow evaporation of a saturated chloroform

Fig. 2 Compound 3 forms intramolecular hydrogen bonds in the
solid-state. Thermal ellipsoids are shown at the 50% probability level;
hydrogen atoms (except the ones bonded to the carbazole's nitrogen
atom and the triazolium heterocycles) are omitted for clarity. Selected
bond lengths [A], angles [°], and dihedral angle [°]: N10-H10 0.88(2),
N10-C13 1.391(6), C18-N1 1.433(7), N1-N3 1.326(6), N3-N5 1.311(6),
C1-C3 1.353(8), N3—-H10 2.351(19), C13-N10-C13 107.0(6), N1-C1-
C3105.8(5), C13-C18-N1-N3 29.2(7).

© 2021 The Author(s). Published by the Royal Society of Chemistry
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solution (Fig. 2). The triazolium salt 3 crystallized with four
strongly disordered molecules of chloroform in the lattice in the
orthorhombic space group Pbcm with half a molecule of 3 in the
asymmetric unit.

The structural metrics of the dication in 3 (Table S37)
resemble those of previously reported triazolium salts.?®*** In the
solid-state structure of 3, strong hydrogen bonding interactions
between the central triazolium nitrogen atoms N3 and the
carbazole proton H10 were observed. Due to steric bulk, these
interactions are not feasible for the other reported MIC-CNC
pincer ligands (Fig. 1 III and IV), but have been observed in
a bis(pyrazolyl)carbazole derivative.'® Additionally, weak
hydrogen bonding between H10-12 and H1-12 were observed in
the solid-state structure of 3 (Fig. S297).

Complex synthesis

The reaction of proligand 3 with one equivalent of lithium
hexamethyl disilazide [LIHMDS; LiN(SiMe3),] led to deprotona-
tion of the carbazole (4, Scheme 2). Evidence for the latter came
from the disappearance of the resonance for the carbazole N-H
group in the "H NMR spectrum (Fig. S121). X-ray quality crystals
of deep-orange and air-stable 4, which crystallized in the P1
space group, were obtained by diffusion of hexane into a THF/
benzene solution (Fig. 3). Notably, the carbazolide in 4 does
not coordinate a lithium cation. Instead, the latter precipitated
from the reaction mixture in the form of lithium iodide.
Compound 4, therefore, contains a rare “naked” amide anion, as
was also corroborated by calculations (Fig. S$317).'°*'** The
structure in the solid-state reveals a weak hydrogen bond
[2.397(2) A] between N10 and H2, which might be the reason for
the surprising stability of 4 towards moisture. Proligand 3 was
also deprotonated thrice by three equivalents of LIHMDS, as was
confirmed by the 'H NMR spectroscopic analysis of
Y5 (Fig. S141). The 'Li NMR of “5 showed a signal at
0 = —1.43 ppm, which corroborates the presence of lithium
cations (Fig. S16t). Immediately upon deprotonation of 3, strong
blue luminescence was observed (vide infra) even in dim light. X-
ray quality crystals of "5 could be obtained by slow diffusion of
pentane into a diethyl ether solution of the complex (Fig. 4A).

Bu ‘Bu Bu ‘Bu
O O 21" LiN(SiMe3), O Q
H E N_H _THF N .

N
[P N, | ~HN(SiMes),
N+ +N =Ll
3

3 LiN(SiMe;),
Et,0
Bu ‘Bu
Bu
MgBry
Et,0 N
\ |
I -2 Lil N Mg N
O -1 LiBr N | N
-2 Et,0 Br
Bu

t
-3 HN(SiMe3),
o
oM

OEt,

Scheme 2 Deprotonation of 3 to 4 and Y5 and subsequent trans-
metalation to M98'5,

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Compound 4 is devoid of N-coordinated lithium in the solid-
state. Thermal ellipsoids are shown at the 50% probability level;
hydrogen atoms (except the ones bonded to the triazolium hetero-
cycles) are omitted for clarity. Selected bond lengths [A], angles [°], and
dihedral angles [°]: N10-C13 1.373(4), N10-C19 1.368(6), C24-N2
1.434(4), N2-C2 1.351(4), C2-C4 1.361(5), C4-N6 1.354(4), N6-N4

1.322(4), N4-N2 1.335(4), N10-H2 2.397(2), N10-H1 2.909(4), C18—-N1
1.437(4), N1-N3 1.324(4), N5-N3 1.324(4), N5-C3 1.351(5), C3-C1
1.361(5), C13-N10-C19 103.1(3), N2-C2-C4 106.0(3), N1-C1-C3

105.7(3), C13-C18-N1-N3 —137.7(4), C19-C24-N2-N4 162.9(4).

L5 crystallized in the monoclinic space group P2/n. It has
a dimeric structure in the solid-state with bridging u-iodo
ligands and includes lithium iodide adducts. Thereby, the Li2—

Fig. 4 (A) The molecular structure of dimeric |5 contains six lithium
atoms and four bridging iodo ligands. Thermal ellipsoids are shown at
the 50% probability level; hydrogen atoms are omitted for clarity. The
monomers are shown from different views in (B) and (C), for which the
annulated six-membered rings, ‘Bu groups, ethyl fragments of the
diethyl ether and all hydrogen atoms have been omitted for clarity.
Selected bond lengths [A], angles [°], and dihedral angles [°]: N1-C1
1.3837(19), N1-C8 1.3899(19), C9—-N5 1.4302(19), N5-N6 1.3396(18),
N6-N7 1.3251(19), N7-C28 1.356(2), C28-C27 1.392(2), C27-N5
1.373(2), C27-Li2 2.136(3), Li2-11 2.776(3), 11-Lil 2.911(3), Li1-I2
2.748(3), Lil-11 2.911(3), C27-Lil 2.633(3), Li3—12" 2.850(3), Li3-I2
2.970(3), C21-Li1 2.391(3), C21-Li3 2.216(3), C21-N2 1.3771(19), N2—
N31.3414(17), N3-N4 1.3249(18), N4-C22 1.357(2), C22-C211.398(2),
C2-N2 1.4348(19), N1-Lil 2.052(3), N1-Li2 2.188(3), C1-N1-C8
103.18(12), N2-C21-C22 100.22(12), N5-C27-C28 100.25(13), C1-
C2-N2-N3 137.4(1), C8-C9-N5-N6 151.3(1).

Chem. Sci., 2021, 12, 7401-7410 | 7403
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I1 and Li3-I2 units could be understood as lithium iodide
molecules.

The Li2-11 bond length [2.776(3) A] is comparable with that
observed in lithium iodide adducts (2.70-2.80 A). Also the larger
Li3-12 distance [2.970(3) A] is in the range of previously reported
lithium iodide clusters (2.98 A)."*** The N1 nitrogen atom of
the carbazolido- (Fig. 4B and C), as well as the MIC-ligands, thus
coordinate one lithium atom (Li1) and formally another mole-
cule of lithium iodide (Li2-I1 and Li3-I2, respectively). Overall,
this arrangement locks the central Lil atom in place. Eventu-
ally, the lability of the lithium iodide was corroborated by
elemental analysis (ESIt). Repeated re-crystallization lowered
the equivalents of lithium iodide from two, as present in the
solid-state structure shown in Fig. 4, to 0.3 equivalents.

Complex M&¥75 was prepared by transmetalation of 5 with
MgBr,, but may be as well prepared directly from 3 and the
Grignard reagent MeMgBr.'* We were not able to obtain single
crystals of sufficient quality for elucidation of the structure in
the solid-state.''® However, a diffusion NMR experiment (DOSY)
revealed that solutions of 4 and ™&®'5 are mononuclear in
deuterated benzene, whereas "5 remains a dimer (page S17).
Like blue-green luminescent 5 (and in contrast to non-
emissive 3 and weakly emissive 4) complex M&®'5 showed
intense, lime-green luminescence in solution, whereas all
investigated compounds were essentially non-luminescent in
the solid state.

Luminescent properties

The bright luminescence motivated more detailed photo-
physical studies of all compounds. In benzene solutions, very
strong luminescence is seen for 5, strong luminescence for
MgBr5 and undetectable to low luminescence for 3 and 4 Fig. 5.
Pertinent spectroscopic features are summarized in Table 1,
normalized steady-state absorption and luminescence spectra
are shown in Fig. 6.

Although the biscationic proligand 3 is poorly soluble in
organic solvents, maxima evolved at 297 and 360 nm. It features
a plateau-like shoulder peaking at 492 nm and reaching up to
approximately 570 nm. Upon photoexcitation in benzene, 3 is

Fig. 5 U5 and M985 are luminescent, whereas 3 and 4 are undetect-
able to low luminescent. The picture was obtained upon irradiation of
1 mM benzene solutions with a common laboratory UV lamp (360 nm).

7404 | Chem. Sci, 2021, 12, 7401-7410
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Table 1 Key spectroscopic data of 3, 4, 15, and M98r5¢

Compound  A*PS™3/nm Xmmm % ESO%S/ev (cm Y
3 360, (492)° — — —

4 352, 445,487 565 2 0.35 (2835)

Lig 325,402,465 506 16 0.23 (2016)
MgBrs 339,380,431 482 14 0.30 (2455)

“ Spectroscopic data were obtained at room-temperature for 1 x 10 > M
benzene solutions of 3, 4, 5, and M&®'5. The emission wavelengths and
quantum yields were obtained after excitation at 390 nm.  The plateau
is assigned to vibronic transitions as discussed below.

found to be non-luminescent. In contrast, in the absorption
spectra of 4, we find maxima at 352, 445, and 487 nm. Photo-
excitation of 4 at, for example, 390 nm leads to a broad and
undefined luminescence with a maximum at 565 nm and a 2%

energyin [eV]

3.1 25 2.1 1.8
2.0 3
4
L\5
1.6 MeBrg
@
2
]
|
S 1.2
s
H
% 0.8
§
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<
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0.0 T T r r
400 500 600 700
Ain [nm]
energy in [eV]
3.1 2.5 2.1 1.8
1.0 4
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0.8
2
_‘§ 0.6
H
g
'é 0.4
Q
g
0.2 N
X
0.0 == / | ‘\\\.‘m I
400 500 600 700

Ain [nm]

Fig. 6 Normalized absorption (top) and luminescence (bottom)
spectra of 3 (black), 4 (red), 5 (dark blue), and M9®'5 (light blue) in
benzene. The luminescence was recorded upon photoexcitation at
390 nm. Absorbance spectra are normalized at their 360, 445, 402,
and 431 nm maxima, respectively, and luminescence spectra to the
highest feature.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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@°™ (Fig. 6). Turning to the absorption spectrum of ™5, two
maxima are discernable at 325 and 402 nm. A tail is super-
imposed onto the latter all the way to 600 nm including a minor
shoulder centered at around 465 nm. Excitation spectra for 15
and M#¥'5 reveal that the lowest absorption wavelength which
leads to luminescence is 465 nm for "5 and 434 nm for M&¥"5. In
both cases, this is in line with their absorption maxima
(Fig. S21t). We determined Stokes shifts of 0.35, 0.30, and
0.23 eV for 4, M8¥'5 and "5, respectively.

Excitation of "5 at 390 nm gives a luminescence maximum at
506 nm and a luminescence quantum yield of 16%. The lumi-
nescence spectrum of “5 also shows a tail up to 725 nm.
Turning finally to M#®'5, we note absorption maxima at 339, 380,
and 431 nm. Once again, the latter features a tail up to
approximately 560 nm.

Photoexcitation of M#*'5 at 300 nm leads to a luminescence
that reaches a maximum at 487 nm with a quantum yield of
14%. Again, a tail up to 730 nm is noted. Upon exposure of
solutions of "5 and M8®'5 to air, the spectroscopic signatures of
mono-deprotonated 4 were regenerated (Fig. S21 and S227).
Time-Correlated Single-Photon Counting (TCSPC) experiments
on "5 and M8®5 revealed a luminescence decay with lifetimes of
(11.8 &+ 1.6 x 107%) and (10.7 + 4.8 x 10 ?) ns, respectively
(Fig. S25 and S26t). By virtue of lifetime components which are
in the typical range for singlet excited states, we rule out the
involvement of triplet excited state species as is the case for
TADF or phosphorescence. In other words, the luminescent
deactivation is fluorescence.

Computational analysis

Puzzled by the optical properties, we investigated the electronic
and structural properties of all compounds in their excited
states. Exploratory TD-DFT calculations revealed that the tran-
sitions to the S; state of 3 and 4 are ILCT (approximated
HOMO — LUMO, Fig. 7A and C) processes.

The HOMO is located at the carbazolido ligand, whereas the
LUMO is associated with the MICs (¢f. Fig. S327). For an accu-
rate description of the charge-transfer states, which is chal-
lenging for TD-DFT*"*"'** (Fig. S33-S35%), absorption spectra
were computed with the more suitable ab initio method “Simi-
larly Transformed Equation of Motion Coupled Cluster Singles
and Doubles” (STEOM-CCSD)"**** using the “Domain-based
Local Pair Natural Orbital (DLPNO)” approximation.''”'®
Indeed, this method reproduced the absorption spectra
including the transitions to the S, states best (3, f**° = 0.13,
caledjabs _ 357 nm, “PA*™ = 360 nm, Fig. 7B; 4, f°5° = 0.19,
caledabs — 466 nm, “PA?" = 487 nm, Fig. 7D).

The luminescence from the S; state of 4 is predicted to be
weak (f°5° = 0.01, 3™ = 528 nm, ®P)1°™ = 565 nm, Fig. 7D)
which is in agreement with the observation that 4 is weakly
luminescent with a 2% quantum yield. For 3, neither TD-DFT
nor STEOM-CCSD reproduced the plateau between 425 and
525 nm. However, the calculation of the vibronically resolved
absorption spectrum using excited state dynamics (Fig. S367)
shows that this shoulder arises from molecular vibrations.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 The dominant absorptions and concomitant excitations to the
S, states of 3 and 4 belong to the HOMO — LUMO transitions (B and D,
red). For both 3 and 4, the HOMOs (left) are located at the carbazole
framework, whereas the LUMOs (right) are mainly localized on one of
the triazolium groups (3, A) or both MIC units (4, C). While 3 is non-
luminescent, 4 shows a weak luminescence from the S; state (D, blue).
Orbitals were obtained at the TD-DFT(SMD=CgHg)/def2-TZVPP//
B3LYP-D3(BJ)/def2-SVP level of theory, whereas the luminescence
spectra were obtained at the STEOM-CCSD(SMD=CgHg)/def2-
TZVPP//B3LYP-D3(BJ)/def2-SVP level of theory. Hydrogen atoms are
omitted for clarity.

Subsequently, we investigated the electronic structures of
the complexes 5. The calculations revealed that the dimeric
structure of “5 could be well modelled by calculating the elec-
tronic structure of the truncated monomer, thereby omitting
the diethyl ether molecules as well (Fig. S327).

A bright transition to the S; state M5tTumeated (Fosc — g 97,
caledabs _ 338 nm, ®PA*PS = 402 nm) was also predicted for "5
(Fig. 8B). This transition originates also from the ILCT from the
carbazolido- to the MIC ligand (Fig. 8). The same is true for
MgBrs (£05¢ — 0,17, ©¢d)2bS — 407 nm, P2 = 431 nm (Fig. 8D).
Luminescence from the S; state of the complexes 5 is bright (*5,
fosc = 0.10, calchem = 408 nm, expyem _ oo nm, MgBr5 fosc —
0.20, 4™ — 435 nm, ®P)°™ = 482 nm, Fig. 8B and D,
respectively) and in agreement with 5 being luminescent with
quantum yields of 16% for ™5 and 14% for M85, The STEOM-
CCSD calculations also reproduce the experimental Stokes
shifts (4calcd =0.31, 4P — 0.35; Li5tmncated caled _ 0.40, Li5exp _
0.25; and M&Brsealed _ g g MsBrgexe _ ( 30 ev).
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Fig. 8 The dominant absorptions and concomitant excitations to the
S, states of “5 and M95'5 pelong to the HOMO — LUMO transitions (B
and D, red). For both 55 and M9'5, the HOMOs (left) are located at the
carbazole, whereas the LUMOs (right) are mainly localized on both
MIC units (A and C). For both 5 and M9®'5, the luminescence from the
S, states is bright (55, B and M95r5, D, blue). Orbitals were obtained at
the TD-DFT(SMD=CgHg)/def2-TZVPP//B3LYP-D3(BJ)/def2-SVP level
of theory, whereas the luminescence spectra were obtained at the
STEOM-CCSD(SMD=CgHe)/def2-TZVPP//B3LYP-D3(BJ)/def2-SVP
level of theory. Hydrogen atoms are omitted for clarity.

Considering the vastly differing luminescent properties of 3,
4, and complexes 5, we evaluated the geometries of the first S,
excited states. The proligand 3 is distorted in the relaxed S;
state, in which a triazolium group bends out of plane (Fig. 9,
left). This means that the excitation is followed by a change of
the mean value of the C-C-N-N dihedral angles before and after
excitation (A Zc.cn-n) between the carbazole and the tri-
azolium unit of 90° (So: Zc.conn = 10° and Si: Lo cnn =
100°). A comparable degree of distortion was also derived from
the root-mean-square deviation for the change of the positions
of all atoms (RMSDs_.s1; Fig. S387).

Upon the photoexcitation of 4, a MIC group bends out of plane
as well (Fig. 9, right) with A Z ¢c_c-n-n = 42° (S0t £ c-cnen = 177°
and S;: £ c-c-n-n = 135°). 15 essentially retains the ground-state
geometry in the relaxed S; state, due to the fact that the coordi-
nated metal ions lock the MIC ligands in place (Fig. 10, left).
Throughout the excitation, the A Z ¢_c_n-x changes only by 7° (Sg:
Lecnn =139 and Si: £ ¢ onn = 146°).
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Fig. 9 The distortions in the excited states of the proligand 3 (left) and
4 (right) visualized by superposition of the Sq (white) and S; (grey)
states. '‘Bu groups are truncated to methyl groups, and hydrogen
atoms are omitted for clarity. Dihedral angles (£ c-c-n-n) are high-
lighted in red.

Ligtruncated MgBrg

Fig. 10 The metal prevents the distortions due to excitation in case of
Ligtruncated (1oft) and M9IB'5 (right), as visualized by the superposition of
the So (white) and S; (grey) states. ‘Bu groups are truncated to methyl
groups, and hydrogen atoms are omitted for clarity. Dihedral angles
(£ c_c-n-n) are highlighted in red.

The anchoring effect of the metal is also evident for ™55,

which retains a pseudo-square-planar coordination around the
magnesium ion (Fig. 10, right). Here, the A Z ¢_¢_n_n iS 11° (S¢:
Zcconn = 177° and S; Zc.cn~ = 166°). Intriguingly, the
computationally determined degree of distortion in the excited
S, state correlates well with the experimental Stokes shifts and

0.36 - 418
e"'5 o4 4116
0.34 "
9B,
- 5 114
2 os2 123
£ 110
w 0.30+ e""'5 g
o 18 3
< 1S
8 ]
& 028 16 3
14
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P 4 5 42
0.24 B e o R B et ]
0 10 20 30 40 50 60 70 80 90

difference in the dihedral angle | °

Fig. 11 The excited state distortions, as expressed by the change of
the mean value of the A/Zc_c_n-n dihedral angles between the
carbazole and the MICs, correlate with the Stokes shifts (blue circles)
and quantum yields (red circles) of compounds 3, 4, |5 and M98'5. No
Stokes shift is available for non-emissive 3.

© 2021 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D1SC00846C

Open Access Article. Published on 15 April 2021. Downloaded on 2/19/2026 5:55:48 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Edge Article

quantum yields (Fig. 11). For instance, 4 shows a large Stokes
shift of AE = 0.35 eV and A £ ¢_c_n.n = 42°, while "5 exhibits
a Stokes shift of AE = 0.25 eVand A/ c_c.nn = 7°.

Berlman suggested that chromophores, in which the ground
and first excited states are planar, show high quantum
yields,"***° because molecular distortions and rotations in the
relaxed excited state often lead to non-radiative relaxation.*****
This rigidification or Restriction of Intramolecular Motions
(RIM) principle is of course crucial for organic fluorophores
including ubiquitous BODIPY."*#*** It has also been exploited in
sensing and coordination chemistry as the Chelation-Enhanced
Fluorescence (CHEF) effect, in which the ground and excited
geometries of a molecule are locked into a planar conformation
by coordinating metals.'>¢'%?

Accordingly, complexes with comparably small structural
distortions in the excited state are more efficient emitters (*'5
Alcconn=7° O™ = 16%; M5 A/ cnn = 11°, O™ =
14%; 4 A L ccnen = 42°, O™ = 2%; 3 A/ c_c-n-~ = 90°, nON-
emissive). Therefore, we conclude that the structural relaxa-
tion of the excited S; state quenches the luminescence. In
contrast, the alkali- and earth-alkali metals lock the conforma-
tion and, hence, allow for bright luminescence with comparably
small Stokes shifts.

Conclusions

We report on the synthesis of an N-fused CNC pincer proligand
composed of carbazole and two triazolium units. The synthetic
approach, scalable to multigram quantities, avoids the use of
hazardous tert-butylhypochloride, which had found use for
related ligand systems. The proligand undergoes single depro-
tonation to afford a rare “naked” amide, which is air-stable due
to intramolecular hydrogen-type bonding interactions. Triple
deprotonation by a lithium base affords a chelated, binuclear
lithium complex, which undergoes transmetalation with
magnesium. Photophysical investigations show that the s-block
complexes excel with luminescence quantum yields of up to
16% at ambient temperature and in solution, whereas the pro-
and mono-deprotonated ligands are essentially non-
luminescent. Detailed quantum-chemical calculations helped
to rationalize the luminescent properties with an Intra-Ligand-
Charge-Transfer (ILCT) from the carbazolide to the mesoionic
carbenes. (Earth-)alkali metals prevent the distortion of the
ligand following excitation and, in turn, enable bright lumi-
nescence in the blue to green region of the spectrum.
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