Single-molecule fluorescence detection of a tricyclic nucleoside analogue†

George N. Samaan, a Mckenzie K. Wyllie, a Julian M. Cizmic, a Lisa-Maria Needham, b David Nobis, c Katrina Ngo, a Susan Andersen, a Steven W. Magennis, d Steven F. Lee b and Byron W. Purse d, *a

Fluorescent nucleobase surrogates capable of Watson–Crick hydrogen bonding are essential probes of nucleic acid structure and dynamics, but their limited brightness and short absorption and emission wavelengths have rendered them unsuitable for single-molecule detection. Aiming to improve on these properties, we designed a new tricyclic pyrimidine nucleoside analogue with a push–pull conjugated system and synthesized it in seven sequential steps. The resulting C-linked 8-(diethylamino)benzo[b][1,8]naphthyridin-2(1H)-one nucleoside, which we name ABN, exhibits \(\varepsilon_{442} = 20\,000\, \text{M}^{-1} \text{cm}^{-1} \) and \(\Phi_{\text{em}} = 0.39 \) in water, increasing to \(\Phi_{\text{em}} = 0.50–0.53 \) when base paired with adenine in duplex DNA oligonucleotides. Single-molecule fluorescence measurements of ABN using both one-photon and two-photon excitation demonstrate its excellent photostability and indicate that the nucleoside is present to >95% in a bright state with count rates of at least 15 kHz per molecule. This new fluorescent nucleobase analogue, which, in duplex DNA, is the brightest and most red-shifted known, is the first to offer robust and accessible single-molecule fluorescence detection capabilities.

Introduction

Single-molecule fluorescence studies of biological molecules have a unique capacity to provide mechanistic insights into the relationships between structural dynamics and function, which are lost to averaging in ensemble measurements.1–3 Most of these studies have used extrinsic fluorophores, which can potentially interfere with the native biomolecular behavior and obscure local structural details.4–7 An ideal approach in this regard would be the use of intrinsically fluorescent biomolecules, prepared by the synthetic introduction of only minimal changes.8 It remains, however, a major challenge to attain adequate brightness and photostability in this approach.

Fluorescent nucleobase analogues (FBAs) have been a mainstay of biophysical studies of nucleic acid structure and dynamics because they can be placed precisely in a desired sequence and are less structurally perturbing than proximally tethered fluorophores.9–10 They are available with a range of fluorescent properties and, in response to base pairing and stacking, their fluorescence may be quenched (e.g. 2-aminopurine), retained (e.g. tC and \(^{18}\)G) or turned on (e.g. \(\text{DEA}^\text{tC} \)).11–14 However, few nucleobase analogues have extinction coefficients greater than \(10^4 \) with \(\Phi_{\text{em}} > 0.3 \); most are approximately an order of magnitude dimmer than conventional fluorophores such as Alexa Fluor 488 and rhodamine B.8,9,15–17 This lack of brightness has rendered them largely unsuitable for single-molecule fluorescence studies.16–20 Furthermore, with the current rapid development of spatially-resolved transcriptomics and genomics, there is clearly a future need for fluorescent analogues that can act as effective single-molecule probes.21,22

Conventional fluorophores typically exhibit superior optical properties to fluorescent nucleobase analogues, primarily because of their larger extinction coefficients—sometimes in excess of \(10^5 \)—but they need not be larger molecules.23,24 In structures such as rhodamine B, there is a prominent push–pull character, but the benzenecarboxylic acid is twisted out of plane and does not contribute significantly to the photophysical properties. The fluorescent, tricyclic core is similar in size to many of the common fluorescent nucleotides, but the most important difference is that push–pull motifs are underrepresented in existing FBAs.8,9,25 The required positions of heteroatoms for the Watson–Crick face and the glycosidic bond make incorporation of this motif challenging.

In this work, we hypothesized that, by redesigning a fluorescent, tricyclic cytidine analogue to include a push–pull motif, a substantial enhancement of brightness could be obtained (Fig. 1). A comparison of \(\text{DEA}^\text{tC} \) with rhodamine B shows that the
Results and discussion

Synthesis

The synthesis of ABN starts with the construction of the bicyclic ring 2-chloro-7-(diethylamino)quinoline-3-carbaldehyde 2 by the reaction of 3-(diethylamino)acetonitrile with the Vilsmeier reagent.26 The electron donating nature of the diethylamino group renders selective formation of the singly formylated product distinctive from the more conventional push–pull motif of two heteroatoms—S and the glycosidic N—to differentiate DEAtC from a more conventional push–pull fluorophore.11,14 A structure redesigned by replacing both atoms with sp2 C would impart the nucleoside analogue with a push–pull character, while maintaining the capacity for Watson–Crick hydrogen bonding and without further structural perturbation.

The resulting nucleoside analogue, whose synthesis and characterization we report here, includes 8-(diethylamino)benzo[b][1,8]naphthyridin-2(1H)-one as a fluorescent nucleobase surrogate, and we name this new compound ABN. Single-molecule fluorescence measurements show that the compound exists to >95% in a bright state and can be detected using both one- and two-photon excitation.

Oligonucleotide design and preparation

To assess ABN’s photophysical properties and natural base mimicry in oligonucleotides, we designed and prepared a hairpin ODN1 and two 10-mer sequences ODN4 and ODN7 that provide a representative set of local environments (Fig. 3). To assess ABN’s photophysical properties, we selected two 10-mer sequences ODN4 and ODN7 that provide a representative set of local environments (Fig. 3). The hairpin was designed to place ABN at the third position of a six-residue loop, a site that is not conducive to base stacking and is expected to leave the nucleobase predominantly solvent exposed.35,36 ODN4 and ODN7 were selected to provide a first look at neighboring base effects on ABN’s fluorescence. By annealing these ODNs to matched and mismatched complements, the base pairing of ABN and its effects on fluorescence can be measured.

Photophysical properties

Steady-state measurements. Steady-state absorption and fluorescence measurements of ABN in water, 1× PBS buffer (pH
7.4), 1,4-dioxane, and mixtures indicate that it is among the brightest fluorescent nucleosides reported to date ($\epsilon_{432} = 20 000$ M$^{-1}$ cm$^{-1}$ and $\Phi_{em,540} = 0.39$ in water and $\epsilon_{420} = 30 000$ M$^{-1}$ cm$^{-1}$ and $\Phi_{em,474} = 0.64$ in 1,4-dioxane; Table 1; Fig. 4 and S19†). Near to its closest competitors on brightness, pentacyclic adenine pA ($\epsilon_{387} = 15 300$ M$^{-1}$ cm$^{-1}$ and $\Phi_{em,420} = 0.66$ in water) and a coumarin nucleoside ($\epsilon_{315} = 38 000$ M$^{-1}$ cm$^{-1}$ and $\Phi_{em,455} = 0.11$ in water), the absorption and emission of ABN in aqueous solution are red-shifted by more than 50 and 80 nm, respectively.16,17 Owing to the conjugated push–pull system in the design of ABN, the absorption and emission wavelengths are the longest known for a FBA designed to be capable of Watson–Crick hydrogen bonding. Recorded emission spectra in water using excitation wavelengths spanning 310–500 nm are nearly superposable, as are excitation spectra recorded for emission wavelengths from 500–650 nm (Fig. S20 and S21†). These observations support the predominance of a single tautomeric form in dilute, aqueous solution (Fig. S20†).

Next, we measured the fluorescence of ABN in single-stranded and duplex DNA oligonucleotides to determine how base pairing and stacking influence its photophysical properties (Table 2). ABN increases its fluorescence to $\Phi_{em} = 0.50–0.53$ in matched duplex DNA oligonucleotides when base paired with A and $\Phi_{em} = 0.55$ when the analogue is present in the hairpin loop of ODN1. The quantum yield is less, 0.40 and 0.29, in ODN1:ODN3 and ODN4:ODN6 respectively, in which ABN is base paired with G. In ODN7:ODN9 $\Phi_{em} = 0.55$, slightly greater than when base paired with A. In all of these single-stranded and duplex sequences, ABN is brighter than any other known FBA when present in oligonucleotides.

Table 1 Steady-state photophysical data for the ABN nucleoside

<table>
<thead>
<tr>
<th>Solvent</th>
<th>$\lambda_{ex,\text{max}}$/nm</th>
<th>$\lambda_{em,\text{max}}$/nm</th>
<th>ϵ</th>
<th>$\epsilon_{\text{at } \lambda_{ex,\text{max}}}$/M$^{-1}$ cm$^{-1}$</th>
<th>Φ_{em}</th>
<th>ϵ : Φ_{em}</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O</td>
<td>442</td>
<td>540</td>
<td>2.0 x 104</td>
<td>0.39</td>
<td>7800</td>
<td></td>
</tr>
<tr>
<td>1× PBS pH 7.4</td>
<td>442</td>
<td>540</td>
<td>n.d.a</td>
<td>0.39 —</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>420</td>
<td>474</td>
<td>3.0 x 104</td>
<td>0.64</td>
<td>19 000</td>
<td></td>
</tr>
</tbody>
</table>

a n.d. = not determined.

Table 2 Steady-state photophysical data for ABN in DNA oligonucleotides

<table>
<thead>
<tr>
<th>Oligoa</th>
<th>$\lambda_{abs,\text{max}}$/nm</th>
<th>$\lambda_{em,\text{max}}$/nm</th>
<th>Φ_{em}</th>
<th>T_m/°C</th>
<th>ΔT_m/°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODN1</td>
<td>450</td>
<td>530</td>
<td>0.55</td>
<td>63.6 ± 0.6</td>
<td>+3.1</td>
</tr>
<tr>
<td>ODN1:ODN2</td>
<td>440</td>
<td>530</td>
<td>0.53</td>
<td>61.8 ± 0.4</td>
<td>−4.7</td>
</tr>
<tr>
<td>ODN1:ODN3</td>
<td>468</td>
<td>523</td>
<td>0.40</td>
<td>61.3 ± 0.6</td>
<td>+1.6c</td>
</tr>
<tr>
<td>ODN4</td>
<td>452</td>
<td>540</td>
<td>0.49</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ODN4:ODN5</td>
<td>440</td>
<td>525</td>
<td>0.51</td>
<td>39.9 ± 0.3</td>
<td>−0.5</td>
</tr>
<tr>
<td>ODN4:ODN6</td>
<td>470</td>
<td>523</td>
<td>0.29</td>
<td>41.3 ± 0.3</td>
<td>−7.3c</td>
</tr>
<tr>
<td>ODN7</td>
<td>532</td>
<td>532</td>
<td>0.62</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ODN7:ODN8</td>
<td>532</td>
<td>532</td>
<td>0.50</td>
<td>34.3 ± 0.3</td>
<td>−14.1</td>
</tr>
<tr>
<td>ODN7:ODN9</td>
<td>532</td>
<td>532</td>
<td>0.55</td>
<td>37.9 ± 0.3</td>
<td>−11.8d</td>
</tr>
</tbody>
</table>

a Oligonucleotide sequences are given in Fig. 3. b $\Delta T_m = T_m$ for ABN-containing duplex listed in the table row – T_m for the corresponding duplex with canonical thymidine in place of ABN. c Comparison with T_m for the corresponding natural duplex with a C:G base pair. d $\lambda_{ex,\text{max}}$ is concentration-dependent; see Fig. S18.

Temperature-dependent circular dichroism measurements of all six duplexes are consistent with the B-DNA conformation with only minimal perturbation (Table 2; see all CD spectra in the ESI†). Except in the ODN1 hairpin, where ABN is expected to be mostly solvent exposed, the melting temperatures of the duplexes are typically somewhat depressed as compared with their natural counterparts. Duplex stability is lowest when ABN has 5′-G and 3′-C neighbors, an observation consistent with other tricyclic FBAs, especially those that are electron-rich.14 The observed melting temperatures provide little indication of whether ABN is a better T- or C-surrogate. Solution NMR studies of the free nucleoside and computation clearly indicate a preferred tautomer with an acceptor–donor–acceptor hydrogen bonding pattern as in thymine, as discussed above. It is possible that ABN forms wobble base pairs with G or base pairing with G drives tautomerism to a C-like donor–acceptor–acceptor hydrogen bonding pattern (Fig. S22†).

The Stokes shift is shortened in ABN:G pairs, resulting mostly from red-shifted absorption relative to what is observed
in ABN:A pairs. Computational studies (B3LYP/cc-pVDZ) predict that the C-like tautomer will absorb at approximately 45 nm longer wavelength than the T-like tautomer (see ESIT†). These calculations are consistent with a tautomeric base pair with G that retains high fluorescence but is indicated by changed λ_{ex}. The absorption spectra of ODN7 alone and in the ODN7:ODN8 and ODN8:ODN9 duplexes are concentration dependent (Fig. S18†). This dependency indicates a significant potential for change in the local environment around ABN and possibly the analogue’s tautomeric state in these sequence contexts.

Single-molecule fluorescence measurements

Given the very attractive bulk-level photophysical properties of ABN in solution, we next investigated its potential as a single-molecule probe. Recent studies have demonstrated multiphoton excitation as a promising approach to the sensitive detection of fluorescent base analogues. Two-photon excitation of pA in oligonucleotides allowed detection close to the single-molecule level, whereas one-photon (1P) excitation resulted in rapid photobleaching. In a later study, the base analogue DMA₃U was detected as a free nucleoside at the single-molecule level for the first time via multiphoton excitation with a brightness of ~7 kHz per molecule following three-photon excitation. Using an experimental setup consisting of a broadband ultrafast laser with dispersion compensation, we found that ABN could be optimally excited via a 2P process (Fig. 5A). The 2P brightness was measured using fluorescence correlation spectroscopy (FCS) and found to match that of DMA₃U at 7 kHz per molecule (Fig. 5B). Importantly, unlike DMA₃U, which was predominately (96%) in a dark state, a controlled dilution suggests that ABN is exclusively in a bright state, which we attribute to the single tautomer observed by NMR (see above).

The red-shifted absorption profile, high 2P brightness and predominance of the bright state made ABN a promising candidate for single-molecule detection via 1P excitation. We found that spatially isolated individual molecules of ABN randomly dispersed on a glass coverslip could be readily visualized using single-molecule total internal reflection fluorescence (smTIRF) microscopy (Fig. 6A and Movie S1†). Furthermore, these fluorescent puncta underwent single-step photobleaching under constant irradiation (Fig. 6B), consistent with the idea that ABN has suitable optical properties to be used as a single-molecule fluorescent nucleoside. By quantifying >2000 individual trajectories, we were able to determine the mean total detected photon value of 5300 ± 1800 photons per molecule; furthermore a mean of 1500 ± 600 photons detected per 100 ms, determined from a log-normal distribution fit. (N = 2402 molecules).

Conclusions

The design of this new fluorescent nucleoside analogue ABN, centered around a push–pull motif common in bright organic fluorophores, has provided an unprecedented combination of high brightness and long absorption and emission wavelengths while retaining a Watson–Crick face. Fluorescence is further enhanced when the compound is present in single-stranded and duplex oligonucleotides. ABN’s robust photophysical properties and tautomeric stability allow detection of single molecules of the ABN nucleoside using either 1P or 2P at convenient excitation wavelengths for both. These results place ABN as the most promising fluorescent nucleoside analogue to
date for single-molecule studies of nucleic acid structure and dynamics. A forthcoming full study will elucidate the finer details of this analogue’s fluorescent properties, base pairing, tautomerism, and local structural perturbations in a variety of neighboring base sequences.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Research reported in this publication was supported by the National Science Foundation (CHE-1709796 and CHE-1800529 to B. W. P.), the California State University Program for Research and Education in Biotechnology, the Royal Society (University Research Fellowship UF120277 to S. F. L.), San Diego Research and Education in Biotechnology, the Royal Society to B. W. P.), the California State University Program for National Science Foundation (CHE-1709796 and CHE-1800529. Family, Phys. Chem. Chem. Phys., 2010, 12(31), 8881.

Acknowledgements

Research reported in this publication was supported by the National Science Foundation (CHE-1709796 and CHE-1800529 to B. W. P.), the California State University Program for Research and Education in Biotechnology, the Royal Society (University Research Fellowship UF120277 to S. F. L.), San Diego State University, NIH IMSD (fellowship support for M. K. W.; 5R25GM058906), and the ACS Division of Organic Chemistry Summer Undergraduate Research Fellowship (support for J. M. C.). We thank Andrew Cooksy for assistance with computational work and Yitzhak Tor for helpful discussions.

Notes and references

Chemical Science

