Issue 3, 2024

Interactions between intestinal microbial fermentation products of Pleurotus eryngii polysaccharide with gut mucus

Abstract

Recently, Pleurotus eryngii (P. eryngii) polysaccharide (PEP) has received a lot of attention from many researchers as the primary active substance. The PEP influences the gut microbiota in several ways, including the interaction of fermentation products with the intestinal mucus layer (IML) and intestinal epithelial cells. Herein, we characterized interactions between the IML and PEP after degradation by the gut microbes. Our results showed that fermented P. eryngii polysaccharide (FPEP) can interact with intestinal mucus (IM), and this interaction can reduce the degree of molecular aggregation of polysaccharides. At the same time, the fermentation time of FPEP also affects the interaction between the two. SEM showed that the FPEP solution tended to aggregate into larger particles, while with the addition of IM, the FPEP molecules were dispersed. Particle size measurements unveil substantial differences in the fermented polysaccharides’ particle size between the group with supplementary IM (0 hours of fermentation: 485.1 ± 11.3 nm) and the group without IM (0 hours of fermentation: 989.33 ± 21.3 nm). Remarkably, within the group with added IM, the particle size reached its maximum at 24 hours of fermentation (585.87 ± 42.83 nm). Additionally, turbidity assessments demonstrate that, during the 12-hour interaction period, the 24-hour fermented polysaccharides consistently exhibit the highest OD values, ranging between 0.57 and 0.61. This work investigates the interaction between FPEP and IM, predicting the adhesion of polysaccharides to IM. Meanwhile, this provides a theoretical basis for further studies on the absorption and transport pathways of PEP and provides a novel research viewpoint on intestinal digestion and absorption.

Graphical abstract: Interactions between intestinal microbial fermentation products of Pleurotus eryngii polysaccharide with gut mucus

Article information

Article type
Paper
Submitted
02 Nov 2023
Accepted
22 Dec 2023
First published
16 Jan 2024

Food Funct., 2024,15, 1476-1488

Interactions between intestinal microbial fermentation products of Pleurotus eryngii polysaccharide with gut mucus

G. Ma, S. Ma, H. Du, X. Li, Q. Tao, Q. Hu and H. Xiao, Food Funct., 2024, 15, 1476 DOI: 10.1039/D3FO04787C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements