Issue 4, 2023

Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis

Abstract

Alkaline water electrolysis for hydrogen production is a promising approach to address the severe energy crisis. Membrane electrode assemblies (MEAs) provide an important place for the electrochemical reaction and multiphase transfer, which directly determines the performance and durability of alkaline water electrolysis. Thus, developing high-performance and low-cost MEAs is the key to promote the large-scale applications of alkaline water electrolysis. Herein, based on the discussion of the fundamentals of alkaline water electrolysis, we review the state-of-the-art MEAs, including electrocatalysts, ion conductive membranes, and gas/liquid diffusion layers, as well as the progress in preparation technologies of MEAs. Especially, the overall design strategies of MEAs are discussed to promote high-performance alkaline water electrolysis, thus highlighting the complex relationship of the electrocatalyst and main components with the performance of alkaline water electrolysis. Finally, the current challenges and future perspectives on the development of MEAs are discussed. This review can provide a timely reference for future directions in MEAs’ challenges and perspectives for alkaline water electrolysis.

Graphical abstract: Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis

Article information

Article type
Review Article
Submitted
14 Jan 2023
Accepted
21 Feb 2023
First published
22 Feb 2023

Energy Environ. Sci., 2023,16, 1384-1430

Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis

L. Wan, Z. Xu, Q. Xu, M. Pang, D. Lin, J. Liu and B. Wang, Energy Environ. Sci., 2023, 16, 1384 DOI: 10.1039/D3EE00142C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements