Issue 22, 2023

Microfluidics in the eye: a review of glaucoma implants from an engineering perspective

Abstract

Glaucoma is a progressive optic neuropathy in the eye, which is a leading cause of irreversible blindness worldwide and currently affects over 70 million individuals. Clinically, intraocular pressure (IOP) reduction is the only proven treatment to halt the progression of glaucoma. Microfluidic devices such as glaucoma drainage devices (GDDs) and minimally invasive glaucoma surgery (MIGS) devices are routinely used by ophthalmologists to manage elevated IOP, by creating an artificial pathway for the over-accumulated aqueous humor (AH) in a glaucomatous eye, when the natural pathways are severely blocked. Herein, a detailed modelling and analysis of both the natural microfluidic pathways of the AH in the eye and artificial microfluidic pathways formed additionally by the various glaucoma implants are conducted to provide an insight into the causes of the IOP abnormality and the improvement schemes of current implant designs. The mechanisms of representative glaucoma implants have been critically reviewed from the perspective of microfluidics, and we have categorized the current implants into four groups according to the targeted drainage sites of the AH, namely Schlemm's canal, suprachoroidal space, subconjunctival space, and ocular surface. In addition, we propose to divide the development and evolution of glaucoma implant designs into three technological waves, which include microtube (1st), microvalve (2nd) and microsystem (3rd). With the emerging trends of minimal invasiveness and artificial intelligence in the development of medical implants, we envision that a comprehensive glaucoma treatment microsystem is on the horizon, which is featured with active and wireless control of IOP, real-time continuous monitoring of IOP and aqueous rate, etc. The current review could potentially cast light on the unmatched needs, challenges, and future directions of the microfluidic structural and functional designs of glaucoma implants, which would enable an enhanced safety profile, reduced complications, increased efficacy of lowering IOP and reduced IOP fluctuations, closed-loop and on-demand control of IOP, etc.

Graphical abstract: Microfluidics in the eye: a review of glaucoma implants from an engineering perspective

Article information

Article type
Critical Review
Submitted
10 May 2023
Accepted
12 Sep 2023
First published
17 Oct 2023

Lab Chip, 2023,23, 4736-4772

Microfluidics in the eye: a review of glaucoma implants from an engineering perspective

Z. Fang, S. Bi, J. D. Brown, J. Chen and T. Pan, Lab Chip, 2023, 23, 4736 DOI: 10.1039/D3LC00407D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements