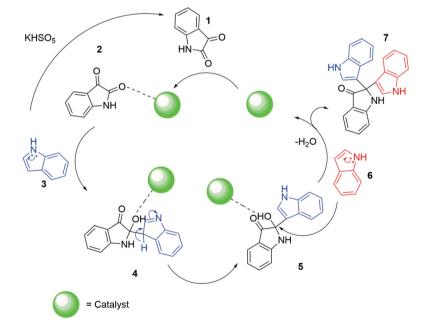
Green Chemistry

View Article Online

CORRECTION

Check for updates

Cite this: Green Chem., 2022, **24**, 5338


Correction: Nano Au/Pd-catalysed 'on-water' synthesis of C3–C3' diaryl-oxindole scaffolds via N_2 -selective dearomatization of indole

Shivanee Borpatra Gohain, ¹^b ^a Monika Basumatary,^b Purna K. Boruah,^{c,d} Manash R. Das^{c,d} and Ashim Jyoti Thakur*^a

DOI: 10.1039/d2gc90048c

Correction for 'Nano Au/Pd-catalysed 'on-water' synthesis of C3–C3' diaryl-oxindole scaffolds *via* N₂-selective dearomatization of indole' by Shivanee Borpatra Gohain *et al., Green Chem.,* 2020, **22**, 170–179, https://doi.org/10.1039/C9GC02370D.

In Scheme 6 in the published manuscript, the nanocatalyst is shown to interact with the wrong carbonyl group, leading to structures 4, 5 and 7 being incorrect. In the revised mechanism proposed in Scheme 6 below, the carbonyl group attached to the NH of the isatin molecule 2 would become more electrophilic following an interaction with the nanocatalyst, eventually leading to the formation of the intermediate 4 and finally resulting in the desired product 7.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aDepartment of Chemical Sciences, Tezpur University, Napaam 784028, Assam, India. E-mail: ashim@tezu.ernet.in

^bPhytochemistry Division, Defence Research Laboratory, Solmara, Tezpur 784001, India

^cAdvance Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Sciences and Technology, Jorhat, Assam, India

^dAcademy of Scientific and Innovative Research, CSIR-NEIST Campus, India