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Interactive human–machine learning framework for
modelling of ferroelectric–dielectric composites†
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Haixue Yan b and Yang Hao *a

Data driven materials discovery and optimization require databases that are error free and experimentally

verified. Performing material measurements is time-consuming and often restricted by the fact that

material sample preparations are non-trivial, labour-intensive and expensive. Numerical modelling of

materials has been studied over the years in order to address these issues and nowadays it has been

developed at multi-scale and multi-physics levels. However, numerical models for nano-composites,

especially for ferroelectrics, are limited due to multiple unknowns including oxygen vacancy densities,

grain sizes and domain boundaries existing in the system. In this work, we introduce a human–machine

interactive learning framework by developing a scalable semi-empirical model to accurately predict

material properties enabled by deep learning (DL). MgO-Doped BST (BaxSr1�xTiO3) is selected as an

example ferroelectric–dielectric composite for validation. The DL model transfer-learns the experimental

features of materials from a measurement database which includes data for over 100 different

ferroelectric composites collected by screening the published data and combining our own

measurement data. The trained DL model is utilized in providing feedback to human researchers, who

then refine computer model parameters accordingly, hence completing the interactive learning cycle.

Finally, the developed DL model is applied to predict and optimise new ferroelectric–dielectric compo-

sites with the highest figure of merit (FOM) value.

1 Introduction

Material modelling is a key pre-design strategy used to eliminate
trial-and-error loops in the new materials development process.
A range of modelling approaches have been proposed for
atomistic and theoretical modelling of materials, such as density
functional theory (DFT),1,2 molecular dynamics (MD),3,4 Monte
Carlo method,5,6 semi-empirical physical models7,8 and finite
element models.9,10 Modelling of spontaneous polarization,
dielectric properties, ferroelectric to paraelectric phase transition
taking effect at the Curie point (Tc) and structural properties of
ferroelectric materials has been extensively scrutinized with both
atomic level and numerical simulations.11–13 With the advance-
ment of material characterization techniques in recent years,
some of the specific behaviours such as domain-wall motion,
defects causing the pinning effect, negative capacitance and the

presence of local dipole components in the paraelectric region
have been experimentally identified and have been considered in
the theoretical models.14–18 However, the first principle calcula-
tions are computationally expensive and theoretical modelling
requires a profound knowledge of the physical phenomena of
the material. Hence, machine learning (ML) is increasingly being
used to effectively bypass these calculations.19–21 Thus, these ML
frameworks are used to predict material properties22,23 and to
design and discover novel materials.24,25 The integration of ML with
theoretical models, despite being useful for materials discovery and
optimization, still remains a less-explored research field.

The real challenge is therefore to develop models that comply
well with measurement data.26 In this work, we propose a human–
machine interactive learning framework where a semi-empirical
model of ferroelectrics is improved to model ferroelectric–dielectric
composites by feeding ‘machine-learned’ experimental features in
order to significantly boost the modelling accuracy. The proposed
framework is embraced by the power of inherent natures of learning
abilities where ML algorithms are good at rapid learning from mass
data while capturing even the slightest variation, and humans are
empowered by their analytical knowledge to anticipate new scenarios
by abstracting different domains.

To demonstrate the concept as shown in Fig. 1, we select a
semi-empirical model for ferroelectrics, known as the Vendik
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model developed from Landau–Ginzburg theory7,8,27–29 and
BaxSr1�xTiO3 (BST) as a modelling example. The Vendik model
allows us to calculate the dielectric properties of both incipient
and displacive types of ferroelectrics as a function of temperature,
biasing field, frequency and material defects. However, by compar-
ing our initial calculations with our measurement data and those
from ref. 30 on BST ceramics, we have concluded that the model
overestimates dielectric constants at high frequencies (over 1 GHz).
Furthermore, the original Vendik model is not designed for ferro-
electric–dielectric composites, which are commonly synthesised by
research scientists to modify material parameters such as dielectric
constant, loss tangent and tunability.

In the present study, we first theoretically develop an improved
Vendik model which is valid for high frequencies as well as
ferroelectric–dielectric composites such as MgO-doped BST
ceramics by considering the new mechanisms brought by the
dielectric dopant and improving the analytical equations to
reflect the doping effect. Deep learning (DL), which is a branch
of ML, will then be used to successively learn from a simulated
database and an experimental database. We will receive feed-
back from the trained DL model and will subsequently make
appropriate refinements to the semi-empirical model para-
meters such that the resulting simulation data adhere to those
from measurements. A fully connected deep neural network
(DNN) architecture is proposed to avoid the phenomenon
known as catastrophic forgetting,31 frequently occurring in
the context of transfer learning. The tendency of the neural
network to forget what it had learned previously upon learning
new information is known as catastrophic forgetting. Learning
from two databases can be mapped into a transfer learning
task, where the same ML model trained on the simulated
database is re-purposed by the subsequent training with the
experimental database. The refined theoretical model following
the above interactive learning process is experimentally validated
with different Ba0.6Sr0.4TiO3 (BST64) samples and the trained DL

model is utilized for optimized material modelling to explore the
required conditions for designing highly tunable, low loss ferro-
electrics operating in the paraelectric state. Combined ML and
theoretical modelling supported by experiments demonstrates
the applicability and scalability of the proposed interactive
learning framework, seemingly having a vast scope of applica-
tions in materials modelling.

2 Theory and design
2.1 Original Vendik model

An analytic equation to calculate the complex dielectric con-
stant of ferroelectric materials under different temperatures
and electric fields for both ferroelectric and paraelectric states
was proposed by Vendik et al.7,8 The equations are derived
based on the conventional Landau theory and four energy
dissipation mechanisms are considered in the derivation (see
Appendix, Section A.1 for full model derivation in the ESI†).
Thus, the proposed equation to calculate the complex permit-
tivity of BaxSr1�xTiO3 ceramics can be formulated as

eðE;T ; f ; x; xsÞ ¼
e00ðxÞ

GðE;T ; x; xsÞ�1 þ
P4
q¼1

GqðE;T ; f ; x; xsÞ
(1)

where G(E,T,x,xs) is the real part of the Green function for a
dielectric response of the ferroelectric, x is the barium proportion, T
is the temperature and f is the operating frequency of biasing field
E. e00(x) is an analogue of Curie–Weiss constant C and can be
represented as e00 = C/Tc. xs is the statistical dispersion of the
biasing field (also known as the defect factor) which reflects the
‘quality’ of the material and corresponds to defects (including
oxygen vacancies and inhomogeneity) in the material. G1,2,3,4 refer
to the four energy dissipation (loss) mechanisms considered in the
original model (see Appendix, Section A.1 for a detailed discussion

Fig. 1 Human–machine interactive learning framework. Human develops a theoretical model based on the knowledge. The developed model is used to
produce a big database which enables ‘‘materials by design’’. An experimental dataset is also created by screening those from published literature and
combining those with our own measurements. A machine learning model successively learns from these two databases and predicts new instances.
Predicted results are compared with theoretical calculations and further refinements are then introduced to the theoretical model such that final
numerical results reflect the actual behaviour of materials.
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on xs and G1,2,3,4 in the ESI†). Therefore, the dielectric loss, i.e. the
loss tangent of a ferroelectric material, could be expressed as

tan d ¼ Im½eðE;T ; f ; x; xsÞ�
Re½eðE;T ; f ; x; xsÞ�

(2)

All model constants in the current model are set to be identical
with those of the original Vendik model8 and the constants
referring to BST material are tabulated in Appendix, Section A.3
in the ESI.†

2.2 Improved Vendik model for high frequencies

By comparing simulations from the original model with our
measurement data for BST at high radio frequencies (41 GHz),
it was observed that the original Vendik model needs to be
refined to apply for high frequencies. For example, as can be
seen from Fig. 2, between 8 GHz and 12 GHz, BST64 displays a
permittivity around 50 depending on different synthesis con-
ditions whereas the original model simulations (with defect
parameter xs = 0.8) yield values in the order of thousands. This
inaccuracy can be attributed to the fact that the contribution of
the reduced polarization at high frequencies in ferroelectrics
was not considered in the original model.

For a typical dielectric placed in an electric field E between
two flat electrodes, the relationship between the internal polar-
ization Pint and dielectric constant er is described as

er ¼ 1þ Pint

e0E
(3)

where e0 represents the permittivity of free space. This basic equation
tells that, under such condition, er is positively proportional to
internal polarization inside the dielectric. Therefore, at high
frequencies, the permittivity of BST will be much reduced as
dipoles are unable to respond to the changing directions of the
alternating field, whereas at intermediate frequencies, the
dipoles can partially reorient with the change of the alternating
field direction, but will increasingly lag behind as the frequency
increases.32 Specifically at the ferroelectric phase, polarization in

BST material will be reduced with increasing frequency of
biasing voltage as domain wall motion cannot follow the alter-
nating field33 and/or at cryogenic temperatures where domain
wall motion is thermally frozen.33

Having studied measurement data published in ref. 34 and
35 and our own data on BST64, we expect, for pure BST
material, a steady high permittivity at low frequencies (1 kHz–
1 MHz) and a dramatic drop near 1 GHz. By considering the
firm dependence of the permittivity on frequency, we introduce
a modified Vendik model with

eðE;T ; f ; x; xsÞ ¼
e00ðxÞ

½GðE;T ; x; xsÞKðf Þ��1 þ
P4
q¼1

GqðE;T ; f ; x; xsÞ

(4)

where K(f) is written as

K(f) = ka tanh[kb ln(f) + kc] + kd (5)

The constants ka, kb, kc, kd in eqn (5) relating to the modified
model were found by a curve fitting process between our
measurement data on BST64. The model constants were found
to be �0.442, 0.490, �3.2 and 0.453 respectively and the details
of curve fitting can be found in Appendix, Section B.2 and Fig. B7
in the ESI.† After the introduction of frequency-dependent factor
K( f ), calculation results are now comparable with those from
measurements, as can be observed in Fig. 2.

2.3 Ferroelectric–dielectric composite modelling

MgO doping is one of the most prevalent methods being used
to alter the dielectric properties of BST ceramics, especially
because the formed composition still maintains the ABO3

perovskite structure and the macroscopic ferroelectric beha-
viour at low concentration of MgO doping. For instance, a
single-phase solid solution can be achieved at MgO doping
levels up to 5 mol% whereas with increasing MgO concen-
tration, multi-phase composites are obtained at 20 mol% MgO,
confirming the emergence of BST–MgO interfaces in the
material.36 This will give rise to charged defects at the inter-
faces corresponding to higher extrinsic losses in the composite
especially at low frequencies.37 Based on the above improved
model and taking MgO-doped BST as an example, we develop a
semi-empirical model for ferroelectric–dielectric ‘composites’,
for the sake of convenience, which includes the single-phase
BST–MgO composition with low doping levels of MgO as well.

With MgO doping, initially the smaller B-site Ti4+ ions get
replaced by larger Mg2+ ions and the oxygen vacancies will
increase causing more defects resulting in a reduced dielectric
constant of the material. A further increase in MgO content
results in A-site Ba2+ ions being replaced by Mg2+ due to the
high oxygen vacancies and this further reduces the dielectric
constant.38 Moreover, even at the paraelectric phase, polar
regions are still identified in BST material and the movement
of these regions will also be restricted by new complexes
brought by MgO doping which in turn decreases the dielectric
constant in the paraelectric phase. As mentioned, in multi-phase

Fig. 2 Experimentally obtained permittivity of BST64 ceramics between 8
and 12 GHz synthesized at different sintering temperatures, measured at
room temperature, compared to simulation data from both original and
modified models, where xs is set to 0.8.
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composites, the BST–MgO interfaces will introduce more charged
defects in the material. As a consequence, the value of xs related to
the defects in the material needs to be elevated. Therefore, another
term xMg, which is positively correlated with MgO doping content,
is added to the previous parameter xs, where the new defect
parameter xs

0 could be presented as

xs
0 = xs + xMg (6)

The replacement of Ti4+ ions by Mg2+ suppresses the domain-
wall motion which in turn reduces the dielectric loss because the
loss originated by domain-wall motion is quite significant,
especially near Tc. In contrast, the defects caused by oxygen
vacancies result in a slight increase of the loss at high tempera-
tures, generally above 350 K for BST–MgO composites.38 There-
fore, we introduce a factor KMg which is dependent on MgO
content xMg as

KMg = exp(�cxMg) (7)

In the developed ferroelectric–dielectric composite model, the
equations relating to the loss tangent of the material are scaled
by a factor of KMg and the previous defect parameter (xs) is
substituted with the new parameter xs

0. The value of c is
positive and determines the dependence of KMg on doping
content factor xMg and for the sake of convenience, we assume
c = 1 for the present model. More detailed explanation on
analytic equations reflecting the changes brought by MgO
doping can be found in Appendix, Section B.2 in the ESI.†

The contour plot in Fig. 3a presents the simulation results of
the tunability of BST–MgO composites with various barium
proportions and MgO contents as obtained by the developed
model. In the plot, with increasing MgO content, we can
observe a lower tunability from the composite. Moreover, we
fit the measured tunability data of BST–MgO materials (lightly
doped BST64 and heavily doped composites of 4 different
prescriptions) extracted from ref. 37,39 with our modified
theoretical model simulations. For the curve fitting process,
the best fitting was obtained with optimum values of defect
parameter xs and Mg content parameter xMg, as shown in
Fig. 3b. For lightly doped BST64 (Ba0.6Sr0.4TiO3–4 wt% MgO),
we have a very low MgO parameter calculated at 0.09. When
heavily doped, the BST–MgO composites (45 wt% Ba0.55Sr0.45-

TiO3–55 wt% MgO) become much less tunable, smaller than
10% for all four different prescriptions. We assume that the
MgO content parameter does not change (xMg = 0.7) as the MgO
doping level is the same in all prescriptions. Hence, different
defect parameters were obtained for each prescription of BST
composites respectively, which agrees with the theoretical
definition for xs since lattice parameters vary between different
prescription approaches (see Appendix, Section A.2 in the ESI†).

2.4 Data collection

We created an experimental database of bulk BST composites
by screening the published data. This database contains infor-
mation such as Curie temperature, grain size, dielectric con-
stant at both Tc and room temperature, tunability and loss

tangent values at a given biasing field. The data are spanned from
1 kHz to microwave frequencies. We used WebPlotDigitizer40 to
extract the data from the plots wherever the data are presented
in graphical format rather than in numerical format and these
data are provided separately. Altogether, this measurement
database contains over 1000 data points for over 100 different
BST composite materials. As focussed in this work, the majority
of data in this database represented BST–MgO composites;
however, other compositions such as BST–MgAl2O4, BST–
Mg2TiO4 and BST–MgZrO3 were also present. Another database
was created from theoretical model simulations. The database
comprises tunability and loss tangent values for different
barium proportions (0.3 r x r 0.9) of pure BST and MgO-
doped BST composites at different xs (0.2 r xs r 0.8),
xMg (0 r xMg r 0.8), electric field (0 r E r 30 kV cm�1) and
frequency levels ( f A{10i| i A Z: i A [3,10]} Hz). This simulated
database contains around 35 000 data points for 35 different
BST composites.

Fig. 3 (a) Contour plot of room temperature tunability at 20 kV cm�1

calculated by the modified model, plotting versus barium proportions from
0.3 to 0.7 and MgO content parameter xMg from 0 to 1; (b) simulated
tunability curves fitting with measurement data of different BST–MgO
composites (extracted from previous literature:37,39 Ba0.6Sr0.4TiO3–4 wt%
MgO and 4 different prescriptions of 45 wt% Ba0.55Sr0.45TiO3–55 wt%
MgO), obtained with the highest R-square values respectively. The direc-
tion of the arrows pointing to indicates the referred y-axis for each set of
data. For each set of simulated curves, defect parameter xs and Mg content
parameter xMg were calculated respectively.
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3 Results and discussion
3.1 Deep learning model

The underlying requirement for developing a theoretical model
for materials discovery is to improve its accuracy by incorporating
experimental data. Machine learning stands out as the obvious
choice of learning from data and here we propose a fully
connected DNN that acts as the interface between the theoretical
model and the measurement dataset. As shown in Fig. 4, a deep
learning model is firstly developed to learn from the database
generated from theoretical calculations. It then learns from
the measurement database to reflect the actual behaviour of the
BST material. The trained DL model is used to predict new
ferroelectric–dielectric composites and the predictions are fed
back to the human to make appropriate adjustments to the
theoretical model parameters. This section is divided into two
parts. In the first phase, we propose a suitable DL architecture
that can fully emulate the theoretical model and verify the trained
DL model predictions with theoretical simulations. In the second
phase, we employ the ML concept of transfer learning to retrain
the verified DL model with the small measurement dataset in
such a way that it preserves what it had learned from the
theoretical model, while learning the experimental features.

3.1.1 Emulation of the theoretical model and verification.
Deep learning architecture is one of the determining factors of
the final model performance. It is vital to foresee the ultimate
objective of using deep learning in the problem before proposing
an architecture. It has become clear that higher tunabilities and
lower loss tangents are two of the most preferred characteristics
in tunable devices. However, by observing the simulations, we
noticed that loss tangent estimation from the theoretical model

could still be improved whereas the tunability estimation matches
well with the measurement data. Hence, we envisage the idea of
loss tangent improvement and build the DL model upon that.

We propose a fully connected (dense) deep neural network
split into two parts that outputs tunability and loss tangent
separately, given frequency, electric field, xs, xMg and barium
proportion as input features. This architecture makes it possible
to use the experimental database to retrain the layers that are
associated with loss tangent, without affecting the tunability.
The selection criteria of number of layers and neurons in each
layer are described in Appendix, Section D.1 (ESI†).41 Fig. 5
shows the fully connected DNN architecture which includes four
hidden layers. Tunability prediction and loss tangent prediction
share the input layer and the immediate dense layer. Thence-
forth, the network branches off into two parts. The exponential
linear unit (ELU) is chosen over the rectified linear unit (ReLU)
as the activation function to avoid the vanishing gradient
problem and speed up the training process.42 Linear activation
is used at the output layer. As the simulated dataset was
generated for discrete frequencies from 1 kHz to 10 GHz, we
convert each of these frequencies to a one-hot vector (Appendix,
Section D.3 displays the one-hot vector table in the ESI†). This
process is known as one-hot encoding where categorical data are
converted into a group of bits with a single high (1) bit and all
others low (0).

The DNN was implemented in python using keras-2.2.4
library with tensorflow-1.13 backend and the training was done
on a RTX 2080 Ti GPU with 11GB memory. L2 regularization was
introduced in all layers except the last two layers of the network
to prevent overfitting. K-Fold cross validation (K = 2) was
performed to evaluate the models by having 3 separate data-
bases for training, validation and testing (see Appendix, Section
D.2 in the ESI†). Total validation loss settled around 1.48 �
10�5 after about 6 hours of training. Table 1 shows training and
validation mean squared errors (MSEs) and coefficient of determi-
nation (R2) of tunability and loss tangent predictions separately.

Fig. 4 Deep learning work flow. The DL model first learns the theoretical
model itself, followed by the experimental dataset. The accuracy of the
trained DL model is quantified and thus it is used to predict new instances
that are fed back to the theoretical model where a human could make
appropriate adjustments. The DL model is finally used for optimized
material modelling.

Fig. 5 Deep neural network architecture. The full model is trained on the
simulated database in the first phase. Only the blue-shadowed two layers
are trained on the measurement database in the second phase to avoid
catastrophic forgetting.
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The R2 value is a statistical measure that represents the goodness of
a fit of a regression model. In order to validate the DL predictions,
we predict the tunability and loss tangent of BST compositions that
are not present in the database and compare them with the
simulations. A composition depends on x, xs and xMg and thus,
out-of-database predictions consist of compositions with different
values for the above quantities that are unseen by the DL model.
Fig. 6 demonstrates theoretical model simulation results and DL
predictions for different BST–MgO composites at different frequen-
cies. The accuracy of this DL regression model can be numerically
expressed with high R2 values of both tunability and loss tangent
predictions and it becomes quite evident that deep learning can
perfectly emulate the theoretical model.

3.1.2 Transfer learning with the measurement data. In the
second phase, we enable the pre-trained DL model to learn
from the measurement dataset. In order for the database to be

compatible for training, we obtained the equivalent xs and xMg

parameters for each of the BST composites present in the dataset
by comparing measured tunability values with the theoretical
model calculations. Table 2 shows the calculated xs and xMg

values for selected BST composites. This completed database is
then utilized to learn and improve the loss tangent prediction.

The phenomenon termed ‘‘catastrophic forgetting’’ specifically
occurs when a pre-trained neural network is trained with another
dataset using the gradient descent algorithm as the new weight
updates may not reflect previously learned features. In order to
address this issue, we freeze all layers except the last two layers of
loss tangent prediction as shown in Fig. 5. Once a layer is frozen, it
becomes non-trainable and the weights do not update upon
training. Therefore, the weights of the layers associated with
tunability do not update and hence the neural network will
completely remember tunability characteristics learned from the
theoretical model. The first three layers associated with loss tangent
will remember the behaviour of loss tangent and will enable
learning experimental features by training the last two layers on
the measurement data.

We first filter out pure BST and only MgO-doped BST compo-
sites from the experimental database. The resulting database
contains 170 data on 38 materials out of which 11 materials were
selected for the test set. Due to the limitation of data, we retrain
two unfrozen layers for low number of epochs, following the
early stopping method, in order to prevent overfitting. An over-
fitted neural network performs well on the training set but has a
very poor generalization accuracy. Fig. 7 shows the loss tangent
prediction results on the test set. It can be observed that in all
the cases, DL predictions are closer to the measurement data
rather than the simulated values. For quantification purposes,
we introduce a similarity score s(p,q), between two sets p, q. We
calculate the mean Euclidean distance d(p,q) between set p and
set q each having n elements with shape m as

dðp; qÞ ¼

Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1
ðpij � qijÞ2

s

n
(8)

Thus, the similarity score, s(p,q), can be introduced as the
inverse of the mean Euclidean distance:

sðp; qÞ ¼ 1

dðp; qÞ (9)

Table 1 DNN training performance

Training MSE Validation MSE R2 value

Tunability 2.5 � 10�6 2.8 � 10�6 0.998
Loss tangent 9.5 � 10�6 1.18 � 10�5 0.997
Total 1.2 � 10�5 1.48 � 10�5 40.99

Fig. 6 Theoretical model simulations and deep learning predictions for
different BST + MgO composites ((a)–(c)) at different frequencies. Panel (d)
represents pure BST64 material.

Table 2 Calculated xs and xMg parameter values for different BST composites. All measurements and simulations are done at 20 kV cm�1 biasing field.
xMg increases with MgO concentration for a particular composite

Material Frequency Tunability (measurement) Tunability (theoretical) Calculated xs Calculated xMg

Ba0.7Sr0.3TiO3 + 2.5 mol% MgO43 10 kHz 0.34 0.342 0.2 0.48
Ba0.7Sr0.3TiO3 + 7.5 mol% MgO43 10 kHz 0.26 0.26 0.2 0.69
Ba0.7Sr0.3TiO3 + 10 mol% MgO43 10 kHz 0.22 0.224 0.2 0.8
Ba0.6Sr0.4TiO3 + 10 wt% MgO35 1 MHz 0.166 0.165 0.28 0.74
Ba0.6Sr0.4TiO3 + 30 wt% MgO35 1 MHz 0.148 0.146 0.28 0.81
Ba0.6Sr0.4TiO3 + 60 wt% MgO35 1 MHz 0.099 0.097 0.28 1
Ba0.45Sr0.55TiO3

35 10 GHz 0.152 0.145 0.13 0
Ba0.5Sr0.5TiO3

35 10 GHz 0.25 0.25 0.2 0
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The calculated similarity score between the theoretical
simulations and measurements is 142.2, whereas that between
the DL predictions and measurements is as high as 675.6.
Hence, we can conclude that deep learning offers about 4 times
performance improvement in predicting the loss tangent.
While we understand that the measurement values can differ
significantly depending on the synthesis conditions, it is still
essential to develop a model that fits well with the existing data
and the proposed DL model shows a better agreement with the
experimental measurements.

3.2 Interactive learning framework

New predictions from the ‘transfer-learned’ DL model assist the
human to interactively make appropriate adjustments to the
theoretical model parameters. As shown in Fig. 8, the interactive
learning work flow is a reciprocal process done in two cycles. In
step 1, theoretical simulations (tunability and loss tangent) are

carried out to be compared with the experimental data. Then in
step 2, a comparison is done by manual inspection and the
theoretical model parameters are tweaked heuristically. In the
real scenario, by manual comparison with the results from
ref. 44 and 45, we found that the calculated loss tangent at low
frequencies (1 kHz–100 kHz) is generally much lower estimated.
In the original model, the resonance frequency of the low
frequency relaxation loss G4 is set to 10 MHz. Therefore, we
propose a new low frequency relaxation formula of G5 resonant
at f5 = 10 kHz and o5 = 2pf5 as

G5 = A5/(1 � io/o5), (10)

which corrects the underestimation given by the model. The
parameter A5 is assumed to be equal to the low frequency
relaxation parameter of the original model (see Appendix,
Section A.3 in the ESI†).

However, the first learning cycle limits us only to the existing
data. Therefore, we make use of experimental-data-trained DL
model to predict the tunability and loss tangent of new ferro-
electric–dielectric composites that are to be compared with the
simulations. Theoretical model generated data in step 3 are
compared with the DL predictions in step 4 and the model
parameters are again tuned to confront with the predictions. In
the actual case, we observed that the DL predicted loss tangent
at 1 MHz is over 10 times larger than that of the simulated
value. This was confirmed by doing further literature review
and finding the corresponding experimental value.35 Hence,
the subsequent fine-tuning is performed on the theoretical
model parameters. In our previous simulations, all model
constants were set to be the same as in the original Vendik
model in ref. 8 (refer to Appendix, Section A.3 in the ESI†).
Since the loss tangent was obviously lower estimated around
1 MHz, we increased the value of coefficient of low-frequency

Fig. 7 Comparison of theoretical model simulations, measurements and
deep learning predictions on the test set (E = 20 kV cm�1). It should be
noted that the theoretical simulations are carried out after the human–
machine interactive learning improvements.

Fig. 8 BST material modelling using human–machine learning interaction. In step 1, theoretical simulations are performed to be compared with the
experimental data. In step 2, model parameters are tweaked accordingly by manual inspection and comparison. Step 3 refers to the data generation that
are to be compared with machine-generated DL predictions. A human compares these two data and make appropriate refinements to the model
parameters in step 4.
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loss A4. After some heuristic tweaking, here we assign a new
value 0.01 for A4.

The first learning cycle could be referred to as a manual
human learning procedure whereas the second could be identified
as a human–machine learning interaction, since the human
adjusts model parameters depending on the feedback of a trained
DL model. At the end of two learning cycles, the theoretical model
has adjusted to the measurement data as well as possible.

3.3 DL optimized materials modelling

We regard an objective function to consider both tunability (nr)
and loss tangent (tan d) factors such that optimal material
properties can be quantified. Here, we define the figure of
merit (FOM/K)46,47 factor as

K ¼ nr

tan d
(11)

Using the trained DL model, we investigate the best FOM values
at different frequencies and the corresponding barium propor-
tions and defect parameter values. For the sake of convenience,
we perform this for pure BST materials. In the present paper,
we investigate FOM at 20 kV cm�1, which is the most frequent
value present in our literature data. We range the proportion of
barium from 0.5 to 0.7 (assuming the material is at paraelectric
state at room temperature when x r 0.748) and the defect factor
xs from 0.2 to 0.8. It should be noted that for all practical BST
ceramics, there is always some existing defect, and we assume
that the initial lowest value of defect factor xs is 0.2.49 Several
example frequencies were selected from 100 kHz to 10 GHz for
the proposed optimization and the temperature is set to be the
room temperature at 290 K, at which the dataset was generated.
The corresponding combination of x and xs which results in the
highest FOM value can theoretically be regarded as the best BST
material under the considered frequency and temperature.

However, the predicted loss tangent being too low can result
in very high FOM values without revealing much information
about the tunability and the overall performance of the mate-
rial. Hence, while calculating the FOM value from the DL
model, we set the minimum threshold of the loss tangent to
be 5 � 10�4, as it is the lowest loss value observed in the
experimental dataset.50 Table 3 shows the best FOM values and
the corresponding x and xs values obtained using the DL
predictions at different frequencies for pure BST materials. By
observing the DL results, it can be concluded that the best
operating frequency for pure BST materials is around 10 MHz
as it shows the highest K value among the chosen frequencies.
The optimum barium proportion is found to be around 0.63 for
most of the frequencies. From Table 3, it can also be noticed

that a low level of defects is preferred in microwave frequencies
whereas relatively high defects provide better FOM values in
low frequencies.

3.4 Experimental validation

BST64 samples sintered at different temperatures were taken as
an example material to be studied (see Appendix, Section C for
sample preparation methods in the ESI†). Depending on these
different synthesis conditions, the defects may differ for each
sample and it is worth investigating whether our model could
capture the correct defect parameter xs and the corresponding
dielectric properties of these samples. For all the prepared
BST64 samples, the dielectric constant was measured from
250 K to 400 K respectively at 100 kHz under a zero external
biasing field. Therefore, we perform dielectric constant vs tem-
perature simulations at 100 kHz while keeping E = 0 kV cm�1.
Fig. 9 shows the best curve fittings between experimental data
(circles) and the simulation data (lines) for BST64 synthesized
with different sintering methods and temperatures. Through the
fitting process, we can obtain unique values of xs for each type of
material and the simulation results match quite well with the
measurements, especially above the Curie point. We believe that
the observed poor fit below the phase transition temperature is
due to the simplified calculation of Landau–Ginzburg equations
used to derive the Vendik model (see Appendix, Section C in the
ESI†). Moreover, microstructures of BST64 pellets under differ-
ent sintering conditions were investigated by using a FEI Quanta
FEG 400 high resolution scanning electron microscope. Table 4
shows the grain sizes of different samples and the calculated xs

values. High R2 values evidence that our model is able to capture
the correct dielectric properties of different BST64 materials
having different defects. When comparing the values of estimated
average grain sizes and defect factors, no clear trend can be
concluded as the data size is not enough. However, for samples
synthesised by the SPS process, grain sizes are obviously smaller
and values of defect factor xs are higher, indicating a greater density
of defects in BST material.

Table 3 Best figure of merit obtained from the DL model at different
frequencies at 20 kV cm�1

f 100 kHz 10 MHz 1 GHz 10 GHz

x 0.54 0.63 0.6 0.63
xs 0.68 0.70 0.20 0.20
FOM 273.38 551.49 35.66 14.04

Fig. 9 Best fitting of dielectric constant versus temperature between
simulation data (line) and experimental data for pure BST64 materials (at
100 kHz) sintered under different conditions. SPS – spark plasma sintering;
CS – conventional sintering.
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4 Conclusions

A new framework of human–machine interactive learning has
been developed for accurate modelling of ferroelectric–dielectric
composites. By integrating big data generated from a semi-
empirical model and the measurement database of sufficient size,
we have trained a DL model, which was applied to obtain a
refinement of a classical model of ferroelectric materials that can
be made to account for multiple unknowns. The model was
experimentally validated with BST64 samples synthesised under
different sintering conditions and the simulations show a good
agreement with the measurements. We believe that this approach
has a far reaching implication for application in discovering new
material models, especially those analytically unsolvable. As future
work, we plan to apply the developed DL model to automate the
materials design process as well as perform a thorough analysis on
the dependence of less-studied xs and xMg parameters on grain
sizes, domain walls and oxygen vacancies in ferroelectric–dielectric
composites.
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