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Strontium titanate (SrTiO3) is a promising material for the light-driven conversion of carbon dioxide (CO,)
into renewable fuels. However, the mechanisms of the relevant reactions are not yet well understood. In
this work, we have used density functional theory calculations to explore CO, reduction on the (001)
surface of the SrTiOs photocatalyst. Our results indicate that, in contrast to COOH, the formation of
a HCOO or CO; ™ intermediate is thermodynamically hindered, which is consistent with the fact that
formic acid (HCOOH) is not a major product in the experiments reported in the literature. We show that
a pathway to carbon monoxide (CO) is instead possible, and that the formation of COOH is the rate-
limiting step. Finally, we suggest that substitutional doping of Sr ions represents a promising approach to

rsc.li/materials-a

1 Introduction

To reduce the still increasing CO, emissions responsible for
global warming and the concomitant climate change remains
one of the biggest challenges of our era. The catalytic technol-
ogies currently being explored to utilise the CO, molecule by
converting it into useful hydrocarbons include heterogeneous'*
and electrochemical®” catalysis. Approaches such as photo-
catalysis,*” mimicking the natural process of photosynthesis,
are particularly attractive, as they are achieved at room
temperature and require only the harnessing of solar light as
a source of energy. However, the achievement of photocatalytic
conversions suitable to industrial applications remains a diffi-
cult challenge, which motivates the continuous search for new
and improved photocatalytic materials.

Since their first use in heterogeneous catalysis in 1952,
perovskite oxides have attracted significant interest in a diverse
range of reactions," especially because they are cheaper and
easier to prepare than metal-based catalysts such as platinum or
palladium.” Compared to other widely investigated oxide
photocatalysts, e.g. ZrO, and Ga,0O;, perovskite oxides have
bandgaps with a better overlap with the solar spectrum. In
addition, owing to the unique flexibility of their structure,
perovskite oxides have bands edges which can be tuned to
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lower the energy barrier of the COOH formation.

facilitate both the reduction of CO, and the oxidation of water
during the photocatalytic process.’

Because of their striking photochemical stabilities, titanate
perovskites are particularly promising for CO, photocatalysis.™
Taking inspiration from leaves, Zhou et al. have developed an
artificial photosynthetic system based on titanate perovskites
which generates carbon monoxide and methane from CO, and
water.” These materials have also been investigated in combi-
nation with other semiconductors, co-catalysts and dopants, in
the effort to improve their conversion efficiencies. For example,
Li et al. obtained CO and H, by loading SrTiO; with noble
metals,'® while CaTiO; samples loaded with Ag exhibited stable
photocatalytic activities for CO, reduction to CO using water as
an electron donor.” The photoreduction of CO, on SrTiO;-
based nanocomposite systems has also been demonstrated,
with CH, as the major product.'* The generation of oxygen
vacancies enhances the adsorption of CO, on SrTiO3, leading to
higher yields of CH,,*® while NaTaO; doped with Ba, Ca, and Sr
has shown high activity towards CO, reduction to CO in water.**

Detailed atomistic knowledge of the light-triggered catalytic
reaction mechanism is crucial to help design better photo-
catalysts.** For example, it allows us to ascertain the limiting
reaction steps, featuring the higher activation energy barriers in
a catalytic pathway, which elucidates ways of fine-tuning the
perovskite structure to lower these activation barriers. However,
in contrast to the most investigated anatase TiO, photo-
catalysts,?* the elementary reaction steps occurring after the
adsorption of CO, on titanate perovskites are yet to be clarified.

Here, we provide this missing piece of information on the
textbook SrTiO; perovskite, one of the most commonly inves-
tigated members of the titanate perovskite family, which, with
a tunable bandgap of 3.2 eV (ref. 23) (identical to that of
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anatase) and remarkable charge transport properties,* holds
great potential as a photocatalyst.*>**” Using simulations
within the density functional theory (DFT), we first aim to
achieve the description of a realistic reaction pathway for the
experimentally observed reduction of CO, to CO. Afterwards, we
take advantage of the fresh insights into the system to put
forward a doping approach aimed at improving the efficiency of
the photocatalytic reaction.

2 Models and methods

The most-stable SrTiO; (001) surface can have two different
competitive terminations, namely SrO and TiO,.*® In this study,
we have focussed on the SrO termination only, since its equiv-
alent has been shown generally to be the favoured plane in
a wide diversity of perovskites.?*** Our (001) surface model,
built from an optimised primitive cell, consists of a 2 x 2 x 4
supercell, and contains 80 atoms located within 8 layers.
Surface slabs were separated by a vacuum region of 15 A along
the normal direction to avoid spurious interactions between
periodic images. All structures were drawn with the visualiza-
tion for electronic and structural analysis (VESTA) program
suite.**

The adsorption energy of CO, was evaluated according to the
formula

Eads = Lglab/mol — Eslab - Emola (1)

where Eqap/mol 1S the energy of the supercell with the adsorbed
CO,, while Eg,p, and Ey, are the energy of the same supercell
with, respectively, only the surface slab or a CO, molecule. In
addition to the DFT energy E, in order to take into account the
effect of temperature and pressure in the reaction mechanism,
we have considered the Gibbs free energy G. For a condensed
phase structure, G is defined as

G=E+ F,, +pV, 2

where F,;, is the vibrational contribution to the free energy,
which we have estimated using the frequencies at the I'-point.
The pV term can be neglected, as it is of the order of meV under
standard working conditions.*” The Gibbs free energy of a gas-
phase molecule corresponds to its chemical potential g,
which can be derived from?

#(Tap) = ,“ret(TOaPO) + AH(TaPO) - TAS(T’pO) + kBTIOg(p/pO)a(a)

where AH and AS are the enthalpy and entropy variations from
the reference chemical potential u,.r and kg7 log(p/p,) includes
the effect of pressure on the chemical potential with respect to
the standard one. If T, = 0 K, u.r can be approximated by the
DFT energy of the molecule in the gas-phase, including the zero
point energy contribution. Thus, eqn (3) allows us to calculate
the chemical potential of CO,, CO, H,O and H, at given
temperature and pressure by using their respective tabulated
enthalpy and entropy values at the standard ambient pressure

pO 34
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The substitutional energy for the dopant X (X = Ba or Ca) was
calculated according to

Eqs(X) = E(doped) + E(Sr) — E(undoped) — E(X), (4)

where E(doped) and E(undoped) are the energies of doped and
pure SrTiO; surfaces, respectively, while E(Sr) and E(X) are the
energies of single Sr and X atoms.

All DFT calculations were performed with the VASP 5.3
package®~® using the Perdew-Burke-Ernzerhof (PBE) func-
tional.*” We have employed the projector augmented wave
method to model the core-electron interaction,®® treating
explicitly the following electrons: Sr 4s 4p 5s; Ti 3d 4s; O 2s 2p;
Ba 5s 5p 6s; Ca 3s 3p 4s. All calculations were performed with
a plane wave cutoff of 500 eV, which guarantees that the abso-
lute energies of bulk SrTiO; are converged within 2 meV per
atom. Calculations were stopped when the forces acting on the
ions were less than 1072 eV A~. After finding thata 6 X 6 x 6
Monkhorst-Pack grid* ensures that the absolute energies of
bulk SrTiO; are converged to better than 1 meV per atom, we
scaled the grids of the surface calculations inversely with the
dimension of the unit cells to 3 x 3 x 1. We have also under-
taken test calculations to make sure that the atomic relaxations
in the surface slab are converged with respect to its thickness.
Transition states were located with the climbing image nudged
elastic band algorithm.*® The number of images used varied
from one to four, depending on the elementary reaction step.
We have calculated vibrational frequencies under the harmonic
approximation and with Hessian matrix elements estimated
from finite differences of analytical gradients with displace-
ments of 0.015 A in length. Only the degrees of freedom of the
adsorbate species and the atoms in the topmost atomic layer of
the surface have been included in the vibrational analysis.

3 Results and discussion
3.1 Adsorption of CO,

A sufficiently large number of different adsorption configura-
tions for CO, on the SrO-terminated SrTiO; (001) surface have
been probed to ensure that realistic minimum energy structures
would be obtained. Following optimisation, all configurations
relaxed towards the structure depicted in Fig. 1, where the
arrangement of the atoms at the adsorption site resembles that
of a CO;>~ carbonate ion. In particular, each carbonyl oxygen
forms a bridging bond with two surface Sr ions, whereas the
remaining oxygen, Oy, is significantly displaced from its surface
position. The C-O and C-O, bond lengths are 1.27 and 1.36 A,
respectively, while the O;-C-O, angle of 122.4° confirms the
strong interaction with the surface, as shown by the large
adsorption energy of —1.82 eV. All of these values are in line
with a CO, capture and activation process.** Both the geometry
and the energetics, which are summarised in Table 1, are
comparable to those found in a previous DFT investigation by
Sopiha et al.,** who also showed that the adsorption geometry of
CO, slightly changes, while its interaction becomes stronger,
when the size of the surface unit cell is increased froma 2 x 2 to
a 3 x 3 supercell. As the structure in Fig. 1 is the only stable on
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Fig.1 Top (upper panel) and side (lower panel) views of the adsorption
structure of CO, on the SrO-terminated (001) surface of SrTiOs.
Colour code: Sr — green, Ti — blue, O — red, C — brown.

Table 1 Adsorption energy and main geometrical parameters of the
adsorption structure of CO, on the SrO-terminated (001) surface of
SrTiO3 depicted in Fig. 1

Eags (€V) C-0; (A) C-0, (A) c-0, (A) 0,-C-0, (°)

—1.82 1.27 1.27 1.36 122.4

the 2 x 2 unit cell which we adopted, we assume that any
reaction pathway must include it as a reactant configuration.
However, we stress that other starting configurations, poten-
tially leading to different reduction mechanisms, may also be
possible at lower CO, coverages.

It is instructive, at this point, to compare the adsorption
energy of this structure with that of a water molecule. Regard-
less of the initial configuration and in line with the literature,*
we found that water spontaneously dissociates on the SrO-
terminated (001) surface of SrTiO;. The dissociated water
molecule is adsorbed with an energy of —1.26 eV, which is
considerably less negative than the —1.82 eV value found for
CO,. As a result, we expect SrTiOj; to be preferentially covered by
CO, rather than by water, which in turn suggests that the CO,
reduction process should be more favourable than the
competing hydrogen evolution reaction.' Future detailed
studies can now build on these findings to confirm the selec-
tivity of SrTiO; towards the reduction of CO,, rather than water.

3.2 Thermodynamics of intermediates

The photocatalytic conversion of CO, takes place in the pres-
ence of a photoexcited electron which reduces the SrTiO;
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surface. When the carbonate-like structure described above is
adsorbed on the reduced surface, which we have modelled by
adsorbing a H atom on SrTiO; as in previous works,>>*
a hydrogen bond between a carbonyl oxygen and the proton on
the surface is formed, which is illustrated in Fig. 2a. However,
the geometry changes with respect to the neutral surface, e.g.
the elongation of the two C-O bonds, are only marginal, as can
be seen from the parameters reported in Table 2.

TiO, is arguably the prototype photocatalyst,*> and many
efforts have been devoted to the elucidation of the molecular
mechanisms yielding fuels from CO, using TiO, polymorphs.
He et al. concluded that the formation of an activated CO,~
radical adsorbed in a bridging configuration is the first step
towards hydrogenation and the formation of formic acid on
anatase.”” In search of a possible similar mechanism, we have
relaxed such a structure. While not stable on a neutral surface,
interestingly, in the presence of a reducing electron, this bent
geometry converged to one with a O;-C-0O, angle of 140.4°, see
Fig. 2b and Table 2, which highlights the importance of pho-
togenerated electrons on the activation of the molecule.
However, its energy resulted to be 1.96 eV higher than that of
the carbonate-like structure in Fig. 2a, which makes it an
unlikely candidate as a possible intermediate, while indicating
that catalytic mechanisms different than those of TiO, are at
play in SrTiO;.

Fig. 2 Side views of the structures discussed in the text. CO,
adsorption on a reduced surface (a); activated CO, in a bridging
bidentate configuration similar to that observed in anatase TiO, (b);
HCOO structure with hydrogenation at the C atom (c); COOH struc-
ture with formation of a O—H bond (d); Colour code: Sr — green, Ti —
blue, O - red, C — brown, H — white.

Table 2 Relative energies and main geometrical parameters of the
different CO, adsorptions on the SrO-terminated (001) surface of
SrTiOs. Labels refer to Fig. 2

Label E(ev) ¢C-0,(4) c-0,(A) cCc-0,A) 0,-C-0,()
(a) 0.00 1.29 1.30 1.32 121.6
(b) 1.96 1.23 1.23 — 140.4
(©) 2.55 1.38 1.38 1.45 110.6
(@) 1.15 1.41 1.25 1.27 117.3

This journal is © The Royal Society of Chemistry 2020
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Next, we assessed whether hydrogenation of CO, could occur
via a different intermediate. Thus, we detached the adsorbed H
species from the surface site of Fig. 2a, creating a new H-C
bond, see Fig. 2c. However, we found the energy of the resulting
configuration to be 2.55 eV higher than that of the original
structure, which clearly excludes its participation in any reac-
tion mechanism.

Finally, we relaxed the structure in Fig. 2d, where we simu-
lated the H transfer from the surface site of structure of Fig. 2a
to the closest CO, oxygen. The formation of a COOH group
changes the adsorption geometry to that of a bridging biden-
tate, having an energy 1.15 eV higher than the initial structure,
taken as reference, as shown in Table 2.

On the basis of thermodynamic (energetic) considerations,
we can conclude that only the COOH intermediate can partici-
pate in the reduction of CO,, while pathways involving either
CO, ™ and/or HCOO should be discarded. However, we cannot
rule out the existence of other, in principle less favoured,
pathways where two or more electrons and/or proton are
transferred.” The high energy penalty for hydrogenation
through the carbon atom explains why HCOOH is not detected
in CO, photochemical reactions on SrTiO;. Instead, the COOH
species that can be reached energetically points to a pathway
towards CO," in agreement with experimental findings on
titanate perovskites.">**

3.3 Reaction pathway to CO

With the information gained in the previous section, we have
derived a realistic pathway for the reduction of CO, to CO,
which we present in the top panel of Fig. 3, whereas reaction
geometries are shown in Fig. 4. The formation of the COOH
intermediate proceeds via TS1 and has an activation energy
barrier for the hydrogen transfer of 1.22 eV. Only 0.75 eV is
required to reach TS2 (where the C-O distance is 1.56 A), break
the C-O bond and form the CO and OH species at the surface.
Note, however, that the barrier for CO and OH recombination is
lower, which may indicate that, from a kinetic point of view,
a substantial part of reactions will go backwards, with forward
direction favoured by fast CO and OH diffusions. The subse-
quent release of CO is endothermic by merely 0.12 eV, and the
process leaves a hydrogen-bonded H' and OH™ couple. In the
last step of the reaction mechanism, as a result of a proton
transfer in TS3, a H,O molecule forms. This water molecule
interacts with the surface by means of two hydrogen bonds, and
its desorption raises the energy by 0.86 eV. The entire reaction
cycle, CO, + 2H' + 2~ — CO + H,0, is endothermic by 0.73 eV.
Obviously, the energy profile provides a preliminary picture of
the overall mechanism, allowing to discard the HCOO inter-
mediate. However, to unravel the amount of CO formed and the
effect of H,O requires further analysis that is beyond the scope
of the present work. Note also, that the models used represent
the ideal (001) surface, whereas the real material may be more
complex. In any case, the present results provide some clear and
unbiased hints that explain experimental observations.

In the bottom panel of Fig. 3, we plot the Gibbs free energy of
the pathway above, taking into account temperature (300 K) and

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 Reaction pathways for the reduction of CO, to CO on SrTiOs.
Structures are labelled according to the state of the species. (a) indi-
cates that the species is adsorbed on the surface, while (g) indicates
that the species is modelled in the gas-phase and does not interact
with the surface. Transition states are indicated as TS1, TS2 and TS3.
The zero of the energies are taken as those of structure CO,(g) + H2(g).
Activation energies (E,) are shown.

pressure (1 bar) effects. The profile flattens compared to that in
the top panel of Fig. 3, although the endothermicity of the
reaction is not much affected. The flattening can be explained
by the larger entropy contributions carried by the gaseous
species compared to their adsorbed counterparts. For example,
the gain due to the adsorption of CO, increases drastically, from
—2.11 to —1.40 eV, when the Gibbs free energy, rather than the
DFT energy, is considered. However, the rate limiting step
remains the formation of the COOH group, whose activation
energy barrier remains virtually unchanged at 1.23 eV, which is
in line with the low photoreduction rates typical of titanate
perovskites.*® Note, however, that once pressure and tempera-
ture effects are taken into account, the thermodynamics will
tend to drive the reaction backwards since now some transition
states are located above the desorption limit. This is an issue
deserving further attention through macroscopic simulations
including all elementary steps and searching for the optimum
operating conditions as well.

3.4 Substitutional doping

Having established that the formation of the COOH interme-
diate (more favoured than its desorption from the surface by
around 0.1 eV, as shown in Fig. 3), is the rate-limiting step in the
production of CO on the pure SrTiO; (001) surface, we have
carried out further calculations to explore how the activation
energy of this elementary reaction step is affected by surface
doping. Similar to the study by Carlotto et al.,*” we have only

J. Mater. Chem. A, 2020, 8, 9392-9398 | 9395
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Fig. 5 Energetics of the rate-limiting COOH formation step of Fig. 3,
with and without substitutional doping of Sr ions. Structures are
labelled according to the state of the species. (a) indicates that the
species is adsorbed on the surface. The transition state is indicated as
TS1. The zero of the Gibbs free energy is taken as that of structure
COs(a) + H(a). Activation energies (E,) and differences in Gibbs free
energies (AG) are also included.

focussed on the top surface layer. In particular, we have
considered the substitution of one of the four Sr ions by a Ba or
Ca ion. We have chosen these dopants because their ionic radii
in the 2+ charge state, at 149 and 114 pm, respectively, are close
to the 132 pm ionic radius of Sr,”® which implies that they
should be accommodated easily within the SrTiO; material,
both geometrically and in terms of charge. Moreover, BaTiO;
and CaTiO; are the most common titanate perovskites after
SrTiO3, which should ensure the successful replacement of Sr
by Ba and Ca ions during the synthesis of the photocatalyst. The
stability of the doped materials is suggested by the negative

9396 | J Mater. Chem. A, 2020, 8, 9392-9398

substitutional energies of both dopants, ie. —0.26 and
—0.09 eV, respectively, for Ba and Ca.

Fig. 5 shows the activation energy barriers of the elementary
steps and the difference in Gibbs free energy between the two
intermediates. While Ba dopants change the thermodynamics
of the reaction step without altering its kinetics, the substitu-
tion of Sr by Ca ions has the opposite effect, with the activation
barrier being lowered from 1.23 to 1.15 eV. Although the effect is
small, it clearly indicates that cation doping is a conceivable way
to accelerate the reaction rate for CO production over the SrTiO3
photocatalyst, as shown here by Ca.

4 Conclusions

We have presented a theoretical investigation of the adsorption
and reaction of CO, on the SrO-terminated (001) surface of SrTiOs,
a perovskite compound of significant technological interest. We
have shown that the possible intermediates towards the forma-
tion of HCOOH are very high in energy, which explains why the
formation of HCOOH is not normally reported in photocatalytic
experiments. Instead, the reduction of CO, to CO appears to be
feasible, in agreement with experimental observations, thus
pointing towards to the use of SrTiO; as a photocatalyst for the
reduction of CO,. The reaction occurs via the formation of
a COOH species (the associative mechanism in the reverse water
gas shift reaction®), with an activation energy of about 1.2 €V,
corresponding to the rate-limiting step of the overall reaction.

However, a more firm statement will require a systematic
analysis of adsorption/desorption rates, the rates for diffusion
of the various species and their comparison to reaction rates for
all the steps in the mechanism. While such simulations are left
for subsequent work, the present results provide compelling
evidence that the barrier for the likely rate determining step is
sensitive to the nature of the surface cations, and therefore can
be lowered by means of a doping strategy, for example where
smaller Ca ions substitute for Sr ions. Future experimental
studies along with macroscopic simulations will be important
to validate these predictions.

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0ta01502d

Open Access Article. Published on 22 April 2020. Downloaded on 1/26/2026 7:58:29 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work has been performed under the HPC-EUROPA3
(INFRAIA-2016-1-730897) project, with the support of the EC
Research Innovation Action under the H2020 Programme. UT
gratefully acknowledges the support of the computer resources
and the technical support provided by the Barcelona Super-
computing Center-Centro Nacional de Supercomputacion. This
work was supported by the Engineering and Physical Sciences
Research Council (grant EP/K009567/2), and used the ARCHER
UK National Supercomputing Service (http://www.archer.ac.uk)
via our membership of the UK's HEC Materials Chemistry
Consortium, which is funded by EPSRC (EP/L000202). FV and FI
acknowledge financial support from the Ministerio de Ciencia,
Innovacion y Universidades MICIUN RTI2018-095460-B-100,
and Maria de Maeztu MDM-2017-0767 grants and, in part,
Generalitat de Catalunya 2017SGR13 and XRQTC grants. FV is
thankful to the Ministerio de Economia y Competitividad (MEC)
for his Ramon y Cajal (RYC-2012-10129) research contract, and
FI acknowledges additional support from the 2015 ICREA
Academia Award for Excellence in University Research. All data
created during this research are openly available from the
Cardiff University Research Portal at http://doi.org/10.17035/
d.2019.0086887209.

References

1 J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei and Y. Sun,
A short review of catalysis for CO, conversion, Catal. Today,
2009, 148, 221-231.

2 M. K. Gnanamani, G. Jacobs, H. H. Hamdeh, W. D. Shafer,
F. Liu, S. D. Hopps, G. A. Thomas and B. H. Davis,
Hydrogenation of carbon dioxide over Co-Fe bimetallic
catalysts, ACS Catal., 2016, 6, 913-927.

3 X. Liu, C. Kunkel, P. Ramirez de la Piscina, N. Homs, F. Vifes
and F. Illas, Effective and Highly Selective CO Generation
from CO, Using a Polycrystalline-Mo,C Catalyst, ACS
Catal., 2017, 7, 4323-4335.

4 C. E. Mitchell, U. Terranova, 1. Alshibane, D. J. Morgan,
T. E. Davies, Q. He, J. S. Hargreaves, M. Sankar and
N. H. de Leeuw, Liquid phase hydrogenation of CO, to
formate using palladium and ruthenium nanoparticles
supported on molybdenum carbide, New J. Chem., 2019,
43, 13985-13997.

5 D. T. Whipple and P. J. Kenis, Prospects of CO, utilization via
direct heterogeneous electrochemical reduction, J. Phys.
Chem. Lett., 2010, 1, 3451-3458.

6 B. Kumar, J. P. Brian, V. Atla, S. Kumari, K. A. Bertram,
R. T. White and J. M. Spurgeon, New trends in the
development of heterogeneous catalysts for
electrochemical CO, reduction, Catal. Today, 2016, 270,
19-30.

This journal is © The Royal Society of Chemistry 2020

7

10

11

12

13

14

15

16

17

18

19

20

21

22

View Article Online

Journal of Materials Chemistry A

A. Roldan, N. Hollingsworth, A. Roffey, H.-U. Islam,
J. B. M. Goodall, C. R. A. Catlow, J. A. Darr, W. Bras,
G. Sankar, K. B. Holt, et al., Bio-inspired CO, conversion by
iron sulfide catalysts under sustainable conditions, Chem.
Commun., 2015, 51, 7501-7504.

D. Ravelli D. Dondi, M. Fagnoni and A. Albini,
Photocatalysis. A multifaceted concept for green chemistry,
Chem. Soc. Rev., 2009, 38, 1999-2011.

S. Zeng, P. Kar, U. K. Thakur and K. Shankar, A review on
photocatalytic CO, reduction using perovskite oxide
nanomaterials, Nanotechnology, 2018, 29, 052001.

X. Chang, T. Wang and ]J. Gong, CO, photo-reduction:
insights into CO, activation and reaction on surfaces of
photocatalysts, Energy Environ. Sci., 2016, 9, 2177-2196.

G. Parravano, Ferroelectric transitions and heterogenous
catalysis, J. Chem. Phys., 1952, 20, 342-343.

J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao and
J. Li, Perovskite oxides: preparation, characterizations, and
applications in heterogeneous catalysis, ACS Catal., 2014,
4, 2917-2940.

S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat,
S. Laassiri and H. Alamdari, Perovskites as Substitutes of
Noble Metals for Heterogeneous Catalysis: Dream or
Reality, Chem. Rev., 2014, 114, 10292-10368.

R. Shi, G. I. Waterhouse and T. Zhang, Recent progress in
photocatalytic CO, reduction over perovskite oxides, Sol
RRL, 2017, 1, 1700126

H. Zhou, J. Guo, P. Li, T. Fan, D. Zhang and ]. Ye, Leaf-
architectured 3D hierarchical artificial photosynthetic
system of perovskite titanates towards CO, photoreduction
into hydrocarbon fuels, Sci. Rep., 2013, 3, 1667.

D. Li, S. Ouyang, H. Xu, D. Lu, M. Zhao, X. Zhang and ]J. Ye,
Synergistic effect of Au and Rh on SrTiO; in significantly
promoting visible-lightdriven syngas production from CO,
and H,O, Chem. Commun., 2016, 52, 5989-5992.

H. Yoshida, L. Zhang, M. Sato, T. Morikawa, T. Kajino,
T. Sekito, S. Matsumoto and H. Hirata, Calcium titanate
photocatalyst prepared by a flux method for reduction of
carbon dioxide with water, Catal. Today, 2015, 251, 132-139.
M. F. Ehsan, M. N. Ashiq, F. Bi, Y. Bi, S. Palanisamy and
T. He, Preparation and characterization of SrTiO;-ZnTe
nanocomposites for the visible light photoconversion of
carbon dioxide to methane, RSC Adv., 2014, 4, 48411-48418.
K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y. Zhang and
J. Ye, Selfdoped SrTiOzs photocatalyst with enhanced
activity for artificial photosynthesis under visible light,
Energy Environ. Sci., 2011, 4, 4211-4219.

H. Nakanishi, K. Iizuka, T. Takayama, A. Iwase and A. Kudo,
Highly active NaTaOs-based photocatalysts for CO,
reduction to form CO using water as the electron donor,
ChemSusChem, 2017, 10, 112-118.

Y. Ji and Y. Luo, Theoretical Study on the Mechanism of
Photoreduction of CO, to CH, on the Anatase TiO, (101)
Surface, ACS Catal., 2016, 6, 2018-2025.

H. He, P. Zapol and L. A. Curtiss, Computational screening
of dopants for photocatalytic two-electron reduction of CO,

J. Mater. Chem. A, 2020, 8, 9392-9398 | 9397


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0ta01502d

Open Access Article. Published on 22 April 2020. Downloaded on 1/26/2026 7:58:29 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry A

23

24

25

26

27

28

29

30

31

32

33

34

on anatase (101) surfaces, Energy Environ. Sci., 2012, 5, 6196
6205.

Q. Wu, J. Cen, K. R. Goodman, M. G. White,
G. Ramakrishnan and A. Orlov, Understanding the
interactions of CO, with doped and undoped SrTiOs;,
ChemSusChem, 2016, 9, 1889-1897.

H.-C. Chen, C.-W. Huang, J. C. Wu and S.-T. Lin, Theoretical
investigation of the metal-doped SrTiO; photocatalysts for
water splitting, J. Phys. Chem. C, 2012, 116, 7897-7903.

J. Baniecki, M. Ishii, K. Kurihara, K. Yamanaka, T. Yano,
K. Shinozaki, T. Imada, K. Nozaki and N. Kin,
Photoemission and quantum chemical study of SrTiO;
(001) surfaces and their interaction with CO,, Phys. Rev. B:
Condens. Matter Mater. Phys., 2008, 78, 195415.

J. Baniecki, M. Ishii, K. Kurihara, K. Yamanaka, T. Yano,
K. Shinozaki, T. Imada and Y. Kobayashi, Chemisorption
of water and carbon dioxide on nanostructured BaTiO;-
SrTiO; (001) surfaces, J. Appl. Phys., 2009, 106, 054109.

B. Modak and S. K. Ghosh, Origin of enhanced visible light
driven water splitting by (Rh, Sb)-SrTiOs;, Phys. Chem.
Chem. Phys., 2015, 17, 15274-15283.

S. Woo, H. Jeong, S. A. Lee, H. Seo, M. Lacotte, A. David,
H. Y. Kim, W. Prellier, Y. Kim and W. S. Choi, Surface
properties of atomically at poly-crystalline SrTiO3, Sci. Rep.,
2015, 5, 8822.

D. Halwidl, B. Stoger, W. Mayr-Schmolzer, J. Pavelec,
D. Fobes, J. Peng, Z. Mao, G. S. Parkinson, M. Schmid,
F. Mittendorfer, et al., Adsorption of water at the SrO
surface of ruthenates, Nat. Mater., 2016, 15, 450.

M. Burriel, S. Wilkins, J. P. Hill, M. A. Mufoz-Marquez,
H. H. Brongersma, J. A. Kilner, M. P. Ryan and
S. J. Skinner, Absence of Ni on the outer surface of Sr
doped La,NiO, single crystals, Energy Environ. Sci., 2014, 7,
311-316.

K. Momma and F. Izumi, VESTA3 for three-dimensional
visualization of crystal, volumetric and morphology data, J.
Appl. Crystallogr., 2011, 44, 1272-1276.

K. Reuter and M. Scheffer, Composition, structure, and
stability of RuO, (110) as a function of oxygen pressure,
Phys. Rev. B: Condens. Matter Mater. Phys., 2001, 65, 35406.
U. Terranova and D. Bowler, Effect of hydration of the TiO,
anatase (101) substrate on the atomic layer deposition of
alumina films, J. Mater. Chem., 2011, 21, 4197-4203.
https://janaf.nist.gov/janaf4pdf.html.

9398 | J Mater. Chem. A, 2020, 8, 9392-9398

35

36

37

38

39

40

41

42

43

44

45

46

47

48

View Article Online

Paper

G. Kresse and J. Hafner, Ab initio molecular dynamics for
liquid metals, Phys. Rev. B: Condens. Matter Mater. Phys.,
1993, 47, 558-561.

G. Kresse and J. Furthmiiller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using
a plane-wave basis set, Comput. Mater. Sci., 1996, 6, 15-50.
J. P. Perdew, K. Burke and M. Ernzerhof, Generalized
gradient approximation made simple, Phys. Rev. Lett.,
1996, 77, 3865.

P. E. Blochl, Projector augmented-wave method, Phys. Rev. B:
Condens. Matter Mater. Phys., 1994, 50, 17953.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-
zone integrations, Phys. Rev. B: Solid State, 1976, 13, 5188.
G. Henkelman, B. P. Uberuaga and H. Jonsson, A climbing
image nudged elastic band method for finding saddle
points and minimum energy paths, J. Chem. Phys., 2000,
113, 9901-9904.

C. Kunkel, F. Vines and F. Illas, Transition metal carbides as
novel materials for CO, capture, storage, and activation,
Energy Environ. Sci., 2016, 9, 141-144.

K. V. Sopiha, O. I. Malyi, C. Persson and P. Wu, Band gap
modulation of SrTiO; upon CO, adsorption, Phys. Chem.
Chem. Phys., 2017, 19, 16629-16637.

H. Guhl, W. Miller and K. Reuter, Water adsorption and
dissociation on SrTiO; (001) revisited: A density functional
theory study, Phys. Rev. B: Condens. Matter Mater. Phys.,
2010, 81, 155455.

W.-J. Yin, B. Wen, S. Bandaru, M. Krack, M. Lau and
L.-M. Liu, The effect of excess electron and hole on CO,
adsorption and activation on rutile (110) surface, Sci. Rep.,
2016, 6, 23298.

K. C. Ko, S. T. Bromley, J. Y. Lee and F. Illas, Size-dependent
level alignment between rutile and anatase TiO,
nanoparticles: implications for photocatalysis, J. Phys.
Chem. Lett., 2017, 8, 5593-5598.

B. S. Kwak and M. Kang, Photocatalytic reduction of CO,
with H,O using perovskite Ca,Ti,03, Appl. Surf. Sci., 2015,
337, 138-144.

S. Carlotto, M. M. Natile, A. Glisenti and A. Vittadini,
Adsorption of small molecules at the cobalt-doped SrTiO;
(001) surface: A first-principles investigation, Surf Sci.,
2015, 633, 68-76.

R. D. Shannon, Revised effective ionic radii and systematic
studies of interatomic distances in halides and
chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr.,
Theor. Gen. Crystallogr., 1976, 32, 751-767.

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0ta01502d

	Mechanisms of carbon dioxide reduction on strontium titanate perovskites
	Mechanisms of carbon dioxide reduction on strontium titanate perovskites
	Mechanisms of carbon dioxide reduction on strontium titanate perovskites
	Mechanisms of carbon dioxide reduction on strontium titanate perovskites
	Mechanisms of carbon dioxide reduction on strontium titanate perovskites
	Mechanisms of carbon dioxide reduction on strontium titanate perovskites
	Mechanisms of carbon dioxide reduction on strontium titanate perovskites
	Mechanisms of carbon dioxide reduction on strontium titanate perovskites

	Mechanisms of carbon dioxide reduction on strontium titanate perovskites
	Mechanisms of carbon dioxide reduction on strontium titanate perovskites
	Mechanisms of carbon dioxide reduction on strontium titanate perovskites


