Journal of Materials Chemistry A

View Article Online

View Journal | View Issue

CORRECTION

Check for updates

Cite this: J. Mater. Chem. A, 2020, 8, 1486

Correction: Flat-shaped carbon-graphene microcomposites as electrodes for high energy supercapacitors

Gelines Moreno-Fernández,^a Juan L. Gómez-Urbano,^{ab} Marina Enterría,^a Teófilo Rojo^{ab} and Daniel Carriazo ****

DOI: 10.1039/c9ta90299f

rsc.li/materials-a

Correction for 'Flat-shaped carbon–graphene microcomposites as electrodes for high energy supercapacitors' by Gelines Moreno-Fernández *et al.*, *J. Mater. Chem. A*, 2019, **7**, 14646–14655.

The authors regret a mistake in Table. 1 of the published article. The correct version of the Table 1 is shown below.

The authors also wish to amend the following sentences in the original version of the manuscript:

- The sentence "The t-plot method was used to calculate the external surface area (S_{EXT}) in the relative pressure range of 0.07–0.25." included in the physicochemical characterization (page 14648) section should be removed.

- The last sentence of page 14648, where it is written "The increment of S_{EXT} ..." should say "The increment of V_{meso} ..."

- The text on line 7, page 14649 which reads "The isotherm of the activated material also presents a marked micropore contribution but, as evidenced by V_{meso} and S_{EXT} values (Table 1) some narrow mesoporosity is generated during activation." should instead read as follows: "The isotherm of the activated material also presents a marked micropore contribution but, as evidenced by V_{meso} values (Table 1) some narrow mesoporosity is generated during activation."

The authors acknowledge Dr Teresa Centeno, INCAR-CSIC (Spain) for detecting these errors.

Table 1 Total pore volume (V_{T}), mesopore volume (V_{meso}), micropore volume (V_{DR}), BET specific surface area (S_{BET}), DFT specific surface area (S_{DR}), narrow micropore volume (V_{DR}), and narrow micropore specific surface area (S_{DR})

	N2 ^a						CO ₂ ^b	
	$V_{\rm T} \left({\rm cm}^3 {\rm g}^{-1} \right)$	$V_{\rm meso} \left({\rm cm}^3 {\rm g}^{-1} \right)$	$V_{\rm DR}^{\ \ c} \left({\rm cm}^3 \ {\rm g}^{-1} \right)$	$S_{\rm BET} \left({{{\rm{m}}^2}\;{{\rm{g}}^{ - 1}}} ight)$	$S_{\mathrm{DFT}}^{}d}\left(\mathrm{m}^{2}~\mathrm{g}^{-1}\right)$	$S_{\mathrm{DR}}^{e} \left(\mathrm{m}^2 \mathrm{g}^{-1}\right)$	$V_{\rm DR}^{\ c} \left(\rm cm^3 \ g^{-1} \right)$	$S_{\mathrm{DR}}^{e} \left(\mathrm{m}^{2} \mathrm{g}^{-1}\right)$
ResFa	0.37	0.13	0.24	598	720	551	0.19	632
ResFaGO	0.50	0.11	0.39	948	1150	880	0.22	840
ResFaGO-A	1.12	0.21	0.91	1961	1991	1373	0.47	1122

^{*a*} Data obtained from N₂ adsorption–desorption isotherms at -196 °C. ^{*b*} Data obtained from CO₂ adsorption isotherms at 0 °C. ^{*c*} Data obtained from Dubinin–Radusckevich. ^{*d*} Data obtained from the 2D-NLDFT. ^{*e*} Data obtained from Dubinin–Radusckevich.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

°CIC EnergiGUNE, Parque Tecnológico de Álava, 01510 Miñano, Álava, Spain. E-mail: dcarriazo@cicenergigune.com; Tel: +34 94 529 71 08

^bUniversidad Del País Vasco, UPV/EHU, 48080 Bilbao, Spain

^cIKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain