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Effects of lipid heterogeneity on model human brain lipid
membranes†

Sze May Yee,a Richard J. Gillams,b, Sylvia E. McLainc and Christian D. Lorenz∗a

Cell membranes naturally contain a heterogeneous lipid distribution. However, homogeneous bilayers
are commonly preferred and utilised in computer simulations due to their relative simplicity, and
the availability of lipid force field parameters. Recently, experimental lipidomics data for the human
brain cell membranes under healthy and Alzheimer’s disease (AD) conditions were investigated, since
disruption to the lipid composition have been implicated in neurodegenerative disorders, including
AD [Chan et al., J. Biol. Chem. 2012, 287, 2678–88]. In order to observe the effects of lipid
complexity on the various bilayer properties, molecular dynamics simulations were used to study
four membranes with increasing heterogeneity: a pure POPC membrane, a POPC and cholesterol
membrane in a 1:1 ratio (POPC-CHOL), and to our knowledge, the first realistic models of a healthy
brain membrane and an Alzheimer’s diseased brain membrane. Numerous structural, interfacial,
and dynamical properties, including the area per lipid, interdigitation, dipole potential, and lateral
diffusion of the two simple models, POPC and POPC-CHOL, were analysed and compared to those of
the complex brain models consisting of 27 lipid components. As the membranes gain heterogeneity,
a number of alterations were found in the structural and dynamical properties, and more significant
differences were observed in the lateral diffusion. Additionally, we observed snorkeling behaviour of
the lipid tails that may play a role in the permeation of small molecules across biological membranes.
In this work, atomistic description of realistic brain membrane models is provided, which can add
insight towards the permeability and transport pathways of small molecules across these membrane
barriers.

1 Introduction
The cellular membrane is an essential component of every cell,
forming barriers within the cell itself and with the external envi-
ronment. These membranes are composed of a complex mixture
of lipids and proteins that typically contain hundreds of differ-
ent lipid species, which differ in headgroup and/or hydrocarbon
tail length and degrees of saturation. Cell membranes have also
been found to have approximately 30% of their interfacial area
covered by a variety of proteins.1–4 Normally, the lipid composi-
tion varies significantly between the various organelles and sub-
cellular compartments2,5–8 and between different cells. Addition-
ally, the composition of the plasma membrane has been found to
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be dependent on the organism, cell stage, environmental factors,
and tissue types.9–18

Changes in lipid composition have also been linked to many
diseases.19–23 For example, depression, anxiety, and drug addic-
tion are strongly associated with changes in the lipid compo-
sition in the brain.24–26 Furthermore, various neurological dis-
eases including Alzheimer’s disease (AD), Parkinson’s disease,
and epilepsy have been linked to lipid imbalances that result from
the deregulation of biochemical pathways associated with phos-
phoinositide (PIPs) lipids.27–29

The complex and evolving composition of cell membranes and
the fact that they play significant roles in both healthy and dis-
eased cells have led to an increased emphasis to understand how
changes in the lipid composition affect the structural and dynam-
ical properties of the membranes. Sophisticated experimental
techniques, including single-particle tracking, fluorescence cor-
relation spectroscopy, super-resolved imaging, scattering, solid-
state NMR, and mass spectrometry have recently been used to
provide insight into the lateral organisation of the various com-
ponents within membranes, as well as the potential causes for this
organisation.30–36 Despite advances in these various techniques,
the full molecular-scale details of the interactions that result in
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the various structural and dynamical properties of interest are
currently not accessible by experiment alone.

Computational modelling, in principle, is capable of provid-
ing this added level of detail and has become an essential tool
in the investigations of lipid membranes.37,38 In recent investi-
gations of brain lipid membranes, a range of different models
have been used to represent the membranes and their interac-
tions with small molecules or peptides. The models used range
in lipid composition from pure 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC)39–42 to mixtures of up to five different
lipid species (including cholesterol)43,44 to complex realistic lipid
mixtures.45,46 In the current work, all-atom classical molecular
dynamics (MD) simulations were used to investigate the effects of
increasing lipid complexity on the bilayer structure, lipid dynam-
ics, and dipole potential. We used two simple membranes con-
sisting of pure POPC and POPC-CHOL in a 1:1 ratio. Meanwhile,
we present the first heterogeneous brain cell models consisting
of 27 lipid components in an effort to mimic the experimental
compositions identified by Chan et al.47 (Figure 1 and Table 1).

2 Methods

2.1 Model membranes

Two brain cell membranes representing the healthy (BH800) and
Alzheimer’s diseased (BAD800) state were modelled based on ex-
perimental lipidomics data of the prefrontal cortex cells47 (Fig-
ure 1 and Table 1). BH800 and BAD800 each consists of 800
lipids per leaflet. We also conducted simulations of membranes
with the same lipid composition as BH800 and BAD800 but with
only 200 lipids per leaflet, BH and BAD, respectively, to inves-
tigate system size effects. Additionally, we simulated a pure
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) mem-
brane, and a membrane consisting of a 50:50 mixture of POPC
and cholesterol to investigate the effects of lipid heterogeneity
on the membrane properties. Each of these simpler membranes
contain 200 lipids per leaflet. Table 1 reports their symmetric
lipid distributions in the upper and lower leaflets. The chemical
structures of the various lipids used are shown in Figure 2. All sys-

tems were generated using the CHARMM-GUI Membrane Builder,
using the CHARMM36 parameters for lipids and the CHARMM
TIP3P model for water.48–50 As a result, each lipid molecule is
randomly placed within the two leaflets of the bilayer. In do-
ing so the structure of each lipid molecule is randomly chosen
from a lipid structural library which contains 2000 conformations
for each lipid type that have been produced from a combination
of homogeneous and heterogeneous lipid membrane simulations.
Then each membrane was solvated with a water thickness of at
least 22.5 Å (default setting) and neutralised to a salt concentra-
tion of 150 mM NaCl.

Fig. 2 General structure of the lipid types in Table 1.

(a) (b)

Fig. 1 (a) General compositions of the lipid types used in the BH800 and BAD800 brain cell models (see Table 1 for full detail of different membranes).
(b) Side view of a complex brain membrane system. Lipids are coloured according to the pie charts.
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Lipid Type Lipid Name sn1/sn2 BH800 BAD800 BH BAD POPC POPC-CHOL
CHOL CHL1 - 392 408 98 102 - 100
PC SDPC 18:0/22:6 12 8 3 2

SAPC 18:0/20:4 24 20 6 5 - -
SLPC 18:0/18:2 - 20 - 5
POPC 16:0/18:1 44 44 11 11 200 100
DPPC 16:0/16:0 32 28 8 7 - -
PLPC 16:0/22:6 16 - 4 -

PE SDPE 18:0/22:6 32 24 8 6
SAPE 18:0/20:4 44 36 11 9
SLPE 18:0/18:2 32 32 8 8 - -
SOPE 18:0/18:1 12 12 3 3
DSPE 18:0/18:0 4 4 1 1
DAPE 20:4/20:4 - 4 - 1

PS SDPS 18:0/22:6 8 8 2 2 - -
SOPS 18:0/18:1 12 12 3 3

PI SAPI25 18:0/20:4 16 12 4 3
PNPI25 16:0/18:3 4 4 1 1 - -
POPI25 16:0/18:1 4 4 1 1

SM ASM 18:1/20:0 44 44 11 11 - -
NSM 18:1/24:1 20 20 5 5

CER CER180 18:1/18:0 4 8 1 2
CER241 18:1/24:1 4 4 1 1
GALCER241 18:1/24:1 8 12 2 3
GALCER240 18:1/24:0 4 4 1 1 - -
GLCCER200 18:1/20:0 8 8 2 2
GLCCER241 18:1/24:1 4 8 1 2
SLFCER240 18:1/24:0 8 4 2 1
SLFCER241 18:1/24:1 8 8 2 2

Total number of lipids per leaflet 800 800 200 200 200 200
Total number of water molecules 82373 81612 21995 21678 17979 14657

Table 1 Compositions of the membrane models (per leaflet) corresponding to the CHARMM-GUI lipid information. Complex healthy and diseased
brain models, BH800/BH and BAD800/BAD, respectively, contain up to 27 lipid components, to include cholesterol (CHOL), phosphatidylcholines
(PC), phosphatidylethanolamines (PE), phosphatidylserines (PS), phosphatidylinositols (PI), sphingomyelins (SM), and ceramides (CER) lipids. Lipid
distributions are symmetric in the upper and lower leaflets.

2.2 MD Simulation Protocol

GROMACS version 2018 was used to perform all MD simulations
in this manuscript.51 Initial structures were energy-minimised
using steepest descent to remove steric clashes between atoms.
Then, a series of simulations were carried out using the NVT (con-
stant Number of particles, Volume, and Temperature) and then
the NPT (constant Number of particles, Pressure, and Tempera-
ture) ensembles for at least 0.45 ns in order to equilibrate the
temperature and density of the systems. In doing so, the pre-
scribed simulation protocol by CHARMM-GUI was followed.49,50

All equilibrated systems were simulated under NPT conditions, to
a total length of 300 ns for smaller systems (POPC, POPC-CHOL,
BH, and BAD), and to a total length of 200 ns for larger systems
(BH800 and BAD800). In the production simulation, the temper-
ature was maintained at 310 K by the Nosé-Hoover thermostat,52

with a time constant of 5 ps. Semi-isotropic pressure coupling was
maintained at 1 bar by the Parrinello-Rahman barostat,53 with a
time constant of 5 ps and standard compressibility of 4.5× 10−5

bar−1. The Verlet cut-off scheme was employed. Electrostatic
interactions were calculated using the Particle-Mesh Ewald algo-
rithm. Both electrostatic and Van der Waals interactions were cut

off beyond 1.2 nm. All bonds involving hydrogen atoms were
constrained using the LINCS algorithm.54

2.3 Data Analysis Details

Ensembled averages were analysed over the full length of the
trajectories. Standard errors were calculated as standard devi-
ations of the mean. The results of the two different sized healthy
(BH800 and BH) and diseased (BAD800 and BAD) membranes
are generally similar. Data for the smaller membranes (BH and
BAD) are mainly included in the SI, unless stated otherwise.

Area per lipid (APL) was calculated by Voronoi analysis in
the membrane analysis tool, MEMBPLUGIN.55 The oxygen atom
(name O3) was used as the key atom to represent CHOL, while a
triad of glycerol carbons were used to represent non-CHOL lipids
(names C2, C21, C31 for PC, PE, PS, and PI; names C1F, C2S,
C3S for SM and CER) (Figures S1a-b). These key atoms were se-
lected because they lie at a similar depth in the membrane. By
projecting the coordinates of the key atoms onto the xy-plane, a
series of Delaunay triangulations and Voronoi diagrams can be
constructed56 to give the APL (Figure S1c).

Bilayer thickness was defined as the average phosphate-to-
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phosphate positions, and was calculated using MDAnalysis.57

Surface roughness (R) was calculated using MDAnalysis.57

The C2 and C2S atoms of all non-CHOL lipids were used as refer-
ence atoms. The method by Plesnar et al58 was applied:

R =
1
n

n

∑
i=1
|(zi− zm)|

where n is total number of reference atoms, zi is the z-coordinate
of reference atom i, and zm is the mean z-position of all reference
atoms.

Order parameter (SCH) quantifies the time-averaged C-H
bond angle, θ , with respect to the bilayer normal. Using MEMB-
PLUGIN,55 SCH was calculated according to:

SCH =

〈
3cos2θ −1

2

〉
Tilt angles for the various lipid species were defined according

to the vectors in Table 2. For the CER lipid group, only the ring
tilts in the headgroup of the cerebrosides were considered. All
angles were measured with respect to the bilayer normal, and
computed using MEMBPLUGIN.55

Lipid interdigitation was calculated using MEMBPLUGIN,
which measures the degree of acyl chain interdigitation using
a correlation-based fraction that gives the mass overlap of two
leaflets (Iρ ) and its corresponding width of the overlapping re-
gions (wρ ). Iρ is measured so that 0 ≤ Iρ ≤ 1 indicates between
zero to complete mass overlap. In addition, a coordination-based
fraction (IC) evaluates the number of heavy atoms that are in con-
tact with the opposing leaflet within the recommended default
cutoff at 4 Å.55

Lipid tail snorkeling was determined by the terminal carbon
z-positions of each hydrocarbon sn chain. The absolute values of z
from both leaflets were taken, and binned to a histogram in order
to obtain a normalised probability density, using MDAnalysis.57

Dipole potential (Ψ(z)) was computed using the gmx potential
module from the GROMACS package.51 The simulation box was
divided along the bilayer normal to obtain the charge density per
slab. Double integration of the charge density, ρ(z), then yields
the dipole potential, Ψ(z):59

Ψ(z) =− 1
ε0

∫ z

z0

∫ z′

z0

ρ(z”)dz”dz′

where z0 is the z-position at the bulk water centre at which the
potential is set to zero.

Lateral diffusion was calculated using the gmx msd module
from the GROMACS package.51 Diffusion coefficients (D) are cal-
culated from the slopes by fitting a straight line (Dt + c) through
the plots of the mean square displacements (MSDs),51 between
30-200 ns for POPC, POPC-CHOL, BH, and BAD, and between
20-150 ns for BH800 and BAD800. However, the lipids in each
membrane experience subdiffusion since productions were simu-
lated on a sub-microsecond timescale.60,61 Thus, the coefficients
obtained in this work are merely estimated values of D, which we
use because we are mainly interested in the qualitative compar-
isons of the lipid mobility between the various bilayer environ-

ments, as was similarly done in previous work.62

3 Results and Discussion

3.1 Effects of lipid heterogeneity on the structural proper-
ties of lipid membranes

In the homogeneous POPC membrane, the bilayer thickness and
APL equilibrate to 38.8 Å (Figure S4) and 64.8 Å2 (Figure S2), re-
spectively (Table 2), in close agreement with previously reported
values.58,63,64 The addition of 50% cholesterol in POPC-CHOL
causes the bilayer to thicken to 45.8 Å (Figure S4), and the APL
of PC lipids to reduce to 54.8 Å2 (Figure S2), characteristic of
the well-established condensing effect of cholesterol.58,65,66 As
the membrane gains lipid heterogeneity in BH800/BAD800, the
thickness increases to 47 Å (Figure S4), but interestingly, the APL
of PC lipids also increases slightly to 56 Å2 (Figure S2) in compari-
son to the POPC-CHOL membrane (Table 2). However, PE and PS
lipids do not seem to feel the condensing effect of cholesterol to
the same extent as PC, since both lipid types maintain APLs (Table
2 and Figure S2) that are similar to the areas reported for pure
POPE (55.6-59.2 Å2)63,64,67 and pure POPS (55.8-57.5 Å2)63,68

membranes. Generally, in BH800/BAD800 the APLs of CHOL, PC,
PE, PS, and PI lipid types (Table 2 and Figure S2) are in range
to those reported for multicomponent yeast-like membranes:69

CHOL ∼30 Å2, and phospholipids ∼54-58 Å2 ; while the aver-
age APL of BH800/BAD800 (Table 2 and Figure S3) resembles
the average APL of multicomponent mammalian-like membrane
(POPC, POPE, POPS, CHOL, PSM):63 ∼42 Å2.

Inversely correlated to the bilayer thickness is the lipid interdig-
itation, whereby the lipid chains in the upper and lower leaflets
overlap at the bilayer centre. Such is the case where an increase
in thickness from POPC to POPC-CHOL is accompanied by a de-
crease in the interdigitation parameters (Table 2 and Figure S5).
Our findings are in line with the fact that cholesterol is proposed
to reduce lipid interdigitation.70 However, complex membranes
BH800/BAD800 at similar cholesterol levels to POPC-CHOL de-
part from this trend by showing a greater extent of interdigita-
tion even as the bilayer thickens (Table 2 and Figure S5). This
likely arises from the membrane containing a range of lipids that
are diverse in chain lengths as well as degrees of saturation.
Changes in the interdigitation have been suggested to have nu-
merous implications, including on the interfacial tension of lipid
membranes,71 the formation of membrane micro-domains,72 and
the modulation of lipid droplets.73

The condensing effect of cholesterol is also closely related to
its ordering effect on the lipid chains in a membrane,66 which
is observable using the order parameter (SCH). Typically, lipids
with a smaller APL will see an increase in the order of their hy-
drocarbon tails. At first, only the sn tails of POPC lipids in the
various membranes were evaluated (Figure S6), and effectively
displays a higher order in the POPC-CHOL, BH800, and BAD800
systems, relative to the pure POPC system. To approximate the or-
der of the overall membrane, the order parameters were averaged
across the various lipid types containing either a sn16:0, sn18:0,
or sn18:1 tail (Figure S7), all of which show a similar trend to
the order in Figure S6. However, in BH800/BAD800, the ∼ 5 Å2
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BH800 BAD800 POPC-CHOL POPC
APL (Å2) CHOL 30.0 ± 0.6 30.4 ± 0.5 30.1 ± 0.4 -

PC 56.4 ± 0.7 56.2 ± 0.6 54.8 ± 0.7 64.8 ± 0.8
PE 55.5 ± 0.9 56.0 ± 0.9
PS 57.1 ± 1.4 55.2 ± 1.4
PI 56.6 ± 1.6 55.1 ± 1.4 - -
SM 49.8 ± 1.0 50.5 ± 1.0
CER 49.9 ± 1.0 50.0 ± 1.0
Average 42.3 ± 0.5 42.0 ± 0.4 42.5 ± 0.4 64.8 ± 0.8

Thickness (Å) 47.3 ± 0.4 47.2 ± 0.3 45.8 ± 0.3 38.8 ± 0.4
Interdigitation Iρ 0.22 ± 0.02 0.23 ± 0.02 0.16 ± 0.02 0.30 ± 0.02

wρ (nm) 4.88 ± 0.31 4.94 ± 0.32 3.21 ± 0.35 5.53 ± 0.47
IC (%) 3.5 ± 0.1 3.6 ± 0.1 3.2 ± 0.3 5.4 ± 0.2

Roughness (Å) Upper 0.89 ± 0.11 0.88 ± 0.11 0.74 ± 0.08 1.10 ± 0.14
Lower 0.90 ± 0.10 0.88 ± 0.10 0.73 ± 0.08 1.07 ± 0.15

Tilt (o) CHOL (C3→C17) 11.6 ± 0.5 11.4 ± 0.5 12.0 ± 0.7 -
PC (P→N) 65.9 ± 1.4 65.6 ± 1.6 66.7 ± 1.5 67.9 ± 0.9
PE (P→N) 73.2 ± 1.6 72.9 ± 1.7
PS (P→N) 65.0 ± 4.2 64.2 ± 4.5
PI (P→C14) 50.9 ± 3.1 51.5 ± 3.5 - -
SM (P→N) 69.5 ± 2.2 70.6 ± 2.1
CER (O1→C4) 41.8 ± 2.1 42.7 ± 2.1

Table 2 Summary of key membrane properties: (mean ± standard error). Area per lipid (APL). Bilayer thickness measured from the average
phosphorus-phosphorus distance between leaflets. Interdigitation parameters where Iρ is the interdigitated mass overlap, and wρ is the corresponding
width region of the mass overlap. Iρ is measured so that 0 ≤ Iρ ≤ 1 indicates zero to complete mass overlap. IC is the fraction of heavy atoms that
are in contact with the opposing leaflet. Surface roughness parameters of the upper and lower leaflets. Tilt angles for the different lipid headgroups
present in the various membranes, and the defining vectors used to determine this angle.

difference in APL between the SM and CER lipids and the PC, PE,
PS, and PI lipids (Table 2) appears to not have been resulted in
a greater amount of order in the SM and CER lipid tails (Figure
S7c compared to Figure S7a-b). Instead, in the membranes that
contain 50% cholesterol, the value of SCH reaches a maximum
(SCH ∼ 0.4) in the middle of the tails. Generally, the order profiles
are consistent with existing literature that has reported studies of
bilayers containing ∼ 50% cholesterol.74–77 The values of the or-
der parameter observed in the lipids within BH800/BAD800 indi-
cate that brain cell membranes realistically adopt a liquid-ordered
state, since usually SCH < 0.3 in liquid-disordered membranes.

The tilt angle of cholesterol is another quantity that further
explains how cholesterol imparts order on the packing environ-
ment. The orientation of CHOL shows the narrowest distribution
in BH800/BAD800 (Figure S10), with the smallest average tilt
angle of 11° (Table 2). This value is smaller compared to those
previously measured in experiment78–80 and simulation69,81,82

(∼ 14− 25°), all of which studied membranes with lower per-
centages of cholesterol within them, but the tilt is consistent with
the angle observed in a simulation of a lipid bilayer with a 1:1
ratio of POPC and cholesterol.62 Otherwise, tilt angles that were
measured in the headgroups of PC and PI lipids69,83 (Table 2 and
Figure S10) are similar to those in simple model bilayers (where
comparable). The orientation of the CER sugar headgroups seem
to correspond to the tilt angles reported for membranes contain-
ing glycolipids (∼ 40°),84–86 even though they have a glycerol
backbone (glyceroglycolipids) instead of the sphingosine back-
bone of the CER lipids used in this study (glycosphingolipids).
The broad distributions in the tilt angles demonstrate a degree of

freedom on the membrane surface that seems to be independent
of the lipid packing. This is further evidenced by the similar hy-
dration features of waters surrounding CHOL (Figures S11) and
PC (Figure S13) lipids that are shared across the various mem-
branes, which is unaffected by changes in the physical properties
(Table 2). Previous simulation studies have found similar dis-
tances that define the first neighbor hydration shell around the
oxygen atom in cholesterol,62 the nitrogen atom in the head-
group of the PC lipids,87,88 and the nitrogen atom in the head-
group of PE lipids89. (Further details on the hydration of lipids
are discussed in the SI.) Incidentally, the steadiness in the APL,
thickness, and roughness parameters (Figures S3, S4 and S8)
show an effectiveness of the CHARMM force field to quickly sta-
bilise not only simple membranes, including POPC and POPC-
CHOL, but more importantly complex membranes like BH800 and
BAD800 that contain a cocktail of up to 27 lipid components. The
average surface roughness of POPC (1.1 Å) is higher than POPC-
CHOL (0.7 Å) (Table 2), whereby the relationship between the
two is consistent with the findings by Plesnar et al.58

As lipid tails were expected to interdigitate vertically, we found
instances in the simulation where some tail ends would “snorkel”
towards the headgroup interface as in Figure 3. In existing lit-
erature, Feix et al. has demonstrated flexibility in the tails of ni-
troxides to infer vertical fluctuations of terminal methyl groups in
dimyristoylphosphatidylcholine (DMPC) bilayers.90 In addition,
the snorkeling phenomena has been ascribed to the side chains
of amino acids in transmembrane proteins to assist in protein-
membrane interactions.91–93 Meanwhile, a membrane-only sim-
ulation has observed the sn24:1 tail to adopt a “hooked” confor-
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mation,94 but not quite bending to the extent of the “U”-shapes
seen in Figure 3. It is curious that lipid tails would snorkel deeply
to an area of the membrane with high order (Figure S7). Thus,
we evaluated the z-positions of the terminal carbons, and used a
threshold of z > 10 Å to indicate any snorkeling events. Similar
trends are expressed in the hydrocarbon chains across all systems
(Tables 3 and S2). Mainly, the tails tend to equilibrate around
the bilayer centre (z < 10 Å) (Tables 3 and S2). Otherwise, the
probability of snorkeling increases with increasing degrees of un-
saturation in the hydrocarbon chain, for instance, in the order
of sn16:0/sn18:0/sn20:0 < sn18:1 < sn18:2 < sn20:4 < sn22:6
in the case of BH800 (Table 3). Additionally, for tails with the
same degree of unsaturation, we have found that the likelihood
of snorkeling increases with the length of the hydrocarbon tail,
for instance, sn24:1 > sn18:1 (Tables 3). Compared to POPC, it
is also immediately obvious that the snorkeling events become
much less probable in POPC-CHOL and BH800/BAD800 (Tables
3 and S2), which also seems to correlate to a decreasing number
of water permeation events (Table S3).

Fig. 3 Example snapshot of lipid tails snorkeling in the BH membrane
all occurring in one time frame, in the chains sn18:2 (top), sn20:4 (lower
left), and sn24:1 (lower right), with the carbon tails in grey. Hydrogen,
water, and ion atoms were removed for clarity.

System Chain Type
Probability (%) Num. chains per

leafletz < 10 z > 10

POPC
sn16:0 97.4 2.6 200
sn18:1 93.9 6.1 200

POPC-
CHOL

sn16:0 99.9 0.1 100
sn18:1 98.8 1.2 100

BH800

sn16:0 99.6 0.4 132
sn18:0 99.7 0.3 200
sn20:0 99.9 0.1 52
sn18:1 CER 99.1 0.9 112
sn18:1 98.0 2.0 72
sn24:1 97.4 2.6 44
sn18:2 97.6 2.4 48
sn20:4 96.2 3.8 84
sn22:6 95.9 4.1 52

Table 3 Probability of the z-positions of terminal carbons of the various
hydrocarbon sn chains. The bilayer centre is at z = 0. The propensity of
the terminal carbon travelling beyond z > 10 Å is used as an indication
of tail snorkeling.

3.2 Changes in transmembrane dipole potential resulting
from lipid heterogeneity

The distribution of electric charge in a bilayer is important be-
cause it affects the mechanisms of interaction and permeability
of drugs with the lipid bilayer and/or the surrounding membrane
proteins.95,96 Thus, the dipole potential profile of membranes is
particularly crucial in the process of novel drug design. For ex-
ample, the electrostatics of bacterial membranes is especially rel-
evant for the design of novel antimicrobial drugs since the elec-
trostatic interactions during drug binding is what provides the
driving force for the insertion process of the drug into the mem-
brane.97,98 Poisson’s equation, as we have used here, is typically
used to calculate the dipole potential from MD trajectories.63 Fig-
ure 4 shows the dipole potential across each of the membranes we
have simulated here. Generally, the dipole profiles across all sys-
tems have matching qualitative features. Initially, the potential
starts at the reference value in the aqueous phase at 0 V. Then,
the potential increases sharply over the lipid headgroups to expe-
rience potential barriers at the membrane interface at z∼±15 Å,
before reaching a global maximum at the bilayer centre (Figure
4). Between POPC and POPC-CHOL, the presence of cholesterol
is demonstrated to raise the potential barriers most substantially
at the centre by 0.3 V (Figure 4). In the realistic membranes
BH800/BAD800, lipid diversity in the headgroup as well as tail re-
gions lower potential barriers at the interfaces to 0.42-0.45 V, and
at the centre to 0.89-0.90 V (Figure 4). Thus, the dipole potential
is sensitive to the membrane composition and environment. And
this reiterates that the selection of an appropriate model is impor-
tant as it could affect the relevant mechanisms of interaction in
such permeation studies.

3.3 Changes in lipid diffusion with increased lipid hetero-
geneity

Lateral diffusion evaluates the mobility of lipids in the xy-plane
of the membrane, and is therefore used as a gauge for the dy-
namics of lipid mixing. However, the systems here were only sim-
ulated on a sub-microsecond timescale, which means that lipids
in the bilayer experience subdiffusion.60–62 Thus, the diffusion
coefficients (D) obtained from the slopes of the mean square dis-
placements (MSDs) (Figure 5) are estimated values of D. As we
are mostly interested in qualitatively comparing the lateral move-
ment of the different lipid types within the various bilayer en-
vironments that we have studied, we will use the values of D
determined from the slopes of the MSD plots in order to do so.
This has been done previously for similar purposes.62 As choles-
terol is well-known to retard diffusion rates,99 the diffusion con-
stant of POPC in the pure membrane consequently reduces by
half, from 9.1×10−8 cm2 s−1 (consistent with reported value100)
to 4.1× 10−8 cm2 s−1 in the POPC-CHOL membrane (Figures 5a
and 5d). The diffusion of PC lipids (and all other lipids) slow
down further in BH800 and BAD800 as the lipid composition be-
comes more heterogeneous (Figures 5c and 5f). We believe that
the greater extent of interdigitation in the lipid packing of BH800
and BAD800 compared to POPC-CHOL is able to affect the fluid-
ity of the respective membranes consisting of ∼50% cholesterol
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40 30 20 10 0 10 20 30 40
z (Å)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
(z

) (
V

)

BH800
BAD800
POPC-CHOL
POPC

Potential Barriers (V)
z∼−15 Å z = 0 z∼+15 Å

POPC 0.49 ± 0.01 0.65 ± 0.01 0.48 ± 0.01
POPC-CHOL 0.50 ± 0.01 0.95 ± 0.01 0.49 ± 0.01
BH800 0.45 ± 0.04 0.90 ± 0.05 0.44 ± 0.06
BAD800 0.44 ± 0.02 0.89 ± 0.02 0.42 ± 0.03

Fig. 4 Dipole potential profiles relative to the bilayer centre, z= 0. (Error
bars omitted from the figure for clarity.) Potential barriers and related
error bars at the bilayer interfaces, z ∼ ±15 Å, and bilayer centre, z = 0
(table below).

(Table 2). The only significant difference we observed between
the large and small brain membranes was when comparing the
lipid diffusion in BH800 and BH (Figures 5c and 5e). In these
two healthy systems, the lipids diffuse approximately twice as
fast in the smaller BH membrane than in the larger BH800 mem-
brane. Interestingly, no such difference was observed in the two
diseased BAD800 and BAD membranes (Figures 5f and 5e). One
difference in the lipid compositions between the healthy BH and
diseased BAD membranes is that BH contains lipids with gener-
ally more polyunsaturated fatty acid (PUFA) chains than BAD.
And it has been previously shown that increasing degrees of chain
unsaturation increases the rate of diffusion,101,102 which seems
to describe the case between BH and BAD (Figures 5b and 5e).
Thus, we believe that the difference between BH800 and BH re-
sults from system size effects as well as short simulation time
lengths. As the larger membranes of course have more of each
lipid species, we will therefore achieve better sampling of the lipid
diffusion of a given species in the larger membranes. This would
be particularly true for the lipid species which are minor compo-
nents of the membrane.

4 Conclusions
In this manuscript, we have conducted atomistic simulations
to compare between bilayers containing simplistic (POPC and
POPC-CHOL) and complex (BH800/BH and BAD800/BAD) lipid
compositions. We present the first atomistic simulations of
realistic human brain membrane models (under healthy and
Alzheimer’s diseased conditions) incorporating 27 lipid types that

range in lipid headgroups, lipid tail lengths, degrees of saturation,
as well as symmetry and asymmetry in the lipid tails. Our studies
demonstrated effective differences in the properties between the
simple and heterogeneous membranes, especially in the dipole
potential and lateral diffusion. As homogeneous PC bilayers are
commonly used to investigate the permeability of small molecules
across the membrane,103–105 it is worth noting that the decreased
potential barriers in simple models could alter the permeation
mechanisms of small molecules compared to membranes of sim-
ilar complexity as found in actual biological cells. But of course,
other factors at play include the permeate size, membrane organ-
isation phase, etc.106 Whilst POPC-CHOL seems a good approxi-
mation to the complex membranes, there is however a significant
qualitative difference in the diffusion dynamics, which could also
affect studies of permeability.107,108 The decreased diffusion of
lipid molecules in the model BAD membrane is consistent with
the findings that decreased lipid fluidity leads to accelerated amy-
lodogenic processing of the Alzheimer’s Precursor Protein.109

In addition, we have demonstrated that the hydrocarbon tails
of the lipid molecules have a tendency to snorkel towards the
membrane’s interface with the aqueous surroundings. We corre-
lated the likelihood of a lipid tail to snorkel with increasing de-
grees of unsaturation in the hydrocarbon chains as well as longer
tail length. Also, we observe that lipid snorkeling is more com-
mon in the more disordered membrane (POPC) where there is
less steric hindrance to the motion of the lipid tails. We have also
shown that there is a direct correlation between the amount of
snorkelling observed in a lipid bilayer and the amount of water
that is able to permeate into the membrane. This suggests that
lipid snorkeling may play a role in the ability of small molecules
to permeate across biological membranes. Continuing to under-
stand the mechanisms that induce changes to the membrane me-
chanics and biophysics, and therefore cell functions will prove
beneficial in developing new therapeutic strategies for the preven-
tion and treatment of Alzheimer’s disease and other neurological
diseases.
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