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Aging of living polymer networks: a model with
patchy particles

Stefano Iubini, *ab Marco Baiesibc and Enzo Orlandinibc

Microrheology experiments show that viscoelastic media composed by wormlike micellar networks

display complex relaxations lasting seconds even at the scale of micrometers. By mapping a model of

patchy colloids with suitable mesoscopic elementary motifs to a system of worm-like micelles, we are

able to simulate its relaxation dynamics, upon a thermal quench, spanning many decades, from

microseconds up to tens of seconds. After mapping the model to real units and to experimental scission

energies, we show that the relaxation process develops through a sequence of non-local and

energetically challenging arrangements. These adjustments remove undesired structures formed as a

temporary energetic solution for stabilizing the thermodynamically unstable free caps of the network.

We claim that the observed scale-free nature of this stagnant process may complicate the correct

quantification of experimentally relevant time scales as the Weissenberg number.

1 Introduction

Many soft materials with important industrial and medical
applications are formed by thermodynamic self-assembly of
elementary constituents dispersed in aqueous solution.1 This
process gives rise to networks of linear or branched fibers or
even more complex objects2 that can continuously break, rejoin
or get entangled. These ‘‘living’’ materials3 have remarkable
viscoelastic properties that are typically studied either by
imposing a shear stress with a rheometer1,4 or by dragging a
micro-sized probe through the medium as in active micro-
rheology.5,6 The response and relaxation dynamics of living
polymers are the result of large-scale reorientation and mutual
reptation of the fibers that, in turn, depend on small scales
mechanisms such as scission and rewiring of branches. This
multiscale process can give rise to global relaxation dynamics
that, for systems as wormlike micelles, has been measured to
be of the order of seconds.5,6

An important issue is the relation between the macroscopic
dynamical response of the system, measured experimentally,
and its less accessible local structural rearrangements. From
the theoretical side, mean-field theories and microscopic
constitutive models have been successfully developed3,7–10 to
rationalize the outcomes of rheological experiments. However,
these studies often dealt with small temperature jumps, which

may not lead to the significant disturbance of the micellar
networks as, e.g., in microrheological experiments at large
Weissenberg numbers where a microbead is moved in the
medium at high velocities.11,12 At the same time, numerical
studies,13–18 performed at a coarse-grained molecular level on
specific systems (cationic cylindrical micelles and cetyltrimethyl-
ammonium chloride micelles) have either looked at the competi-
tion between shear flow and internal network dynamics or
estimated the strands scission and branching free energies of
these systems. However, these models, being still quite detailed
and system-specific, cannot have access to the scales spanned by
rheological experiments (of the order of seconds and above mm3)
or address universal features of the phenomenon.

A generic understanding of the transient behavior of living
polymers can be sought by addressing the following questions:
which are the dominant local structures (or ‘‘microstates’’) that
compete dynamically in the rearrangement of a relaxing living
random network? How does the long-time relaxation depend
on the mechanisms of local rewiring and scission of the fibers?
Is the time dependence of relevant observables undergoing
relaxation characterized by simple exponentials or is it more
similar to a dynamical scaling with power laws? Simulations of
coarse grained models at mesoscopic level are an ideal tool for
answering these questions: they allow a direct investigation
both at short/small and long/large scales and they may adopt
a well controlled protocol for driving the system out of
equilibrium.

In this paper, we introduce a simple, coarse-grained,
description of a thermally driven self-assembly process gene-
rating a living network of fibers by means of the merging,
scission and rewiring of basic units that represent a portion of
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the tubular structure. These units are described by patchy
particles.19–33

By using large-scale Brownian dynamic simulations and
analytical arguments to estimate the free-energy barriers between
the competing ‘‘microstates’’, we characterize the underlying
microscopic dynamics that leads to the global relaxation towards
the formation of the random networks. To go beyond the regime
of small perturbations a wide temperature quench is imposed on
the system.

The paper is organized as follows. In Section 2 we introduce
the coarse-grained model and the numerical set-up. In Section 3
we analyze the thermodynamic and kinetic properties of local
motifs and their effect on the large-scale relaxation dynamics of
the system upon a temperature quench towards a self-assembled
equilibrium state. Section 4 is devoted to a final discussion of the
results and to highlight future developments that can be explored
within this approach. Finally, the appendix contains the details of
the numerical methods employed for this study.

2 Model

The coarse grained model we consider belongs to the vast class
of patchy particle models used in literature to study self-
assembled structures19 but it is specifically designed to
describe living polymer networks and particularly worm-like
micelles. Let us first introduce its basic properties in the
context of patchy colloids (Section 2.1) and later discuss a more
specific connection with micellar systems (Section 2.2).

2.1 Patchy colloids

The elementary unit of our coarse-grained description is a rigid
body consisting of three sub-units: there is a central core
of radius R (red spheres in Fig. 1(a)) and two radially opposite
(i.e., antipodal) ‘‘patches’’ or ‘‘sticky spots’’ (blue transparent
spheres) fixed at distance lR. The effective interaction between
units is the sum of two contributions: a steric (excluded
volume) interaction between the core beads and a mutual
attraction between patches belonging to different rigid bodies.
The first is accounted for a shifted and truncated Lennard-
Jones potential with characteristic amplitude e and range R.
Patch–patch attraction, that would lead to the aggregation
of units at sufficiently low temperatures, is instead described
by a truncated Gaussian potential with range s = 0.4R and
amplitude A = 40e (this amplitude allows to recover free
energies at T E 1 that are comparable to the ones measured
in micellar systems), see Appendix A for more details.

Two main characterizing aspects of our model are worth
noticing. First, in most of the patchy colloids models19 the
branching points of the assembled structures are generated
either by introducing a fraction of colloids decorated by three
or more attractive patches20,21 or by allowing for different types
of patch–patch interactions.22–25 In either case, a better control
of the phase diagram is achieved by satisfying a single-bond-
per-patch condition.26 In our model only bifunctional patchy
beads are considered and the local branching emerges naturally
from the formation of multiple contacts between patchy particles.
Note that similar systems were studied experimentally27 and

Fig. 1 (a) Example of three patchy particles: two sticky spots of range s (light blue spheres of radius s with darker dot at their center) form a rigid body
with a (red) repulsive core of radius R. The sticky spot centers are at distance lR from each other. (b) Sketch of a possible free energy landscape for a
trimer, i.e., a system with three patchy particles/micellar units. (c) Ground-state energy of linear-trimer (‘‘2’’ state, blue) and branching-point (‘‘3’’ state,
red) configurations as a function of the branching parameter l. (d) Sketch of a triple contact for l = 1.75 (sticky spots farther than the interaction range s)
and for l = 1.95 (sticky spots closer than s). (e) and (f): geometrical details of the (planar) linear and branched configurations. The total potential energy of
a strand is El = 2ul due to a full overlap of the sticky spots while, in a branching point, the same quantity is Eb = 3ub with a bond energy |ub| o |ul| which
tends to ut only when l is sufficiently large.
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numerically28–30 (see also some more recent work31–33). The
second aspect concerns the presence of the tunable branching
parameter l. This has been introduced to mimick the propen-
sity of worm-like micelles to branch as a function of salt
concentration (see Section 2.2). In particular, by varying l r 2
(l = 2 corresponds to standard surface interactions between
patches), one can change the depth of the sticky spots within
the repulsive core and hence bias the system towards the
formation of either linear strands or branches (see Fig. 1(b) for
the simplest case of trimers). More precisely, for large values of l
the units tend to form ‘‘vertex’’ or ‘‘3 contact’’ states (see Fig. 1(b))
rather than the ‘‘strands’’ or ‘‘2 contact’’ states.

This behavior can be explained quantitatively by minimizing
analytically the total potential energy of the vertex and strand
configurations of a trimer, see Fig. 1(c). As a matter of fact,
we find that the formation of strands is energetically advanta-
geous with respect to branch points only for sufficiently small
values of l. Branch points become instead energetically more
convenient if l gets close enough to 2. For example, in the two
situations represented in Fig. 1(d), for l = 1.75 the mutual
attraction between sticky spots take place at a distance larger
than the interaction range s, reducing the stability of the
trimer, while for l = 1.95 the three pairs of sticky spots are all
at a distance within s and thus very stable.

The effect of the branching parameter l can be further
rationalized as follows. Let us focus on a linear dimer (see
Fig. 1(e)) in its mechanical equilibrium position with bond
energy ul o 0 determined by the distance d between unit
centers and the distance d = d � l between sticky centers.
The branched configuration can be obtained by rotating the
two reference units by angles of 301 with respect to their centers
on the plain containing the trimer (Fig. 1(f)). In this rotated
configuration the two sticky spots increase their distance d04 d
thus decreasing their attracting force, while the repulsive
centers of the units are not modified significantly. Since
d0 4 d the single bond energy ub 4 ul. However, due to the
different number of bonds in branched and linear trimers, the
overall energy of the branched trimer Eb = 3ub can be lower and
thus more stable than the linear trimer configuration with
energy El = 2ul. This takes place if l is large enough to keep
d0 within the range of attraction of the sticky spots.
Upon decreasing l, one meets a situation in which d0 is longer
than the range of attraction between sticky spots and hence
the branched configuration becomes less stable than the
linear one.

2.2 Wormlike micelles

The patchy colloid model described above is rather generic but
it can be specialised on worm-like micelles for which a wealth
of experimental data is nowadays available. In this context, it is
known that the spatial organization of micelles in spherical,
linear or branched structures depends on several parameters
such as salt concentration3,16 or the spontaneous curvature
of surfactants.34,35 This feature makes large-scale numerical
simulations rather challenging, even at coarse-grained level,
since a detailed description of micelles recombination

dynamics requires to resolve the mutual interaction of solvent,
salt and surfactant particles at the subnanometric length
scales.16,18 In contrast, in our minimal model the effect of ionic
particles and curvature is taken into account effectively through
the tunable branching parameter l.

In this approach an ensemble of surfactants forming a
globular micelle or the segment of a wormlike network, as
those sketched in Fig. 2, is mapped to a single micellar unit.
In this context, one may think of l as a parameter describing
the strength of salt concentration. This is indeed known to
shrink the effective size of the hydrophilic heads of the surfactants,
thus favoring the appearance of structures with negative surface
curvature as hubs in the micellar network.

Note that the resolution of our coarse grained model cannot
describe effects below the size of a globular micelle. In particular,
unlike previous models,13–18 the dynamics of a single surfactant is
not included in our description. On the other hand, the fact
that the basic element of our model is not representing a single
surfactant but rather a collection (i.e., some dozens) of them,
should not affect the large scale dynamics of the network
structure that we aim to explore here.

2.3 Simulations

The dynamics of the system follows a set of coupled Langevin
equations for the interacting units in an implicit solvent at
fixed volume and constant temperature T (henceforth mea-
sured in units of e, with Boltzmann constant kB = 1 and e = 1).
Numerical simulations are performed with LAMMPS engine.36

For a more detailed description of the model and for a mapping of
the simulation units to those of a wormlike micellar system, see
the appendix.

By assuming, for instance, that the core radius of the
elementary unit length is of the order of the average width
measured in wormlike micelles, i.e., R E 5 nm, the largest box
considered in our simulations with dimensions 108R � 108R �
324R maps to a system volume E0.5 mm3. Moreover, our runs
simulate systems of up to N = 6000 units; this would correspond
to a number of molecules of surfactants of the order of 105.37

Fig. 2 Sketch of a wormlike micellar network and of selected portions
where each surfactant is depicted as a hydrophilic (red) head and a
hydrophobic (blue) tail. The numbering of the network portions follows
that of the corresponding patchy particle states of Fig. 1(b).
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Finally, since the simulation time unit t is mapped to 2 ms in
the real system (see appendix), the longest simulation time we
can reach, t = 107t, corresponds approximately to 20 s and
is comparable with the duration of recent experiments.6,38

Simulations are performed with an integration time step equal
to 10�2t. We have verified that this time step suffices to
ensure suitable numerical accuracy in all regimes considered
in this study.

We describe the time evolution of the network by moni-
toring the formation/disappearance of its local motifs, such as
dangling ends and branched structures. These are classified by
looking at the number of contacts shared by their patches.
A sticky spot is defined to share a contact with another one if
the distance between their centers is rR, see appendix for
further details. A dangling end contains a unit with k = 1
contacts, while each branch ‘‘3’’ contains three units each with
k = 3 contacts, when they are part of a strand in the network
(that is, a chain of elementary units with k = 2) which ends
either with dangling ends or branching points. Finally, we
define the length L of a strand as the total number of linear
bonds between its extrema. For example, a dimer composed of
two units with k = 1 has length L = 1, while a sequence on five
units with k = 2 between two joints has length L = 6. We assign
L = 0 to isolated units (k = 0).

3 Results
3.1 Thermodynamics and scission time of local motifs

We first analyze the equilibrium thermodynamics of the smallest
motifs assembled in the network, namely the strands and the
branch points (respectively state ‘‘2’’ and ‘‘3’’ in Fig. 1(b)).
In presence of thermal fluctuations, the zero-temperature
scenario of Fig. 1(c) is modified by entropic contributions and a
comparison between the free energies F of the microstates ‘‘2’’
and ‘‘3’’ must be performed. Note that in micellar solutions
thermal fluctuations not only determine the configurational
entropy of the motifs, but also modify the typical energies of

strand and branch points.35 At our coarse-graining level, this
would result to a branching parameter l that depends also on
temperature. In this study, however, since we are interested in
identifying the role of purely entropic contributions, T and l are
tuned independently. On the other hand, once the model is fully
characterized, any mapping to a given experimental condition of
salt concentration and temperature can be obtained through a
suitable selection of the l and T values.

To estimate the free energy difference DF32 = F3 � F2 we have
carried out Langevin simulations with parallel tempering
sampling technique39,40 on a system with three units confined
within a small fixed volume (see appendix for details).
In Fig. 3(a) we report DF32 as a function of T for four values
of l. It displays a linear growth with T, with an intercept at T = 0
that matches quite well the energy differences found analyti-
cally from Fig. 1(c), see open symbols. Entropy differences DS32

are thereby identified by the (negative) slope qDF32/qT, see
dashed lines. Note that the combination of the negative entropy
gap DS32 with a l-dependent energy potential may result in a
situation where the most favorable thermodynamic state is
T-dependent, as for l = 1.95, where branch points are stable
only at low T. Analogous results involving temperature-dependent
effective valence were previously found in particles models
with explicit dissimilar patches.23 These findings match the
prediction18 that wormlike micelles may form networks with a
variety of features, depending on the inclination of their
tubular structures to branch.

To see how local thermodynamic properties affect the
dynamics of network formation, we have computed the average
scission time either from the strand ‘‘2’’ or from the branch
point ‘‘3’’ to the detached dimer-plus-monomer state ‘‘1’’, see
Fig. 1(b). Scission times have been computed from equilibrium
simulations for different temperatures T and different values
of the branching parameter l, see appendix for details. They
follow a standard Arrhenius law once reported as a function of
1/T. For branched initial configurations (Fig. 3(b)), we find
average scission times t3 B exp(DES

13/T) with energy DES
13 whose

fitted values are DES
13 E 15, 21, 26, 37 (in units of kBT),

Fig. 3 Thermodynamic and kinetic properties of a trimer. (a) Free energy difference DF32 vs. temperature T for l = 1.75, 1.79, 1.86 and 1.95. For the same
values, �DS32 = 2.4, 3.2, 3.2 and 5.1 from linear fits, see dashed lines. Open symbols reported on the vertical axis correspond to the energy difference
from Fig. 1(c), at T = 0. (b) Average scission time t3 for a trimer initially arranged in the configuration ‘‘3’’ and (c) average scission time t2 for a strand ‘‘2’’, as a
function of the inverse temperature 1/T. Dashed lines are Arrhenius fits of DES

13 and DES
12. In all panels different symbols refer to different values of the

branching parameter l (see legend in panel (b)).
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respectively for l = 1.75, 1.79, 1.86, and 1.95. Similarly, the
scission times for strand initial configurations is t2 B exp(DES

12/T)
(Fig. 3(c)) and the fitted values of the scission energies DES

12 are 24,
27, 32, and 29 for the same l values. Importantly, these values
of DES

12 and DES
13 are in a range E15–35 kBT fully compatible with

the current estimates of the scission energies (or enthalpies) of
micellar systems.18,38,41,42

3.2 Relaxation dynamics

Once clarified the equilibrium and kinetic properties of the
basic units of the model, we now turn to the main topic of this
work, namely the study of the long time relaxation process of
the system towards relatively large networks at equilibrium.
This is carried out by large-scale simulations in which the
system starts from a solution of freely diffusing globular
micelles (which in our model are represented by isolated units
and initialised with T c 1). At sufficiently low T, isolated units
start to aggregate into intricate networks, see the inset of Fig. 4
and 6(b). Their typical structures bear a strong resemblance of
those appearing on smaller scales in less coarse-grained
models.13–18 In Fig. 4 we report the time evolution of the mean
strand length hLi for l = 1.75, T = 1 and N = 6000, where the
symbol h�i indicates the average over all strands found in the
system at time t. Note that, for the chosen values of l and T,
equilibrium thermodynamics predicts a large predominance of
strands over branching points, see red squares in Fig. 3(a).
Hence the system is expected to arrange itself in long strands.
However, after a relatively fast power-law growth for a time
t0 B 103t, hLi reaches first a plateau that lasts for a decade (see
cyan band, whose width is ts B 104t) and then slowly increases
as a second power law towards the expected equilibrium value

(orange band). From numerical fits, we have found that the
exponent of the two power-laws is C1, see dashed lines in
Fig. 4. The intermediate plateau on ts indicates that the growth
of the network cannot be described in terms of a simple
coalescence process,43,44 due to the presence of a metastable
state characterized by an excess of branching points (see
top-left inset in Fig. 4). As a result, longer strands can be
progressively assembled by slow rearrangements of the whole
structure.

The macroscopic relaxation process is further understood by
looking at the dynamical evolution of units classified by their
contacts. Let Nk be the number of units with k contacts and
fk = Nk/N their fraction. Due to the core repulsion, for l t 2 a
unit may establish at most k = 4 contacts (two per side).

In Fig. 5 we plot the fractions fk vs time for the same system
of Fig. 4. After a quick condensation to a network ( f0 - 0 for
t - t0), the network does not contain the equilibrium propor-
tion of network motifs. The fraction f1 of units at dangling ends
tends slowly to zero, with a scaling compatible with a power law
f1 B t�1. Eventually, at teq E 2 � 106t, mapped to E10 s,
the fraction f1 reaches its asymptotic value. This very slow
reduction of the number of strands with dangling ends high-
lights a stagnant global relaxation of the network. Also the
fraction f3 of units meeting at branches slowly decreases as
f3 B t�1 till teq and then fluctuates around its equilibrium
value. We can approximate the asymptotic ratio %f3/%f2 C %f3 (the
bar over fk denotes the long-time value of fk) by the equilibrium
expression %f3/%f2 = exp(�Df32/T), where Df32 = DF32/3 is the free
energy difference per unit derived from the single trimer
problem, see Section 3.1. For l = 1.75 and T = 1, this gives
%f3/%f2 C 0.003. This prediction, however, is not fully quantitative,
as it neglects the role of trimer interactions (and even more
complex many-body interactions) which are present in the
macroscopic system. Finally, a very small amount of units with
four contacts (k = 4) is temporarily observed during the relaxa-
tion process, in correspondence of the maximum concentration
of branches f3. This is not surprising, as four-contacts states
arise when the branched geometry affects both sides of a unit.

Fig. 4 Evolution of the average strand length hLi for a system of N = 6000
particles with l = 1.75, and T = 1 (thick black curve). The cyan band marks
the metastable regime with excess of branches (see an example in the
upper inset) while the orange band identifies the regime of thermo-
dynamic equilibrium (lower inset). Vertical arrows indicate the condensa-
tion time scale t0 C 3 � 103t E 1 ms and the typical time ts C 2 � 104t of
network rearrangements. In the two configurations of the network, units
with k = 1, 2, 3 contacts are drawn, respectively, in yellow, red and cyan.

Fig. 5 Evolution of the relative density fk of units with k-contacts for the
same relaxation dynamics of Fig. 4 (N = 6000, l = 1.75 and T = 1). Dashed
lines represent a scaling Bt�1.
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Since their energetic cost is essentially twice the cost of a single
branch, their asymptotic concentration is expected to be of the
order of (%f3)2, a behaviour which, however, was not observed in
our simulations due to finite size and finite time effects.

The slow scalings of f1, f3, and hLi suggest that the dynamics
within the network proceeds through a sequence of frustrated
rearrangements. For instance, a dangling end joining its free
cap to the side of a strand would form a branch. This local state
is however thermodynamically less favorable (see Fig. 1(b)),
thus leading to a subsequent decay back to a dangling end and
a linear strand. A direct merging of two dangling ends would
better stabilize the system but this event becomes more and
more unlikely with time due to the concomitant decreases of
the dangling ends population. From this argument it follows
that the time scale of network rearrangements ts in Fig. 4 is
determined by the scission time of branch points. Indeed from
Fig. 3(b) we find that t3 C 104 C ts for l = 1.75 and T = 1.

The variety of micellar structures depends on several para-
meters (solvent, salt concentration, surfactant chemistry) and
includes networks rich in branches. This situation is realized in
our model by increasing l. For example, with l = 2 and T = 1,
the relaxation proceeds through the formation of a metastable
network with relatively small average strand length, as shown
in Fig. 6(a) (the configuration at the end of the simulation
is shown in Fig. 6(b)). Again, there is a very slow convergence
of the fraction f1 of units at the caps of dangling ends, see
Fig. 6(c). In Fig. 6(d), in linear scale on the vertical axis, it is
apparent that also the fractions f2 and f3 are slowly converging
toward their asymptotic average values. Here, equilibrium
thermodynamics predicts a clear dominance of branches
over strands: in the single trimer study in Fig. 3(a), we obtain

DF32 C �8 for the nearby parameters l = 1.95 and T = 1.
Therefore, we conclude that equilibrium is far from being
reached and that the configuration reported in Fig. 6(b) is still
a metastable one.

The phenomenology described above holds for several
particle densities. Indeed, by changing considerably N and
keeping the volume V fixed, we have been able to vary
rnum = N/V by a factor of 3 (data not shown) Yet, the scaling
of the mean quantities is quite similar to the previous cases.
In particular, the average strand length in the initial metastable
network is unaffected by the change of density. However, the
density determines the time scale t0 of the initial network
condensation. This is defined as the time needed for the
fraction of 0-contacts f0 to go below the threshold value
f *= 0.4 starting from a homogeneous initial condition of
isolated particles ( f0 = 1) at time t = 0. By scaling arguments,
at low concentrations, diffusion leads to t0 B rnum

�2/3.
At higher concentrations it is rather the ‘‘ballistic’’ expansion
of the network core (as in other Brownian coagulation
systems45) that determines the time scale t0 B rnum

�1.
In Fig. 7 we report estimates of Bt0 (up to a constant that is
irrelevant for the scaling) which are compatible with the two
regimes, see also the appendix for further details. Note that we
have verified that f* is irrelevant for the scaling behavior of t0

with rnum in so far as f* is large enough to provide a sampling
of the initial relaxation stages.

4 Discussion

We have introduced a patchy particle model to study the
relaxation dynamics of living polymer networks driven out
equilibrium by a deep thermal quench. A novel relevant feature
of this coarse-grained description is its ability to bridge the
short time dynamics of its elementary motifs (dangling ends,
linear strands, branches) with the long time behavior of the
mesoscopic network.

Fig. 6 Relaxation dynamics of a system with N = 2000 particles and l = 2
for T = 1. (a) Average strand length hLi. (b) Final configuration of the
network: gold, red, cyan, and magenta beads identify, respectively, units
with k = 1, 2, 3, 4 contacts. (c) Evolution of the fraction fk of units with
k-contacts in log–log scale and (d) in linear-log scale.

Fig. 7 Time scale of the network condensation as a function of the
particle density. The straight lines indicate the scalings expected at low
and high densities. Data refer to system sizes N = 25, 50, 100, 200, 400,
800, 1600, T = 1 and l = 1.8. Particles are evolved in a cubic box with side
equal to 324R and periodic boundary conditions.
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By combining large-scale simulations and analytical esti-
mates of the free energy barriers between motifs, we rationalize
the observed slow convergence of the network to equilibrium in
terms of the frustrated dynamics of the local motifs. In parti-
cular we argue that the relaxation process develops through a
sequence of rearrangements that are not only energetically
challenging but also require the solution of topological
constraints. Importantly, such constraints do not derive from
static functional properties of motifs, but emerge dynamically
and depend on local thermodynamic conditions. Moreover, the
far-from-equilibrium character of our setup is naturally beyond
the perturbative regime, where exponential relaxation laws are
expected.7,10

While we have used a standard temperature quench to
produce a clean representation of the network relaxation, in
practice the considerations we have drawn should be extended
to transient regimes of mechanical or chemical origin. For
instance, a passage of a micro-bead through a portion of a
viscoelastic fluid made of wormlike micellar networks may
‘‘scramble’’ severely the system by generating dangling ends
and by distorting the branches. This unbalanced state then
should re-equilibrate by following a relaxation dynamics akin to
the one we have characterized here. Such scenario is relevant
for microbeads of diameter D traveling with mean velocity v at
high Weissenberg number Wi = v/vr, where vr = D/trel is the
velocity scale associated to the relaxation over D with time scale
trel. Our findings suggest that a proper definition of trel should
consider the possible emergence of power-law behaviors for
strongly disturbed polymer networks. In fact, the relaxation
times found here are of the same order of magnitude (seconds)
of those measured experimentally in viscoelastic micellar
networks.5,6 It is thus natural to conjecture that trel is the time
at which each microscopic motif of the network reaches,
through a power-law decay, its typical (equilibrium) fraction.
In this respect, it is the ending time of this scale-free aging (not
to be confused with chemical aging, as a high-temperature
degradation of carbon–carbon double bonds46) that should be
considered for evaluating the standard Deborah and Weissenberg
numbers used in experiments.11,12

Our findings also raise the question on which of, e.g., self-
healing rubber,47,48 colloidal systems,49–51 or network fluids52

do experience a relaxation process characterized by a slow
rearrangement of local motifs. In this respect we believe that
coarse-grained descriptions based on patchy colloids, as the
one presented here, can be highly valuable.

Finally, another perspective of our work is related to the
problem of the stability of ring solutions versus network struc-
tures in self-assembling systems.24,53 Suitable generalizations
of our model could be considered in order to bias the aggrega-
tion of linear structures towards the formation of closed
rings. For instance, instead of units with two antipodal sticky
spots, one could consider patchy particles that are non-
axisymmetically distributed along the surface.24 The interplay
between the branching parameter l here introduced and the
propensity to create rings is an open question that will deserve
future investigations.
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Appendix
A Numerical methods

Langevin dynamics. Let us consider an ensemble of N
patchy particles labeled by the index i = 1,. . .,N and let a = 1,
2, 3 be an additional index that identifies the subunits, where
a = 1 is the central repulsive core and a = 2, 3 identify the two
sticky spots in Fig. 1(a). In the following we denote by -

ria the
position of the center of mass of the subunit a of unit i and by
d jb

ia = |-ria�
-
rjb| the distance between two subunits. The repulsive

interaction between a pair of central cores of radius R is
modeled by a truncated and shifted Lennard-Jones potential

ULJ Dij

� �
¼ 4e

2R

Dij

� �12

� 2R

Dij

� �6

�1
4

" #
Y 2

1
6ð2RÞ �Dij

� �
; (1)

where we have introduced the symbol Dij = dj1
i1 to simplify the

notations. The parameter e is the typical energy scale of the
Lennard-Jones potential and Y(x) is the Heaviside function.

The attractive interaction between sticky spots is described
by a Gaussian potential with amplitude A and range s, namely

UG d
jb
ia

� �
¼ �A exp � djb

ia

s

 !2
2
4

3
5; (2)

where the subindices a and b are restricted to the values (2,3).
Moreover we set

ULJ d
jb
ia

� �
¼ 0 if a or b ¼ ð2; 3Þ

UG djb
ia

� �
¼ 0 if a or b ¼ 1

8><
>: : (3)

Subunits within each unit evolve as a rigid body arranged as
in Fig. 1(a). The evolution of the system is described in terms of
a Langevin equation

m
d2~ria
dt2
¼ �gd~ria

dt
� ~rU ~riað Þ þ~ZiaðtÞ; (4)

where U = ULJ + UG + constraints is the total potential energy
function and m is the mass of each subunit. The first term in
the r.h.s. of eqn (4) is a linear dissipation proportional to the
friction coefficient g, while ~Zia(t) is a Gaussian noise with zero
mean and delta-correlated in time. Denoting by Z(c)

ia with c = 1,
2, 3 the Cartesian component of~Zia in the c direction, the noise
satisfies a standard fluctuation–dissipation relation in the form

Zð‘Þia ðtÞZ
ð‘0Þ
jb t 0ð Þ

D E
¼ 2gkBTdi; jda;bd‘;‘0d t� t 0ð Þ; (5)

where kB is the Boltzmann constant and T the temperature.
Numerical integration of eqn (4) is performed with LAMMPS
engine.36 Nonequilibrium simulations of the system relaxation
process are realized according to the following protocol.
First we evolve the system described by eqn (4) in the absence
of the Gaussian attractive potential (UG = 0) until a uniform
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thermalized state is reached. Then we activate UG and we start
monitoring hLi and fk as discussed in the main text.

Physical units. In our simulations the system temperature T
is measured in units of e/kB, where e is the amplitude of the
Lennard-Jones potential, with kB = e = 1, A = 40e and s = 0.4R.
Distances are measured in units of monomer radii R. We set

m/g = t, where t ¼ R
ffiffiffiffiffiffiffiffi
m=e

p
is the (unitary) characteristic

simulation time. In order to estimate the time t in physical
units, one can proceed as follows. From the Stokes formula of
the friction coefficient for spherical beads with radius R, we
have g = 6pZsolR, where Zsol is the viscosity of the solvent.
By eliminating m in the above formulas for the characteristic
time, one has g = et/(2R)2, hence

t ¼ 3pZsolð2RÞ3
e

’ 2 ms

In the numerical evaluation we consider the nominal water
viscosity at room temperature, Zsol C 1 mPa s, and we set
T = e/kB = 300 K and R = 5 nm.

For the large-scale simulations of this work, the system is
evolved in a prism of sides (d,d,3d) with d = 108R, with periodic
boundary conditions. Its volume corresponds to 3d3 C
0.5 (mm)3. If N = 6000 units are introduced in this volume,
their volume fraction becomes

f ¼
N
4

3
pR3

3d3
’ 0:7� 10�2

Contact threshold. Given a configuration of patchy particles
identified by the set of -

ria, two distinct units i and j a i are
considered in contact if there exists a pair of sticky spots a and
b such that djb

ia r y, where y is a threshold. To perform an
accurate sampling of merging and scission events in the system
of particles, y needs to be of the order of the distance between
bound units, in a way that typical thermal fluctuations in their
positions of do not produce ‘‘spurious’’ events. To determine a
reliable value of y for the potential U specified in the previous
section, we have computed the distributions of sticky spot
distances djb

ia for all i a j in generic networks, see Fig. 8 for
an example. The distribution displays a clear gap in the region
[0.5R,1.8R] separating the ensemble of bound sticky spots
(with djb

ia t 0.5R C s) from the ensemble of unbound ones.
Accordingly, we have chosen y = R, well inside the gap. We have
verified that this threshold value is reliable in the whole range
of l and T considered in this work.

Parallel tempering simulations. Free-energy differences
between microstates ‘‘2’’ (strands) and ‘‘3’’ (vertices) have been
computed through Langevin equilibrium simulations with
parallel tempering sampling technique.39,40 This method is
employed to sample accurately the low-temperature equili-
brium distribution of the system, thereby reducing the impact
of very long correlation times on computational time.

Simulations have been performed for a system of N = 3
interacting particles confined in a spherical volume with radius
R0 = 10.85R and volume fraction f C 2 � 10�3, which

corresponds to the value of particle density of large-scale
simulations with N = 2000. We have verified that in this
minimal setup the confining volume is sufficiently larger than
the typical particle volume, so that it does not introduce
significant finite-size effects. The free energy difference DF32

is computed via the equilibrium Boltzmann distribution
DF32 = �T log(P3/P2), where P3 and P2 are respectively the
occupation probabilities of states ‘‘3’’ and ‘‘2’’ sampled over
the equilibrium Brownian dynamics. Parallel tempering evolu-
tion is performed for a total time of 5 � 106t with a swapping
period of 50t. Temperature swaps are realized between adjacent
temperature states within the set of temperatures considered
in Fig. 3(a).

Scission times. Scission times in Fig. 3(b) and (c) have been
computed for a system of N = 3 interacting particles confined
in a spherical volume with radius R0 = 10.85R and evolving
according to eqn (4). For each value of temperature T, particles
were initially prepared in a ‘‘3’’ configuration (Fig. 3(b)) and
in a ‘‘2’’ configuration (Fig. 3(c)) and evolved until a scission
event to a dimer-plus-monomer state (configuration ‘‘1’’)
was observed. For each T, the average scission time has been
computed by averaging over a sample of 10 independent
scission events.

Condensation time scales. Diffusive and ballistic regimes
are further analyzed in Fig. 9, where we compare the average
particle distance %d = rnum

�1/3 with the typical size dc(t) of the
biggest cluster of particles found in the system at time t.
We define dc(t) = 2RNc(t), where Nc(t) is the total number of
particles in the cluster. We focus on two sizes, namely N = 25
(Fig. 9(a)) and N = 1600 (Fig. 9(b)), which belong respectively to
the diffusive and ballistic condensation regime. For N = 25 we

Fig. 8 Distribution of distances between sticky spots for a system of
N = 2000 particles with l = 1.75, A = 40e and s = 0.4R. Particles are
prepared in a homogeneous state and evolved at T = 1 according to eqn (4)
in a cubic box with side equal to 54R and periodic boundary conditions.
The histogram is representative of the configuration obtained at t = 105t,
see the inset. Black, red, green and blue bars refer respectively to the
combination of indices (a,b) = {(2,2),(2,3),(3,2),(3,3)} in the set of distances
djb

ia for i, j = 1,. . .,N. Their distributions overlap very well, as expected from
symmetry reasons. Multiple peaks above the gap region derive from the
regular spacing of particles in the strands.
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find %d c dc(t) during the whole period in which f0 4 f * while
the case N = 1600 displays a quick growth of dc(t) to values
which are of the same order of %d thus suppressing the diffusive
scaling of t0.45
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Nature, 2008, 451, 977.
48 T. F. A. de Greef and E. W. Meijer, Nature, 2008, 453,

171.
49 E. Del Gado and W. Kob, Europhys. Lett., 2005, 72,

1032–1038.

50 E. Zaccarelli, P. J. Lu, F. Ciulla, D. A. Weitz and F. Sciortino,
J. Phys.: Condens. Matter, 2008, 20, 494242.

51 R. Angelini, E. Zaccarelli, F. A. de Melo Marques, M. Sztucki,
A. Fluerasu, G. Ruocco and B. Ruzicka, Nat. Commun., 2014,
5, 4049.

52 C. S. Dias, N. A. M. Araújo and M. M. T. da Gama,
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