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Cluster prevalence in concentrated ring-chain
mixtures under shear
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Semiflexible ring polymers are known to exhibit clustering behavior and form stacks in concentrated
solutions. Recently, weak shear was suggested to re-orient these stacks with flow, a phenomenon more
easily visible in more concentrated solutions [Liebetreu et al, ACS Appl. Polym. Mater., 2020, 2(8), 3505-3517,

DOI: 10.1021/acsapm.0c00522]. In this work, we investigate the impact of mixing linear chains and rings

in a similar system under shear, studying clustering in the presence of semiflexible, rod-like chains. We
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present a correlation between chain monomer fraction and clustering behavior as linear chains take up
less space, thus decreasing the system’s effective density and, subsequently, clustering. However, we
suggest mixtures with a low chain concentration to maintain or potentially enhance clustering at

equilibrium while this effect is destroyed under shear. The mixing of chains and rings may therefore be
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1 Introduction

In recent years, the importance of polymer topology for dynamical
and rheological properties has gained significant importance.
Polymers come in a host of different topologies such as linear
chains, stars, dendrimers and rings, and the impact of topological
differences on polymer dynamics in dilute solution has been
studied extensively both in equilibrium'™ and a variety of out-of-
equilibrium situations®® such as shear flow. Special attention has
been given to dynamics under spatial constraints,”™** and it has
recently been shown that linear chains and rings move through
narrow segmented channels at different radial distances.'” Spatial
constraints imposed via an increase of monomer density have
also been studied extensively for melts'>'* as well as semi-dilute
suspensions.**°

Polymers of diverse topology often occur naturally. Examples
for ring-shaped polymers include plasmids and the kinetoplast
from the mitochondria of trypanosome parasites.”” Synthetically,
polymer topology can be controlled through the use of optical
tweezers,'® and double-stranded DNA rings have been manu-
factured to produce catenanes,'®>* a group of interlinked rings.

Semiflexible rings in concentrated solutions are known to exhibit
a self-organized, amorphous cluster phase in equilibrium.'>'*** In
this phase, rings form long stacks without net translational and
orientational order. On such stacks, rings are strongly correlated to
each other as well as to rings on neighboring stacks. These rings are
typically of oblate shape, but some of them may also exhibit a
prolate shape and thread through other rings in order to reside
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used to create more strongly organized structures susceptible to reorientation via weak shear.

within a given stack. Dynamically, the cluster phase results in a
cluster glass,> an arrested form of matter in which the cluster
structures are locked into place but individual rings can hop
between clusters, similar to individual particles in cluster
crystals.?® In addition to pure ring solutions or melts, mixtures
of rings and linear chains have also attracted considerable
attention recently, both theoretically and experimentally, due
to the rich dynamics they display, and in particular with a focus
on the mechanism of threading of the rings by the chain and
the ensuing constraint release mechanism.?”** Furthermore,
mixtures of long linear chains and polymer rings have been
shown to exhibit an increased viscosity as compared to pure
chain solutions.**°

Recently, semiflexible rings have been shown to exhibit pro-
nounced clustering behavior even under weak shear, whereas
strong shear destroys clusters.’” Such sheared clusters have been
shown to re-orient due to the imposed shear and form bands
aligned with flow independent of consideration or disregard of
fully-developed hydrodynamic interactions. Stacks aligned in this
manner maintain their orientation even after cessation of shear.
This effect is more pronounced in concentrated solutions and
more difficult to isolate for semi-dilute systems. In this work, we
investigate the effect of mixing semiflexible linear chains and rings
on the overall clustering behavior in the system. We employ
Molecular Dynamics simulations of semiflexible polymers coupled
to a solvent modeled by Multi-Particle Collision Dynamics®®*°
without fully-developed hydrodynamic interactions®®*!
study the impact of steady shear on the system. Varying the
chain monomer fraction while keeping the number of monomers
constant at three distinct concentrations in the semi-dilute
regime, we find that high chain monomer fractions typically

and
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make the system behave similarly as it would for pure ring
solutions at lower monomer densities. We link this effect to the
effective density and topological state of the system, the former
decreasing with increasing chain monomer fraction. However,
mixing in only a few chains conversely improves clustering
behavior as chains get trapped inside of stacks of rings and
help stabilizing these structures. Under shear, the investigated
properties progressively lose their dependence on chain stoi-
chiometry, converging towards values dictated by monomer
density as y grows. Not only could this effect be used to improve
clustering behavior in ring solutions, it might simultaneously
simplify reorientation of clusters in a particular direction using
weak shear.

2 Methods

2.1 Numerical model

We perform Molecular Dynamics (MD) simulations to study
semiflexible polymers in the bulk under shear. To this end, we
employ the Kremer-Grest bead-spring model*>** and an additional
bending potential to introduce rigidity.'® The equations of motion
are integrated by Velocity-Verlet.***> We use polymer rings of
contour length Nz = 50 and chains of contour length N¢ = 25,
ensuring that rings and chains, when fully stretched, are of
about the same length and still fit inside the simulation box of
volume V = (50 x 50 x 50)¢> where ¢ is the length scale of the
Lennard-Jones interaction of the Kremer-Grest model. We
couple the molecular-dynamics part of the simulation to a
solvent modeled by Multi-Particle Collision Dynamics®®*°
(MPCD) with a modification to disable fully-resolved hydro-
dynamic interactions®*" in the interest of computational efficiency.
Viscous heating is prevented by employing a Maxwellian cell-
level thermostat.*® Lastly, we employ Lees-Edwards boundary
conditions*® to establish a linear velocity profile corresponding
to planar Couette flow such that the expected solvent velocity
vs(r) = jy%, in which j is the imposed shear rate, r = (x,),2)
denotes an arbitrary location, and X, y, and Z indicate flow-,
gradient- and vorticity directions.

We use the standard set of MPCD parameters corres-
ponding to solvent particle mass m = 1, collision angle o = 130°,
and collision cell side length a = ¢. We set the number of solvent
particles per collision cell to (N.) = 10 and correspondingly the
mass of a polymer bead to M = m(N.) = 10. The MPCD timestep
was set to & = 0.1[(ksT) >°m®°c]. This combination of parameters
creates a solvent with viscosity 1, = 8.70[(ksT)*°m®°c>].

Similarly, we use a well-established set of MD parameters
used by Poier et al.'® to study cluster-glass phases of semiflexible
rings, as well as in subsequent works on similar systems."">**”
This choice of parameters corresponds to Weaks-Chandler-
Andersen potential parameters ¢ = kg7 and ¢ as a unit of length,
FENE potential Vepng(r) = —ekRo>/6*In[1 — (r/R,)?] with spring
constant k = 15kzT/¢ and critical bond extension R, = 1.55, and
lastly a bending potential acting on consecutive bonds at an
angle ¢ to each other: Vpena(¢) = exp(1 — cos(¢))* with rigidity
constant kg = 30kgT/e. For rings in equilibrium at contour length

38,39
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Ny = 50, this model yields a radius of gyration of (R, o) ~ 6.50
and an expected bond length of (l,) = 0.960. For chains at
contour length Ng = 25, one obtains (Ry,) ~5.50. We employ an
MD timestep of 5t = 0.002[(kgT) **m°>s], which is sufficient to
prevent concatenation.

2.2 Simulation details

Because of the vast number of monomers in our system and the
use of Lees-Edwards boundary conditions,*® we employ our
own custom code written in C++/CUDA" to run efficiently on
GPUs. This code has been tested extensively and successfully
utilized in previous works.>”***° It combines several optimization
methods like parallelized MPCD,® particle sorting," Verlet-
and cell lists,>” and an adaptation of the cell-list algorithm for
Lees-Edwards.>

We set the size of our simulation box to V= (50 x 50 x 50)c¢°
and investigate a set of different monomer densities p = N/V =
{0.364, 0.456, 0.600}¢ > for monomer counts N. For Fig. 2 and 3
and Fig. 6, we have chosen to use a gray color gradient for p =
0.3640 >, blue color gradient for p = 0.4565 ° and a red color
gradient for p = 0.66 . Building upon the effective density
employed by Bernabei et al.'® and Slimani et al.,>® we define an
effective density p = [Cr-(Vgr) + Cc(V)]/V where Cx corresponds
to ring- (R) or chain (C) count and (Vx) to the estimated
expected volume of the corresponding objects. Note that p
always refers to the effective density as measured at equili-
brium. Bernabei et al.™® took the cubed equilibrium diameter of
gyration Dy,’ as a volume estimate. However, in the case of
chains, this would severly overestimate the average proximity
and overlap of objects in the system. Therefore, as an estimate
for these volumes, we instead use the eigenvalues 4, of the

N;
gyration tensor G= l/NXZXs,- ®s;' (where ® is the dyadic
i=1
product and s; is the vector from the object’s center-of-mass to
the position of particle i) such that (Vx) = (11)-(4y)-(3). We
further define the chain monomer fraction as Qcgr = CcN(/N,
i.e., the fraction of number of monomers belonging to chains,
CcNc, to the total number N of monomers in the system.
Accordingly, low values of Qcr indicate a system dominated
by rings. The effective equilibrium densities p for different
values of p and Qcg can be found in Table 1 below.

We follow the method set forth by Bernabei et al'® and
employed as well in subsequent works'®?® to identify stacks of
rings. To this end, we define the director d; of a ring i to be
equivalent to the eigenvector corresponding to the smallest

Table 1 Effective equilibrium densities p for a variety of different chain
monomer fractions Qcg and monomer densities p

Qcr P (p =0.3640"7) P (p =0.4560"") P (p =0.6000°)
0.00 3.00 3.66 4.72
0.10 2.60 3.14 3.96
0.25 2.49 2.77 3.16
0.50 1.77 2.24 2.44
0.75 1.19 1.50 1.79
0.90 0.78 0.92 1.24
1.00 0.44 0.56 0.71
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eigenvalue of the gyration tensor G. As such, d; is always
perpendicular to the plane in which the open semiflexible ring
resides. We can then employ the following criteria for deciding
whether any ring i is on the same stack as a ring j:

di-di || >1-Ay
[ry-di || < (1
vy —di-(ry-di) | <vi

in which r;; is the distance vector between the rings’ centers-of-
mass, and Ay = 0.1, v, = 3.00 and v, = 2.5¢ are parameters
chosen a posteriori to identify stacks in agreement with visual
intuition. The results are qualitatively robust with respect to
small variations in these parameters. Because this kind of
ordering is unique to semiflexible rings, we omit chains from
this consideration.

We prepare our mixtures by taking a fully equilibrated
system of rings in the cluster-glass phase, cutting random rings
open, and allowing the system to equilibrate again. The same
initial equilibrated pure-ring system was used for preparing all
simulations, and the same initial equilibrated ring-chain mix-
tures were used for varying shear rates y at constant chain
monomer fraction Qcr to enable highlighting of shear and
chain fraction, and maintaining system comparability. We define
the Weissenberg number®™ Wi, = j-1z,, a quantity computed
from shear rate j and relaxation time 7y o of a semiflexible ring in
dilute solution in equilibrium. We then simulate each system for
about ¢ = 3 x 10°[(kgT)” **m®>s], with the exact number varying
slightly due to runtime restrictions on the employed GPU cluster.
By fitting the autocorrelation function @(t) of the end-to-end
vector for chains and the maximum-distance vector between
beads 7 and i + Ng/2 for rings with f(£) = age "™ + (1 — ape 7>,
we obtain tg = [°f(r)d2.>® We determine the dilute-equilibrium
relaxation times 1z = 62 000[(kgT)~**m*°g] for the chains and
Tro = 46 000[(kgT) **m®°¢] for our rings.

3 Results and discussion
3.1 Ring clustering behavior in ring-chain mixtures

Semiflexible rings in concentrated solutions in equilibrium exhibit
clustering behavior and self-organize into stacks.'>'®**?**> Under
sufficiently weak shear, these stacks reorient and align with the
flow direction.”” In this work, we demonstrate the changes intro-
duced by mixing chains and rings into the same system. Specifi-
cally, we cut open some of the rings, thus keeping the monomer
density p constant.

First, we look at the centers-of-mass of the polymers in our
system to obtain an overall view of the ensuing phenomenon
after imposing shear. In Fig. 1, we show centers-of-mass of
rings (red) and chains (blue) for Wi, spanning four orders of
magnitude and Qcr between 0.0 and 0.5 with p = 0.607 3. At
equilibrium, the rings in the system look equally as organized
into clusters at Qcg = {0.0, 0.1, 0.25}, whereas shorter clusters
can be discerned at Qcgr = 0.5. As Wi, increases, stacks begin to
align with the flow.>” At Wi, = 0.04552, we observe regular
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alignment for Qcg = {0.0, 0.1}, similarly pronounced alignment
for Qcg = 0.25 and clusters already breaking for Qcg > 0.5.
At Wi, = 0.45524, stacks are fully aligned for Qcg = {0.0, 0.1},
start dissembling for Qcg = 0.25 and are mostly broken for
Qcr = 0.5. As Wi is increased another order of magnitude, very
few and only short clusters can be seen independent of Qcg.

Intuitively, we expect that low values of Qcgr would yield
similar results to a pure-ring solution or even slightly improve
clustering. Additionally, it seems that higher values of Qcgr
might cause clusters to align and eventually also dissemble at
comparatively lower Wi,. Increasing Qcr past Qcg = 0.25
severely reduces clustering in the system when compared to
lower Qcg values.

We can verify and quantify this behavior using the dispersion
index DI of the centers-of-mass of our rings and chains as
described by Kam et al.’” and also Liebetreu and Likos;*” this
quantity is shown in Fig. 2a and b. To this end, we introduce a
cubic grid of cell length [ = 2.5¢ and measure sample mean u of
the number of centers-of-mass per cell. We label the sample
standard deviation of this quantity s. The dispersion index DI is
then calculated as DI = s*/u. Characteristically, a value of DI = 1
indicates a random arrangement of centers-of-mass in accor-
dance with a Poisson distribution. Values of DI < 1 point at
more-than-random uniformity, for example grid-like symmetry
for all individual centers-of-mass, whereas DI > 1 signifies
clustering. It should be noted that the justification for employing
this parameter is mostly a comparative one. In Fig. 2c, we
provide the probability p(k. > 5) for a ring to belong to a stack
with more than 5 members, which produces a similar graph.
The advantage of DI, however, is that the choice of 5 members
for p(h. > 5) is arbitrary and not necessarily indicative of
clustering. Moreover, removing rings from a given system can
drastically alter p(h. > 5), while DI should be more robust
under such changes and provide a more robust measure for
clustering when altering Qcg. In addition, the dispersion index
DI always has a reference value of 1 to indicate clustering or
uniformity in the system.

Fig. 2 shows the dispersion index DI both for chains (Fig. 2a)
and for rings (Fig. 2b). DI for chains is, across shear rates and
effective densities p, at around DI < 1. A notable exception
occurs for the most concentrated solution p = 0.6 > at Qcg =
{0.1, 0.25}, where chains appear to exhibit some weak clustering
behavior following the strong clustering of the rings in that system.
Curiously, this exception is also visible in Fig. 2b for the rings, where
equilibrium values of DI at Qcg = {0.1, 0.25} exceed DI at Qcg = 0.
A similar effect can be discerned at Qcg = 0.1 for semi-concentrated
solutions at p = 0.4560 °, whereas it vanishes for the most dilute
concentration investigated, p = 0.364¢ °. Looking at the effective
densities p, the effect is visible where 6 2 3.0 (compare Table 1),
which we will therefore treat as an estimate for a stabilization
threshold in this context. This threshold is also discussed later in
the context of Fig. 7 for momentary effective densities p,, where
these transitions are shown to be linked to p,, but also influenced
by Qcr and, subsequently, topology.

The weak clustering of the chains could point at chains
becoming trapped inside or between clusters of rings - an

This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Cluster phase in chain-ring mixtures. Centers-of-mass of rings (red) and chains (blue) for a variety of different Weissenberg numbers Wip and
chain monomer fractions Qcgr. The simulation box is shown in blue, and the system is projected onto the flow-gradient plane. The snapshots were
created using VMD,*® and the corresponding monomer density is p = 0.6¢°. Left to right: Increasing chain monomer fraction Qcg at constant
Weissenberg number Wig. Top to bottom: Increasing Weissenberg number Wig at constant chain monomer fraction Qcg.

observation difficult to quantify, but one which agrees well with our
visual impression of the system from Fig. 1. It seems plausible that
this trapping could potentially stabilize the clusters under shear,
protecting them from breaking into smaller clusters even at high
shear rates, but we do not observe such an effect. In fact, for
increasing shear, the same behavior can be seen for all the
investigated systems: DI decreases with shear, and ultimately, DI
for rings starts to converge against DI ~ 1 independent of p or Qcg.
It appears the chains in this work, at least, are either too short or too
rigid to effectively tangle the rings and hold them in place. However,
small non-zero values of Qcr seem to at least improve clustering
behavior in equilibrium, and they do not appear to influence the
slope of DI as shear increases, given p 2 3.0 (compare Table 1).

This journal is © The Royal Society of Chemistry 2020

Finally, we plot the probability p(h. > 5) for a randomly-
selected ring to be part of a stack with a ring count 4. > 5 in
Fig. 2c. Unsurprisingly, this probability decreases consistently
with increasing shear as clusters start to break apart. Curiously,
at p = {0.456, 0.6}a >, low values of Qcy cause well-separated
graphs at high shear and overlapping graphs near equilibrium,
even though there are less rings in the system as Qcg increases.

This provides further evidence that a small amount of
chains can enhance cluster formation, or at the very least does
not disrupt it. The observed improvement is, however, small,
and we cannot confirm without reasonable doubt that the effect
is not just the result of some noise. On the other hand, the
consistent behavior across different densities p for values of
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Fig. 2 Quantitative indicators for clustering against Weissenberg number
Wiq for a variety of different monomer densities p and chain monomer
fractions Qcg. (a) dispersion index DI, only chains. (b) dispersion index DI,
only rings. Values of DI > 1 indicate clustering. (c) probability p(h. > 5) for
a ring to belong to a stack with more than 5 members. Higher probabilities
indicate clustering.

Qcr = {0.0, 0.1} and the unchanging values obtained for p(h. > 5)
at low values of Wi as shown in Fig. 2c indicate that future
investigations of the system at these parameters might provide
further evidence for the effect discussed here, and potentially show
that clustering is not just equal but stronger under the addition of
a few chains at Qcg = 0.1, at least for sufficient overall densities p.

8714 | Soft Matter, 2020, 16, 8710-8719

View Article Online

Paper
—p240.360"2,Qer =0.00 =pa0.460">,Qcr=0.00 =p0.600">,Qcg =0.00
—=p0.360"2,Qcg=0.10 =p=0.460">,Qcg =0.10 =p=0.600">,Qcg =0.10
—p™0.360"2,Qer=0.25 =p=0.460">,Qcg=0.256 =p0.600">,Qcg=0.25
—=p240.360"2,Qer=0.50 =p=0.460">,Qcr=0.50 =p0.600">,Qcg =0.50
—p200.360"0,Qer=0.75 =p0.460">,Qr=0.75 =p0.600">,Qcg=0.75
p20.360°2,Qer=0.90 =pa40.460">,Qcr =0.90 =p=0.600">,Qcg=0.90
p0.360°2,Qr=1.00 —pa0.460">,Qer=1.00 —p=0.600">,Qcg =1.00
10°
10* 1
»
=
107 1
o
0
].O T 1 T 1 T
-3 -2 -1 0 1 2 3
10 10 10 10 10 10 10
Wig

Fig. 3 Polymeric viscosity i against Weissenberg number Wi, for a variety
of different monomer densities p and chain monomer fractions Qcg.

Next, we look at the rheological properties of the system
through the polymeric viscosity’® n = —o,,/j where o, is the
flow-gradient element of the stress tensor as computed from
Oy = zN: (si+fi,) where f; is

i=1

the total force acting on bead i. We have already established
from Fig. 2 that the chains in this work do not effectively tangle
the rings to keep them on formed clusters as shear increases. Fig. 3
confirms this effect through clear shear-thinning qualitatively
independent of p and Qcg. We suggest that both the rigidity of
the chains and their shortness might be detrimental to shear
thickening, with some chains getting trapped within the stacks,
but then aligning with them or simply capable of escaping a given
stack without causing too much friction.

We establish a direct correlation between polymeric viscosity
n and monomer density p, highlighted by three distinct bands
at high shear in Fig. 3. This also indicates that any topological
influence becomes drastically reduced at high shear, and that
the main factor for polymeric viscosity in this regime is the
monomer density p rather than the effective density g or the
chain monomer fraction Qcg. Across all investigated mixtures,
there seems to be a shear regime in which low values of Qcr
lead to lower relative viscosities 1 when compared to graphs of
higher Qcg at equal p. Unfortunately, the effect is difficult to see
and more difficult to isolate. We suggest this occurs because, as
clusters are broken apart by shear, chains might cause additional
friction and align at a different rate than rings. We will revisit this
question in Section 3.3.

the modified Kramers expression®’

3.2 Stack orientation under shear

We have defined the director d of a ring as its plane normal,
computed from the eigenvector of its gyration tensor G corres-
ponding to its smallest eigenvalue. The clusters formed under

This journal is © The Royal Society of Chemistry 2020
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equilibrium are typically oriented randomly. Under shear, those
stacks start to align themselves with flow until they eventually
break apart.’” We show quantitative evidence of this phenom-
enon in Fig. 4, which describes angles (0;) of stack axis to flow,
() of stack axis to gradient and (&) of stack axis to individual
ring directors d. The stack axis is computed as the main
principle component via G of the set of centers-of-mass of rings
on that stack.

An important feature of these angles is that they show the
alignment of stacks as shear increases, up to about Wi, =~ 0.5,
where we find a minimum for (0;) in Fig. 4a. For Wi, 2 0.5,
clusters break apart and long aggregates become increasingly
unlikely. Another indicator for this behavior is p(h. > 5) in
Fig. 2c¢, which shows a rapid decline for Wi, 2 0.5 across all
values of p and Qcg. If one compares (0;) to (&) in Fig. 4b and c,
one can see (£) mimicking the behavior of (6;) shifted to slightly
higher values of Wi,. We suggest that stacks, which are expected to
have a much higher relaxation time than individual rings, respond
to shear before individual rings do, thus causing stacks to align
even as rings still maintain their equilibrium orientations. Only
at higher shear rates, when rings start to align as well, do the
clusters break apart.

The observed alignment effect with shear becomes less
pronounced for higher values of Qcr across all investigated
monomer densities p. We suggest that this is simply due to less
and shorter clusters forming under such conditions as chains
become increasingly system-dominating, an observation taken
from Fig. 2. Such short clusters can also be detected as a side
effect of the employed algorithm for detecting these stacks
when rings in the system become increasingly aligned in the
same way and happen to pass each other. This effect becomes
increasingly pronounced at high shear and directly influences
the angles as seen here. For high values of Qcg, the system is
dominated by chains, and the few clusters which might form
will be increasingly short and short-lived, showing this side-
effect even close to equilibrium.

In the context of chains potentially helping the alignment
of clusters under shear, no such effect can be discerned here.
At Qcg = {0.1, 0.25}, the graphs for p = 0.66 * are almost

This journal is © The Royal Society of Chemistry 2020

between main cluster axis and the directors d of all rings on that cluster.

indistinguishable, so we can conclude that the addition of only
a few chains does not significantly alter the alignment of stacks
under shear. Overall, the alignment here seems to follow
similar rules for when chain monomer fractions start affecting
the system as we described before from Fig. 2.

3.3 Individual chains and rings in the mixture

We visualize some typical configurations of rings (red) and
chains (blue) in the aforementioned simulations at Qcg = {0.1,
0.25} in Fig. 5. One can identify the alignment of both rings and
chains as shear increases, as well as spot the onset of twisting
for rings, which is more pronounced for still higher values of
the shear rate.”” Chains instead exhibit stretching. Tumbling,
which occurs for both chains and rings in these simulations, is
difficult to visualize from snapshots. It should be noted that
here, we can even see a more complete alignment of rings into
the flow-vorticity plane for Wi, = 0.45524 and Qcg = 0.25 when
compared to Qcg = 0.10 at equal Wiy, as well as the onset of stack
destruction as shown in Fig. 1 and 2. This observation provides
further evidence that as rings align with the flow, clusters start
breaking. At constant monomer density p, increasing the chain
monomer fraction Qcgr means creating a more chain-dominated
system in which the remaining rings have more space to orient
themselves (p will be lower if p is kept constant).

In Fig. 6, we present instructive properties of individual
chains and rings. First, we define the radius of gyration (R,) =

(V71 + 72 + 73) for eigenvalues 4, > 4, > A3 of the gyration tensor
G"* and visualize it in Fig. 6a and d. Its value typically scales
proportional to effective density p. Semiflexible chains exhibit
swelling under shear as they stretch and elongate up to a maximum
value, then deflate as shear increases further due to tumbling
(Fig. 6a). Rings do not exhibit swelling; their rigidity causes them
to not stretch enough to balance out a twisting which is entropically
favorable to stretching. Instead, rings deflate under shear (Fig. 6d).
However, this twisting nevertheless makes them resemble a prolate
object, and their form mimicks that of the chains in strong shear.

To quantify this behavior, we define the prolateness S*
which inhibits values from —0.25 (a circle) to 2 (a straight line)
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and describes how ellipsoidal a shape is. Via the eigenvalues /; and we present the result in Fig. 6b for chains and Fig. 6e for
of G, S* can be computed in the following fashion:**° rings. While semiflexible chains resemble a straight line almost
independently of shear rate, rings, especially at high monomer

§— <(311 — RS)(3%2 — R) (34 — Rg2)> ) densities, twist themselves into a shape that more and more

R 7 resembles that of the linear chain. This also provides an explanation
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Influence of effective densities on clustering. Scatterplots for dispersion index DI and p(h.) against momentary effective density p, from all

investigated shear rates, monomer densities and chain monomer fractions. Markers indicate values of Qcg as shown in the legend; colors indicate values
of Wig as shown in the color bar. (a) Dispersion index DI against pm,. (b) p(hc) against pm.

for the viscosity in Fig. 3 - at high shear, rings and chains offer
little difference in shape, and thus, monomer density becomes
the defining factor in that regime.

We confirm from Fig. 6¢ and f that chains align themselves
with the flow axis while rings align themselves into the flow-
vorticity plane, which confirms our observations from Fig. 5.
Note that we are measuring angles to an axis, so we are biasing
our values away from perfect alignment.

We finally turn our attention to the question of the impact of
the effective density p on clustering behavior, which is summarized
in Fig. 7. The main question here is whether the clustering behavior
discussed around the findings presented in Fig. 2 is mainly
dictated by effective density p rather than by the topological
effects introduced by mixing chains and rings. To this end, we
define the momentary effective density p.,, similarly to the
effective density p, with the volume computed from averaged
gyration tensor eigenvalues (4;) not at equilibrium, but instead
in any given mixture at Wi, > 0.

As the shear rate and the chain monomer fraction Qcgr
increase, the quantity p, decreases accordingly because rings
and chains stretch and deform, reducing thereby the volumes of
the ellipsoids of inertia (V) and (Vy). The values scanned by the
quantity p,, in mixtures across varying Wi,, p and Qcg lie in the
same range, independently of the details of the mixture stoichio-
metry. If the topological differences between chains and rings
were negligible and instead their different sizes caused the
phenomena discussed in this work, then we should see all values
of DI and p(h.) in Fig. 7 collapse onto a single graph, respectively.
This is clearly not the case here, therefore topology is important.

There are other possibilities: if the different clustering
strengths are tied only to monomer densities p and topological
differences had no effect, we should see three distinct graphs
each showing slightly different dependence on py,. This could
apply here at least in parts of the figure, but it is not an
exhaustive explanation. Besides, we have already established

This journal is © The Royal Society of Chemistry 2020

that clustering is stronger for high values of p, so this influence
is not surprising. Alternatively, if Qcg was the sole driving force
behind clustering strength, we should see the same markers at
the same values for DI and p(h.) for varying p.,, respectively.
This is not the case here, either.

Similarly, we can get another indication for the decreasing
significance of topology for high values of Wi: this is easiest to see
in Fig. 7a where we find overlapping same-colored data points at the
lowest exhibited values of p.,, meaning that at these shear rates, p,
is almost the same independent of Qcr. Here, we see overlapping
datapoints only in the high-shear regime, and the same markers are
not always found at the same values of DI or p(h.). It is no surprise
that p would be the main driving force behind clustering strength -
this has already been established in Fig. 2. However, on top of this,
we show here that Qcg has a significant impact of its own on
clustering behavior in the system, one that is not only caused by the
difference in py,, especially for moderate shear Wi, € [10™", 10'].
Again, if that were the case and the topological difference had less
impact than the difference in size, we should see the scatterplots
collapse onto single graphs such that the quantities shown in Fig. 7
would depend only on p,,, which is not the case.

Close to equilibrium, momentary effective densities g, are
heavily influenced by Qcr as shapes are distinctly different, but
at least for Qcr € [0.0, 0.25], the impact on clustering is
negligible, confirming our previous observations about mixing
in chains and the parameter regimes in which it impacts the
system the strongest. Most importantly, we can discern distinct
graphs, meaning that even at same initial effective densities,
different clustering behavior can be achieved by varying Qcg.

4 Conclusions

In this work, we have investigated the effect of cutting
open semiflexible rings in a concentrated solution to create a
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chain-ring mixture. We have denoted the chain monomer fraction
as Qcr. We find that small values of Qcr do not significantly alter
the clustering- and general behavior of the solvent, and values
Qcr = 0.5 make clustering progressively unlikely. Under weak
shear, the addition of chains alters neither clustering behavior nor
cluster alignment. However, the addition of chains does signifi-
cantly alter the effective densities p observed in the system. For
high Weissenberg numbers Wiy, topological influences become
negligible as both chains and rings become highly elongated and
tumble. In this regime, monomer density p takes precedence over
Qcr OF p.

Initially, chains might get trapped within clusters, but their
length is not sufficient to entangle the stacks, and under shear, the
stacks break apart using the same mechanism as described before.*”
We find that the addition of a small number of chains into a system
of semiflexible rings (low values of Qcg) does not appear to affect the
clustering behavior of the system, neither with nor without shear.
Therefore, experimental investigation of such systems should not
require polymer blends that only, exclusively, feature rings.

Future work in this direction should investigate especially
the regime of Qcr € [0.0, 0.25] and Wi, € [1073, 10°] in which
chains might aid the system in clustering. Of particular interest
will be the variation of rigidity, either in general or only for the
chains to increase the overall entanglement in the system.
For this subset of shear rates and chain monomer fractions,
additional investigations could also alter chain contour length.
It is possible that, for chains of the same contour length as the
rings, their effect on clustering behavior might be much
stronger, and we encourage the tools developed and presented
in this work be applied to further, similar investigations.
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