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Based on (overdamped) Stokesian dynamics simulations and video microscopy experiments, we study

the non equilibrium dynamics of a sheared colloidal cluster, which is confined to a two-dimensional

disk. The experimental system is composed of a mixture of paramagnetic and non magnetic polystyrene

particles, which are held in the disk by time shared optical tweezers. The paramagnetic particles are

located at the center of the disk and are actuated by an external, rotating magnetic field that induces a

magnetic torque. We identify two different steady states by monitoring the mean angular velocities per

ring. The first one is characterized by rare slip events, where the inner rings momentarily depin from the

outer ring, which is kept static by the set of optical traps. For the second state, we find a bistability of

the mean angular velocities, which can be understood from the analysis of the slip events in the particle

trajectories. We calculate the particle waiting- and jumping time distributions and estimate a time scale

between slips, which is also reflected by a plateau in the mean squared azimuthal displacement. The

dynamical transition is further reflected by the components of the stress tensor, revealing a shear-

thinning behavior as well as shear stress overshoots. Finally, we briefly discuss the observed transition in

the context of stochastic thermodynamics and how it may open future directions in this field.

1 Introduction

Understanding the response to shear of complex systems, such
as emulsions, gels, polymeric solutions, foams, glasses and
colloidal suspensions, is key for various applications.1–3 Placing
such materials inside strong spatial confinement has severe
impact on their response to external deformations, which is
crucial for a multitude of applications such as thin-film
lubrication,4–7 microfluidic devices8,9 and colloidal machines
at the microscale,10–12 to name a few. Further, the material
response to shear is intimately connected to the non-
equilibrium dynamics of the constituent elements, that have
been the subject of recent research with non-Brownian
particles,13,14 polymer-,15 active bacteria-,16 and colloidal sus-
pensions in amorphous,17–19 fluid-,20,21 as well as crystalline
states.22–25

Colloidal suspensions under external fields have proven to
be a powerful test bed system, that is used to study the role of
channel geometry9,17,26 hydrodynamic interactions,24,27 fric-
tional interparticle contact and lubrication,28,29 as well as
plastic events,30–32 to cite a few. Key advantages of using
colloidal particles are the possibilities to directly visualize the
particle dynamics via video microscopy, and to tune the pair
interactions using external fields.33,34 Note that in dense sys-
tems, tracking the particle dynamics in the bulk may be
challenging. In this context, two-dimensional colloidal clusters
represent a simple, yet non trivial, model system to visualize
and investigate the rich many-body dynamics of strongly inter-
acting microspheres under shear.

Recently, we used such a system to explore the rheological
response for a large range of shear flow strengths.12 The
experimental system consists of an ensemble of microspheres,
which are confined by optical forces in a two dimensional
circular Couette shear cell. The two confining ‘‘walls’’, consist-
ing of colloidal particles, can be actuated independently of each
other by using magnetic- and optical forces. These forces give
rise to a hydrodynamic shear flow and induce complex non-
equilibrium behavior such as shear-thinning as well as local
shear-thickening.

In the present study, we focus on much smaller strengths
of the shear flow. We aim at analyzing the non-equilibrium
dynamics related to the initial breaking of the equilibrium
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structure and the onset of net particle transport in detail. We
find that this onset of motion is characterized by two different
steady states. Importantly, we investigate not only the net
particle transport inside these steady states but also their
fluctuations both in experiments and simulations, which reveal
a bistability for a large range of shear flow strengths. We find
very good agreement between the experiments and the numer-
ical simulations by comparing the distribution of angular
velocities per ring. Further, we analyze the different dynamical
modes which emerge upon shear, and observe a series of
locking and slip events. These slip events are reminiscent of
the avalanche-like dynamics generally observed in several
amorphous systems across different length scales,35,36 from
earthquakes,37 to strongly correlated systems.38 One aspect of
particular interest is the waiting time between two slips as well
as its duration. These two fluctuating quantities characterize a
typical time scale for the plastic events, that is reflected by the
mean squared displacements (MSD) of the particles as well as
the shear stress relaxations. In particular, we find a character-
istic plateau of the MSD as well as a shear stress overshoot, that
is commonly observed for sheared glasses.39

Finally, we briefly discuss the consequences of our results
for two important stochastic thermodynamics quantities, i.e.
the work and heat, that describe the energy supplied from an
external source, i.e. the magnetic field, as well as the energy
dissipated into the bath, respectively. Interestingly, the non-
equilibrium transition between the two steady states is most
clearly reflected by the heat distributions, displaying a marked
behavior with respect to its mean and the strength of its
fluctuations. This is somewhat different to our findings for a
planar slit pore system,40 where we have found the opposite,
namely that a most marked response for the stochastic work
distributions.

The paper is organized as follows. In Section 2, we describe
the experimental setup that we model using Stokesian
dynamics simulations, whose details we discuss in Section 3.
We then continue to discuss the azimuthal dynamics per ring
in Section 4 as well as the corresponding microscopic dynamics
in Section 5. The rheological response inside the different
steady states is then characterized in Section 6. Finally, we
briefly discuss some results for the stochastic energetics in
Section 7 and provide some general conclusions.

2 Experimental system

We assemble clusters of microspheres, as shown in Fig. 1(a), by
trapping polystyrene particles with time averaged optical twee-
zers. The colloidal suspension is prepared by first mixing
ultrapure water with a small amount of tetramethylammonium
hydroxide (B7 mM) to counteract the absorption of CO2. After
that, we add 1 ml of this solution to disperse 5 ml of stock
solution of superparamagnetic particles (4.5 mm in diameter,
M-450 Epoxy Dynabeads) and 50 ml of carboxylate modified
latex particles, (4 mm in diameter, CML Molecular Probes). The
colloidal suspension is then sandwiched between two cover

glasses which are sealed with parafilm and silicon vacuum
grease.

Our optical tweezers setup consists of a 1064 nm laser
(ManLight ML5-CW-P/TKS-OTS, operated at 3W) deflected by
an Acousto Optic Device (AOD, AA Optoelectronics DTSXY-400-
1064, driven by a radio frequency generator DDSPA2X-D431b-34
and two NI card cDAQ NI-9403) and focused from above by a
microscope objective (Nikon 40� CFI APO). The sample is
observed from below through a second objective (Nikon 40�
Plan Fluor) which is projected to a CMOS camera (Ximea
MQ003MG-CM). The AOD moves the trap to a new position
every 0.5 ms. This speed is such that, for a typical ring of
21 particles, each trap is visited every 10 ms. This time scale is
much smaller than the characteristic Brownian time of the
particles (t B 40 s), corresponding to the translational diffu-
sion. Thus, the potential generated by this time shared optical
trap can be considered quasi static and effectively acts simulta-
neously as 21 individual traps for each particle, respectively.
We use a custom built LabVIEW program to observe and to
manipulate the particles through a graphical interface, and to
assemble the cluster one by one. The LabVIEW code can be
accessed via github.41

The sample is placed inside a set of five coils which allow us
to apply a magnetic field in any direction. The coils are driven
by a NI card (cDAQ NI-9269), and the signal is amplified with
three power operational amplifiers (KEPCO BOP 20-10). The
magnetic field is also controlled by a LabVIEW program, which
allows us to automate the data acquisition. Particle positions
are extracted using the trackpy42 implementation of the
Crocker–Grier algorithm.43

3 Numerical calculations
3.1 Model

As shown in Fig. 1, we consider a suspension containing a two-
dimensional disk-like colloidal cluster. It consists of 45 polystyr-
ene and 3 paramagnetic particles, whose diameter are d = 4 mm
and dM = 1.125d, respectively. Similar to the experimental setup,

Fig. 1 (a) Experimental and (b) schematic image of the considered sys-
tem, consisting of a two dimensional cluster of confined microspheres. For
clarity, we have marked in (b) the four rings n = 1, 2, 3, 4 with colored lines.
The outer ring of particles (n = 4) is trapped by optical tweezers, while the
three paramagnetic particles, forming an inner triangle (n = 1) at the center,
are actuated by a rotating magnetic field.
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the colloids inside the cluster are confined by an outer ring of
polystyrene particles, and each particle is subjected to a har-
monic trap potential, which is given by

UR ri; tð Þ ¼ K

2
ri � ri;0
�� ��2; (1)

where ri is the position of particle i A {1,. . .,N4} of the outer
ring, consisting of N4 = 21 particles, K = 6000kBT/d2 is the
stiffness of the harmonic trap and ri,0 its center. In this study,
we focus on the special case where the position of the harmonic
traps is fixed at an equiangular distance on a ring ri,0 =
Rout[cos(Fi)ex + sin(Fi)ey], where Rout = 3.52d is the radius
of the outer ring and Fi = 2pi/N4 is the angular position of
particle i.

The inner paramagnetic particles are driven by a rotating
magnetic field B(t) = B0[cos(oM)ex + sin(oM)ey], where B0 is the
strength of the magnetic field, oM = 125.7 rad s�1 is the angular
frequency employed in the experiments, and ex as well as ey are
the unit vectors in x and y direction. This magnetic field
induces a finite internal relaxation time of the particle
magnetization,33 which can be modeled via a simple relaxation
equation qli(t)/qt = trel

�1[li � VwB(t)], where li is the dipole
moment, V = pd3/6 the volume, and w = 1.4 the susceptibility of
the paramagnetic particle i, whereas trel = 0.00015tB is the
relaxation time scale for the induced magnetic dipole and tB =
d2/D0 = 40 s is the Brownian time of a particle of diameter d that
is defined by D0 the diffusion constant. As a result, the para-
magnetic particles are subject to a net magnetic torque Ti,
defined via

Ti ¼
oM

2p

ðoM
2p

0

liðtÞ � BðtÞdt ¼ VwB0
2oMtrel

1þ oM
2trel2

ez; (2)

which is proportional to B0
2, the square magnetic field

strength.
The steric particle–particle interaction between the polystyr-

ene as well as paramagnetic particles is modeled via a generic
Yukawa-like potential, given by

UY rij
� �

¼ eYd
exp �krij
� �
rij

; (3)

where eY = 1.6kd exp(kd)kBT is the strength of the particle
interactions, k = 40d�1 is the inverse Debye screening length,
d is the mean diameter d = (di + dj)/2 of the interacting particles,
rij is the distance between the interacting particles.

The interaction between the induced dipole moments is
modeled via a time-averaged dipole–dipole interaction exerted
between the rotating paramagnetic particles, given by

UDDðrÞ ¼ �
~m0w

2V2B0;DD
2

8pr3
; (4)

where ~m0 is the magnetic constant and B0,DD = 0.117 [mT] is a
constant magnetic field strength. The latter is set such that the
radius of the inner ring consisting of paramagnetic particles is
approximately constant and equal to that measured in experi-
ments Rin = 0.625d.

3.2 Simulation details

We perform (overdamped) Stokesian dynamics simulations to
investigate the non-equilibrium dynamics of the colloidal par-
ticles actuated by the magnetic torque. The equation of
motions read

@riðtÞ
@t
¼
XN
j¼1

MTT

ij
�
X
jak

Fjk rjk
� �

þ FR rj ; t
� �" #

þMTR

ij
�Tj

( )

þ @Wi

@t
;

(5)

where ri is the position of particle i, Fjk is the interaction force
stemming from eqn (3) and (4) and rjk is the distance between
particle j and k, FR is the force of the traps acting on the outer
ring and resulting from eqn (1), Tj is the magnetic torque
acting on the paramagnetic particles. In addition, the colloids
are subject to random displacements qW with zero mean and
variance 2D0qt.

In our framework, the hydrodynamic interactions between
the particles are accounted for via the translation–translation

MTT
ij

as well as the translation–rotation mobility tensors MTR
ij

,

see eqn (24) and (28) given in Appendix A. In particular, we use
expressions that include the finite extent of the colloidal
particles on the Rotne–Prager level as well as the presence of
the plane boundary represented by the bottom of the
specimen,‡ see Appendix A for details. Note that, compared

to ref. 12, we here employ new, refined expressions for the MTT
ij

in order to treat the bidispersity of the considered colloidal
suspension accurately. As a consequence, we have identified a
new set of parameters for the particle interactions (eY and k) via
a parameter scan that aims to match the mean dynamics from
simulations and experiments. To this end, we consider the
limiting case of a vanishing magnetic field B0 = 0 and rotate the
outer ring with constant angular velocity Fi = oRt + 2pi/N4, a
situation which was discussed in ref. 12 as well as11 for a
monodisperse cluster. For this limiting case, we compute and
compare the mean angular velocities per ring as a benchmark
to identify an appropriate set of parameters.

Finally, note that the rotational degrees of freedom are
modeled only implicitly by the translation–rotation mobility
tensors, see eqn (24), and the magnetic torque, see eqn (2).
Here, we have assumed that the particles are not in direct
contact as they are separated by a thin layer of solvent. Thus,
the particles are able to rotate freely, following the hydro-
dynamic flow. We also note that an explicit modelling of the
magnetic degrees of freedom (i.e., the dipole orientations) of
the three inner particles is not necessary since these particle are
paramagnetic and, thus, their dipole orientations are governed
by the external field (and do not fluctuate). The impact of the
field is then solely described by the torque given in eqn (2).

‡ Note that, in experiments, the distance between the top and bottom glass cover
is approximately 100 mm. Since the particles sediment to the bottom substrate
and their distance from the top cover is relatively large, we consider only the
bottom boundary condition.
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4 Azimuthal dynamics

In our previous study,12 we have focused on the particle
dynamics as well as the corresponding rheological response
at rather strong magnetic torques B0

2. We now concentrate on
the dynamics that are observed for much smaller B0

2. Conse-
quently, we limit ourselves to a much smaller range of field
strengths B0 o 1 [mT].

To characterize the steady state dynamics, we calculate the
mean angular velocity per ring

on ¼
1

Nn

XNn

i

jiðtþ dtÞ � jiðtÞ
2pdt

* +
; (6)

where h�i is a time average, Nn is the number of particles inside
the nth ring (N1 = 3, N2 = 9, N3 = 15, N4 = 21), and ji is the
azimuthal angle defined via the relationship:

ri(t) = r[cos(ji)ex + sin(ji)ey]. (7)

Thus, the angular velocities (and all related quantities) are
solely defined by the translational degrees of freedom.

4.1 Experiments

In the experiments, the mean angular velocity is computed
from Nloops = 60 subsequent sweeps. Starting from equilibrium,
each sweep proceeds by slowly increasing the magnetic field,
and thus the torque, in discrete steps DB0

2 = 0.05 mT2 up to a
maximum of B0

2 = 1 mT2, followed by another sweep where the
magnetic torque is decreased at the same rate to equilibrium.
The total duration of each sweep is 5tB E 200 s. Finally,
averaging over all realizations, we find the mean angular
velocity per ring, which is plotted in Fig. 2(a). Here, we average
over both, forward and backward, sweeps as we find that the

mean angular velocities from the two sweeps are approximately
the same. This indicates that, at each step, the system managed
to relax to the steady state and the sweeps were performed
sufficiently slowly.

Starting from equilibrium and applying the magnetic field
to the paramagnetic particles, the mean angular velocity of the
inner ring first increases as a linear function of the torque, i.e.
o1 p B0

2. The initial slope is emphasized by the gray dotted
line in Fig. 2(a). At a critical magnetic torque B0,c

2 = 0.2 [mT2]
the inner ring speeds up, yielding another linear increase with
larger slope. Henceforth, we refer to this behavior as a ‘‘depin-
ning transition’’ between two states with strongly different
dependency of on on the magnetic torque. While overall slower,
the second (o2) and the third ring (o3) both show the same
behavior, including the depinning transition at the same
critical magnetic torque.§ Obviously, the outer ring remains
static since the composing particles are trapped by the laser
trap, for all B0

2. Note that a linear relation between the angular
velocity and the magnetic torque is already found for a free
rotating triplet of paramagnetic particles, which forms the
inner ring, as discussed in the ESI of ref. 12. However, the
actual slope and magnitude of the resulting angular velocities
per ring strongly depend on the interactions between them.

Importantly, in contrast to ref. 12, we find that for B0
2 o Bc,0

we do not observe a fully locked state, i.e. a state where on

vanishes completely and the particles remain static on average.
The reason is that in our previous work the dynamics at small
B0

2 were not sufficiently resolved to distinguish between a static
state and the very small mean angular velocity, as shown in
Fig. 2(a) and (b). However, for B0

2 o B0,c
2, the inner rings do not

perform a regular rotation either. Instead, the slow mean
angular motion results from a series of slip events, where the
inner rings ‘‘depin’’ from the static outer ring for a brief
moment before locking again. This behavior is reminiscent of
the behavior near the depinning transition in incommensurate
driven monolayers at finite temperature.44 For the latter, one
also observes a small net particle flux for subcritical driving
forces, due to rare particle jumps that are induced by the
thermal noise. The slip events in the present system are
discussed in more detail in Section 5.

The depinning transition at Bc,0
2 is also reflected by the

standard deviation of the mean angular velocities

s on½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on � onh ið Þ2

D Er
; (8)

as shown in Fig. 2(c). It is seen that s[on] displays a marked
increase at the transition. We use this quantity to identify the
critical magnetic torque with more accuracy. In particular, we
locate the critical torque where the slope of s[on] is the largest.

4.2 Simulations

In simulations, we mimic the procedure employed in the experi-
ments performing up to Nens = 10 000 forward and backward sweeps
with DB0

2 = 0.0025 mT2 up to a maximum of B0
2 = 0.25 mT2 and a

Fig. 2 (a) Experimental and (b) simulation results for the ensemble aver-
aged mean angular velocity per ring n = 1,. . .,4 as a function of the
magnetic torque p B0

2. The gray dotted line in (a) indicates the initial
slope of the angular velocity of the paramagnetic particles, 0.04B0

2, in
experiments, and the dashed line in (b) indicates the corresponding slope
0.3B0

2 in simulations. The standard deviations of the angular velocities in
(a) and (b) are plotted in (c) and (d), respectively. § For a closeup, see Fig. S1(a) in the ESI.†
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total duration of 10tB per sweep. Similar to the experiments, we
find a transition at B0,c

2 between two dynamical states, both
characterized by a linear increase of the mean angular velocity.
In simulations the initial slope is indicated by a gray dashed
line, see Fig. 2(b). We find that the critical magnetic torque in
simulations, B0,c

2 = 0.04 mT2, is smaller than in experiments,
and this difference in the applied magnetic field was also
reported previously.12 At the same time, for B0

2 4 B0,c
2, the

mean angular velocity of the inner three rings is larger than
that of the experiments. We attribute these deviations to the
limitations of our approximations for the hydrodynamic inter-
actions as well as the fact that we neglect the surface friction
between the rotating colloidal particles. The latter would
require to explicitly take into account the rotational degrees
of freedom, which currently are considered only implicitly.

In addition to the mean values, the standard deviation of the
mean angular velocity s[on], plotted in Fig. 2(d), is in good
agreement with that of the experiments, showing a marked
increase at the critical magnetic torque B0,c

2. However, in
simulations the mean angular velocity fluctuations are much
stronger than in experiments.

To further analyze the depinning transition at B0,c
2, we

compute the distribution P(on) of the time-averaged angular
velocities of the individual realizations,¶ which are plotted in
Fig. 3(a) and (b) for the inner ring from experiments and
simulations, respectively. Again, we find that the width of the
distributions, i.e. the standard deviation, displays a sudden
increase at B0,c

2, as already shown in Fig. 2(c) and (d) for
experiments and simulations, respectively. The large width of
the distributions reflects the fact that we find realizations,
which seem to be momentarily locked with on E 0 even for
B0

2 4 B0,c
2. Overall, the distributions for the three inner rings

n = 1, 2, 3 are non-Gaussian, displaying positive skewness
m3[on] 4 0 as well as large kurtosis m4[on] 4 3 for most B0

2.
Here we have used the standard definition for the skewness

m3½x� ¼
x� hxið Þ3

D E
s½x�3 (9)

as well as the kurtosis

m4½x� ¼
ðx� hxiÞ4
� �

s½x�4 : (10)

Thus, all stochastic moments clearly reflect the depinning
transition at B0,c

2, where the skewness displays a maximum
and the kurtosis a steep decrease, see Fig. S1 in the ESI.†

Further, we find that the distribution of the inner ring,
P(o1), display the most complex behavior. In particular, we
observe a range B0

2 = 0.06–0.14 [mT2] where P(o1) becomes
bimodal, see the red dashed and blue dotted line in Fig. 3(a).
In contrast, P(o2) and P(o3) remain unimodal for all B0

2, see
Fig. S2 in the ESI.† In the bimodal regime some realizations are

essentially ‘‘locked’’, i.e. o1 E 0, whereas other realizations
display a rotation with finite angular velocity, corresponding to
a ‘‘running’’ state. With increasing B0

2 the number of realiza-
tions in an approximately locked state (red dashed) decreases
and the number of realizations in the ‘‘running’’ state (blue
dotted) increases continuously. We note again that the distri-
butions P(on) from the forward and the backward sweeps are
approximately identical, indicating that the steady state for
these magnetic torques is truly bistable.

In the experiments, we find very good agreement with the
simulations results, as shown in Fig. 3(a). That is, we also find a
range B0

2 = 0.3–0.6 [mT2] where P(o1) becomes bimodal. In this
field range, we find realizations either in a locked or in a
running state, where the number of realizations in a running
state increases with increasing magnetic torque. Thus, the
agreement between simulation and experiments is not limited
to the mean values but extends to the fluctuations of on.

To understand this bistability, recall the fact that each on is
computed from a sweep lasting Dt = 0.1tB in simulations and
Dt = 0.25tB in experiments for each magnetic torque. Thus,
P(o1) shows that the rings of the single realization are either
momentarily (t 4 Dt) locked or running, corresponding to the
two states respectively. In fact, we do not find a single realiza-
tion that remains in either the locked nor the running state for
all times. Since each realization remains in the locked or
running state only for a finite amount of time, this bimodal
distribution may collapse for very long sweeps, i.e. Dt c tB. The
time at which the two states can not be distinguished is
connected to the waiting time, that we discuss in Section 5.2.
Note that the critical torque does not depend significantly
on the sweep duration. As a result, the transient bistability is

Fig. 3 (a) Experimental and (b) simulation results for the evolution of the
distribution of the mean angular velocity of the inner ring o1 during the
magnetic field sweeps. The dashed red and dotted blue line indicate
the evolution of the two peaks of P(o1). The distributions correspond to
the mean values and the standard deviations, which are plotted in Fig. 2(a–d).

¶ These distributions are different from that of the distribution of the instanta-
neous angular velocity per ring on(t) during each realizations. These tend to be
much wider and featureless, i.e. Gaussian, due to strong spatial fluctuations, data
not shown.
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intimately connected to the temporal heterogeneity of the
microscopic dynamics, which we discuss below.

5 Microscopic (angular) dynamics

The average azimuthal dynamics, that we have discussed in
Section 4, is intimately related to the dynamics of the individual
colloids. In this section, we analyze the latter by means of the
particle trajectories, the waiting- and jump time distributions,
as well as the mean squared displacement. This analysis
requires long trajectories (t 4 10tB) for each magnetic torque
for a large number of realizations, which are difficult to realize
in experiments due to the stability of the colloidal particles.
As a results, in this section we mostly used simulation results.

5.1 Trajectories

In Fig. 4(a)–(d), we have plotted simulation results for trajec-
tories of the single particles. At very small magnetic torques
B0

2 = 0.0025 [mT2], see Fig. 4(a), we find long periods where the
particles are locked to their respective angular position (i.e.,
Dji(t) = ji(t) � ji(0) = const.), which are disrupted by sudden
and very fast slips. At the end of a slip the particle then resides
again at an approximately constant Dji(t) for relatively long
periods. At the magnetic torques considered, these slips are
likely to be triggered by thermal fluctuations, allowing also for
‘‘backward’’ slips where particles jump to smaller values of Dji.
These slips lead to a very small, but finite, mean angular
velocity, as shown in Fig. 2.

Increasing the magnetic torque, the frequency of the slips
increases and the angular displacement during a single slip
becomes larger. This is clearly reflected in the trajectories at
B0

2 = Bc,0
2 = 0.04 [mT2], see Fig. 4(b). Here, we find again long

periods, where the particles are locked, and a series of very fast
slips. However, the slips become more directed into positive
angular direction Dji 4 0 and the time between these slips
becomes shorter.

For supercritical magnetic torques, e.g. B0
2 = 0.1 [mT2], we find

that the particle trajectories are mostly characterized by a contin-
uous motion along azimuthal direction, see Fig. 4(c). However,
there are short periods where the inner rings lock and Dji remains
approximately constant. While this transient locking is most
pronounced for the inner ring (n = 1), we observe similar behavior
in the other rings n = 2, 3. The transient locked periods reflect, on
the trajectory level, the bistable region shown in Fig. 3(a). In
particular, realizations inside these locked periods correspond to
the low mobility states, i.e. red dashed line in Fig. 3(a).

For large magnetic torques, i.e. B0
2 = 0.25 [mT2], all the inner

rings display a continuous motion in azimuthal direction,
which is reflected by a continuous increase of Dji, as shown
in Fig. 4(d). Thus, the system has entered a running state,
which is consistent with our observations for the mean angular
velocities of the inner rings Fig. 2(b).

In Fig. 5(a) and (d), we compare short trajectories from
experiments and simulations, respectively. In experiments,
the available particle trajectories are too short (t = 0.25tB) to
see the rare jumps for B0 o B0,c, However, for B0 4 B0,c we find
good agreement with particles showing short periods of tran-
sient locking as seen in simulations, see Fig. 5(b), (c) and (e), (f).

Fig. 4 (a)–(d) Simulation results for the rescaled angular displacement
trajectories for one arbitrary particle belonging to the n = 1, 2, 3, 4 ring for
four different magnetic torques B0

2 = 0.0025, 0.04, 0.1, 0.25 [mT2], which
are below, at, and above the critical value Bc,0

2 = 0.04 [mT2]. To improve
clarity, we have multiplied the angular displacement for each particle by
the mean radius of their ring at equilibrium (rEQ,n). The trajectories there-
fore represent approximately the azimuthal displacement of the particle.

Fig. 5 (a)–(c) Experimental results for the short time trajectories for
one arbitrary particle of each ring for three different magnetic torques
B0

2 = 0.2, 0.4, 1 [mT2]. (d)–(f) Trajectories from simulations for comparable
magnetic torques B0

2 = 0.04, 0.1, 0.25 [mT2]. Thus, (a) and (d) correspond to
the trajectories at B0,c. In (b) and (e), we have emphasized regions were the
particles are temporarily locked in experiments and simulations, respectively.
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5.2 Waiting time distribution

To quantify the frequency of the slip events, that we have
discussed for Fig. 4(a)–(d), as well as their duration, we have
computed the waiting- and jumping time distribution employ-
ing the definition from ref. 45. We define, for each particle,
a minimum angular position by the angle centered between
the two neighboring particles of the outer adjacent ring. A forward
jump is initiated when a particle passes this minimum angular
position along the positive direction. The jump concludes after
the jumping time tJ once the particle passes the minimum
angular position of the next neighbors. The time in between
jumps is the waiting time tW. For a sketch see Fig. S4 in the ESI.†

Jumping- and waiting times of backward jumps can be
defined accordingly. We note that the backward jumps are
observed only for subcritical magnetic torques and become
increasingly rare close to the critical magnetic torque. While
the presence of backward jumps marks the difference between
the sub- and supercritical state we will focus on the forward
jump statistics, in the following.

We have plotted the waiting time- and jumping time distribu-
tions for forward jumps for B0

2 = 0.0025, 0.04, 0.1, 0.25 [mT2] in
Fig. 6(a–d) and (e–h), respectively.

Starting with the distribution P(tW), we find that tW is
approximately exponentially distributed for the first and sec-
ond ring (n = 1, 2). In particular, we find a high probability for
short waiting times tW o tB, that are not apparent in the
trajectories, see Fig. 4(a) and (b). These short waiting times
stem from particles jumping more than one interstice at once,
which in our definition is interpreted as multiple subsequent
jumps following each other, yielding very small waiting times
between them. In fact, especially for the rings with n = 1, 2, jumps
over multiple minima seem to be very common. With increasing
magnetic torque, the waiting times become continuously shorter,
which is consistent with the observations from the single particle
trajectories, see Fig. 4. In particular, for very large magnetic
torques the waiting times tW o tB, such that the motion appears
continuous in the presence of thermal fluctuations.

Interestingly, the third ring (n = 3) displays a different behavior,
which we attribute to the fact that the corresponding particles jump
only one interstice at a time. For this ring, we observe in Fig. 4(b)–(d)
distributions with pronounced maxima. This maximum clearly
indicates a characteristic time scale for the slips of the third ring,
which again becomes shorter with increasing magnetic torque.
Comparing all the rings, we see that the typical waiting times in
the range B0

2 r B0,c
2 are approximately equal, indicating that the

slip events are synchronized between the different rings. In contrast,
for larger magnetic torques, the waiting times become longer with
increasing radial distance from the center.

For the jumping times, a dependency on the ring is observed
for all magnetic torques. Specifically, the first ring displays the
smallest jumping times and the third ring the longest, see
Fig. 6(c and d). This difference is most prominent for B0

2 r
B0,c

2, where the typical duration of the jumps can vary by an
order of magnitude. Overall, most of the jumping time dis-
tributions display a maximum, which again yields a character-
istic time scale of the microscopic dynamics.

5.3 Mean squared angular displacement

A further measure of the microscopic motion, is the mean
squared angular displacement (MSD), which is calculated from
the individual trajectories

MSDn ji½ � ¼
1

Nn

XNn

i

DjiðtÞ2
� �

; (11)

where Nn is the number of particles of the nth ring, Dji(t) is the
azimuthal angular displacement of particle i, h�i is an ensemble
average. In addition, we consider the MSD, where the center of
mass motion due to the external drive is subtracted

MSDn ji½ � ¼
1

Nn

XNn

i

DjiðtÞ � DjiðtÞh i½ �2
D E

: (12)

From now on, we focus on the mean squared angular dis-
placement of the particles in the inner ring, n = 1, but the

Fig. 6 Simulation results for the waiting times (a–d) and jumping times (e–h) corresponding to the trajectories as shown in Fig. 4(a)–(d), for magnetic
torques B0

2= 0.0025, 0.04, 0.1, 0.25 [mT2], respectively. The total distribution (black) is decomposed into that of the individual rings n = 1, 2, 3.
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behavior in the other rings is similar. Results are plotted in
Fig. 7(a) and (b).

In both cases, for very short times t o 10�3tB, we find an
initial linear increase of MSD[ji] p t, corresponding to diffu-
sive motion of the colloidal particles inside their respective
‘‘cages’’ formed by the surrounding colloidal particles. At
intermediate times t E 0.01tB, the mean squared angular
displacement response becomes strongly dependent on B0

2.
Considering first Fig. 7(a), we see that for small magnetic
torques B0

2 o Bc,0
2, the mean squared displacement displays

a plateau up to t E 0.1tB. For longer times, the MSD switches to
ballistic motion, i.e. MSD[ji] p t2. This corresponds to the
directed angular motion that we have already discussed in
Fig. 2(b).

Subtracting the center of mass motion, as plotted in Fig. 7(b),

we see a similar transition of MSD1. However, MSD1 transitions
for long time again into a linear time dependency, corresponding
to diffusive motion relative to the center of mass motion. The
corresponding diffusion constants increases continuously with
the magnetic torque B0

2.
Interestingly, the time range where MSD[ji] displays a

plateau corresponds to the typical time in which the particles
remain locked between the slips, as shown in Fig. 4(a) and (b).
With increasing magnetic torque, the width of the plateau
decreases, corresponding to the decrease of the typical waiting
times at the different B0

2, shown in Fig. 6(a–d). We note that
such a plateau of the mean squared displacement is often
observed in sheared colloidal glasses39 and other strongly
correlated driven fluids.46,47 For the former, one can relate
the stress overshoots and the sub-diffusive domain with the
breakage of the individual particle cages that are comprised of

its neighboring particles.39 In fact, we do also observe stress
overshoots as discussed below, thus we think that the same
reasoning applies to our sheared colloidal system. Here, the
cages are composed of the particles from the neighboring rings
as well as the direct neighbors inside the same ring.

6 Stress tensor

To further characterize the observed dynamical behavior, we
now discuss various mechanical properties. In particular, fol-
lowing our previous study, we calculate the components of the
configurational stress tensor in polar coordinates,

Snm ¼
1

V

XN
i

XN
j4 i

rij � en jið Þ
� 	

Fij � em jið Þ
� 	* +

; (13)

where n,m A {r,j} are the polar coordinates, rij = ri � rj is the
distance between two particles, Fij is the (interaction) force
between particle i and j, and en, em are unit vectors in n- and
m-direction.

6.1 Shear stress

We start by considering the shear stress, Srj, which is plotted
in Fig. 8(a). Starting from equilibrium, the shear stress
increases approximately linearly as a function of the magnetic
torque up to B0,c

2, reflecting Newtonian behavior. For super-
critical magnetic torques B0

2 4 B0,c
2, the shear stress then

crosses over to another linear increase with smaller slope. Note
that the slope of the shear stress can be identified as the shear
viscosity of the system;48 thus its decrease reflects a shear-
thinning behavior.

Similar to the fluctuations of the angular velocity, shown in
Fig. 2(c and d), the shear stress displays fluctuations whose
magnitude clearly reflect the depinning transition at B0,c

2. In

Fig. 7 (a) Simulation results for the mean squared angular displacement
of the particles inside the inner ring n = 1 for various magnetic torques
from simulations. (b) Mean squared displacement relative to the center of
mass motion of the particles inside the inner ring n = 1. The gray dashed
line signifies a linear increase, whereas the gray solid line represents a
quadratic increase.

Fig. 8 (a) Simulation results for the mean shear stress Srj, (b) mean radial
pressure Pr, (c) mean azimuthal pressure Pj as a function of the magnetic
torque B0

2. The black line indicates the critical magnetic torque at B0,c =
0.04 [mT2]. (d) Shear stress relaxation curves Srj(t) for various magnetic
torques as indicated by the color. The black line corresponds to the stress
relaxation at B0,c. The dashed lines correspond to the steady state shear
stress plotted in (a).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 2

/1
6/

20
26

 6
:1

1:
38

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sm01238f


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 9423--9435 | 9431

particular, we find a strong increase of the standard deviation
as well as an increase of the skewness, see Fig. S3 in the ESI.†
This effect implies that the stress fluctuations are increasingly
biased towards large values, which can be attributed to the
increasing number of slip events, during which large stresses
are exerted.

We have also investigated the time-dependence of the shear
stress, see Fig. 8(d). For various values of B0

2 considered, we
start in equilibrium and switch on the magnetic field at t = 0 for
up to Nens = 10 000 realizations. The data reveal, first, that the
relaxation towards the steady state values occurs in rather short
times t o 0.2tB. This is an indirect confirmation that the
angular velocity sweeps described in Section 4.2 are performed
sufficiently slowly such that the internal stresses can relax.
Analyzing further the curves Srj(t) in Fig. 8(d), we find a
monotonous increase of the shear stress within the range of
B0

2 o B0,c
2, that is the steady state shear stress is approached

from below. In contrast, for B0
2 4 B0,c

2, we find a non-
monotonic behavior characterized by a pronounced stress
‘‘overshoot’’. This overshoot dynamics is characteristic for
glassy (and other strongly correlated) systems. It is related to
the breaking of the particles cages, consisting of neighboring
particles,39 and is connected to a plateau region in the mean
squared displacement, see Section 5.3.

6.2 Pressure

We now turn to the radial pressure, Pr = �Trr, and the
azimuthal pressure, Pj = �Tjj, which correspond to the
diagonal components of the stress tensor and are plotted in
Fig. 8(b and c), respectively. In general, both the radial as well
as the azimuthal pressure show similar behavior. We find an
approximately constant value for subcritical magnetic torques
B0

2 o B0,c
2, which crosses over to a continuous increase with

torque for B0
2 4 B0,c

2. Overall, the radial pressure is larger and
grows faster than the azimuthal pressure, consistent with our
results from previous studies.12

The resulting increase of the radial pressure is accompanied
by radial deformations of all rings from its equilibrium radius,
which we have plotted in Fig. 9(a) and (b) for experiments and
simulations, respectively. In general, we observe a strong
expansion of the system at the critical magnetic torque, where
the particles start to slide past each other. This leads to
particles stacking up in radial direction, pushing the outer ring
outwards against the (soft) harmonic traps, yielding eventually
an increase of radial pressure. Interestingly, in contrast to the
three outer rings, the inner ring (n = 1) displays a compression
for B0

2 4 B0,c
2. These effects are seen in both, simulations and

experiments. However, the compression of the inner ring is
much more pronounced in experiments, as shown in Fig. 9(a).
We attribute this to the fact that the strength of the induced
dipole–dipole interaction is proportional to the magnetic tor-
que, see eqn (4). This results in a stronger attraction for larger
magnetic torques. As a result, the inner ring in the experi-
mental system compresses already for B0

2 o B0,c
2, which also

leads to a small initial compression of the second ring. In
simulations, we keep the strength of the mean dipole–dipole

interactions eqn (4) constant to prevent a pronounced compres-
sion, which leads to a significant speedup of the inner ring that
is not observed in experiments.12 The observed compression of
the inner ring n = 1 is due to the inherent softness of the
particle interactions: the outer particles push the inner parti-
cles inward. Irrespective of these subtle differences between
experiment and model system, the overall agreement is quite
satisfactory.

7 Thermodynamical consequences

In this last section we briefly discuss some aspects of the
observed dynamical behavior from the perspective of stochastic
thermodynamics. Here, we focus on the stochastic energetics,
i.e. the work and heat. To this end, we employ generalized
expressions for the stochastic work- and heat rate given in
ref. 49

_wðtÞ ¼
XN
i¼1

@Uðfrg; tÞ
@t

����
ri

�u ri; tð Þ � Fiðfrg; tÞ
(

þ Fext rið Þ �
@ri
@t
� u ri; tð Þ


 ��
;

(14)

_qðtÞ ¼
XN
i¼1

Fext rið Þ þ Fiðfrg; tÞ½ � � @ri
@t
� u ri; tð Þ


 �
; (15)

where U({r},t) is the total potential energy, u(ri,t) is the external
flow, Fi({r},t) = rri

U({r},t) is the conservative force stemming
from U({r},t), and Fext is an external force acting on the colloidal
particles. Note that, as already stated in ref. 49, the hydro-
dynamic interaction enter only implicitly via the motion of the
particles qri/qt.

For the sheared colloidal system with a static outer ring, qU/
qt = 0 and Fext = 0, we identify only one possible source of work.
This is the work done by the rotating magnetic field, which
drives the rotation of the paramagnetic particles. Within our
model, we do not account for the rotational degrees of freedom
of the colloidal particles explicitly. Rather, the rotating mag-
netic field enters through the mean solvent flow exerted by the
paramagnetic particles. Therefore, we set the external flow in

Fig. 9 (a) Experimental and (b) simulation results for the mean radius
relative to the equilibrium radius for all rings (n = 1,. . .,4).
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eqn (14) and (15) to

u rið Þ ¼
XN
j¼1

MTR

ij
�Tj : (16)

In total, the resulting work then reads

wðtÞ ¼
ðt
0

XN
i¼1

Fiðfrg; tÞ �
XN
j¼1

MTR

ij
�Tjdt

0; (17)

and the heat reads

qðtÞ ¼
ðt
0

XN
i¼1

Fiðfrg; tÞ �
@ri
@t
�
XN
j¼1

MTR

ij
�Tj

" #
dt 0: (18)

Note that, in contrast to systems driven by a linear shear flow,
the work rate does not trivially reduce to the virial expression
for the configurational shear stress, as reported in previous
studies.40 All integrals and derivatives are evaluated using the
Stratonovich calculus.

7.1 Magnetic torque dependency

In our numerical investigation, starting from the steady states
obtained from the magnetic torque sweeps, plotted in Fig. 2(b),
we compute work – w(t) and heat trajectories q(t) for t = 0.1tB for
the Nens = 10 000 systems to study the short-time behavior. The
resulting mean work and heat at t = 0.1tB, as well as the
corresponding standard deviation, is plotted in Fig. 10.

Applying the magnetic torque B0
2, hwi displays a quadratic

increase as a function of the torque B0
2. For supercritical

magnetic torques, the work crosses over to another quadratic
regime where hwi increases slower as a function of B0

2. That is,
the depinning transition at B0,c

2 is clearly reflected by the mean
work as a function of B0

2. Interestingly, the same does not hold
for the standard deviation of the work s[w], plotted in the inset
in Fig. 10, which displays a linear increase with constant slope
for all considered B0

2. The corresponding distributions are
approximately Gaussian, yielding m3[w] E 0 and m4[w] E 3
for all B0

2.

Turning now to the heat, we find that on average the heat
and the work are the same for all considered magnetic torques,
as expected in a steady state. However, the heat distributions
display a finite width already in equilibrium, which remains
approximately constant for subcritical magnetic torques B0

2 o
B0,c

2 and a subsequent linear increase for supercritical values
B0

2 4 B0,c
2, as plotted in the bottom right inset in Fig. 10. In

general, P(q) deviate from a Gaussian distribution, displaying a
small positive skewness m3[q] E 0.2 as well as a larger kurtosis
m4[q] E 4 for all B0

2.
In Fig. 10, we have plotted the mean work divided by the

magnetic torque B0
2, which allows for an easy comparison with

the shear stress. This comparison is motivated by our results
for a planar slit pore system, where these two quantities are
closely related.40 However, the same does not hold true for the
sheared circular system, which deviates from the expected
relation for B0 4 B0,c.

7.2 Time dependency

As discussed in our earlier study of a planar slit pore system,40

the work and heat distributions are in general time dependent
and the same behavior occurs here. Regarding the mean values,
we find a linear increase in time for both the work and the heat,
that is, hw(t)i E h :wit and hq(t)i E h :qit, and the functions are
fully determined by their respective mean rates, as expected for
a steady state. Turning now to the time evolution of the
standard deviation, we find a power law behavior for the work
s[w(t)] p t0.55 for all considered magnetic torques. Note that

this is very close to s½w� /
ffiffi
t
p

that one finds for a single particle

in a translated harmonic trap, yielding s½w� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBThwi

p
as

follows directly from the integrated fluctuation theorem.50 In
contrast, s[q(t)] displays a more complex behavior, shown in
Fig. 11, where the strength of the fluctuations saturate for
intermediate times before transitioning to another power law
behavior. This saturation leads to a plateau, whose width seems
to be connected to the typical waiting time of the particles as
well as the plateau of the MSD discussed in Fig. 7. However, a
detailed investigation would require longer runs and better
statistics.

Overall, we find that the depinning transition at B0,c
2 is

clearly reflected by the mean values of the work and heat, as

Fig. 10 Simulation results for the mean work w (red circle) and heat q
(blue square) for integration time t = 0.1tB rescaled by the magnetic torque
B0

2. The rescaled mean shear stress is plotted for reference. The inset
shows the standard deviation of the work and heat, respectively.

Fig. 11 Simulation results for the standard deviation of the heat as a
function of time t for various different magnetic torques. For reference,
we have plotted a dashed line corresponding to f (t) p t0.25. The standard
deviation at the critical magnetic torque is plotted in black.
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well as the strength of the heat fluctuations s[q] both with
respect to the magnetic torque dependency and with respect to
the time dependency. A deeper interpretation of these results
remains, at present, difficult due to the absence of analytical
results for these types of strongly correlated systems.

8 Conclusion

Performing video microscopy experiments as well as Stokesian
dynamics simulations, we have studied a dense, bidisperse
colloidal system confined to a two-dimensional, disk-like clus-
ter that is actuated by an external magnetic field. The outer ring
of particles are confined by harmonic traps and is kept static by
time shared optical tweezers, whereas the inner ring, consisting
of paramagnetic particles, is driven by a rotating magnetic
field. Focusing on rather small magnetic torques, we find a
pronounced depinning transition, that is reminiscent of that
occurring in incommensurate driven monolayers at finite
temperature.

The dynamics at subcritical magnetic torques is character-
ized by a small, linear increase of the mean angular velocity per
ring (with the applied torque), which stems from thermally
activated slip-events. During the latter, the locking of the inner
rings to the static outer ring is momentarily broken and the
inner rings slide past each other. In this state, we observe both
forward and backward slip events, where the probability of
forward slips increases with increasing magnetic torque, yield-
ing a net motion along the positive azimuthal direction. At a
critical magnetic torque, the system enters a second steady
state, where the probability to find backward slip-events
vanishes. For this state, we find a bistability with respect to
the mean angular velocity of the inner ring of the individual
realizations. This bistability is clearly reflected by a bimodal
distribution both in simulations and experiments.

We can understand the bimodal distributions by analyzing
the particle trajectories, from which we compute the waiting
times between the slips as well as the jump times, corres-
ponding to the duration of a slip. For magnetic torques in the
bistable region, the typical waiting time is of the order of the
duration of the employed time average. Thus, some realizations
are momentarily locked, whereas others have performed a slip,
corresponding to the slow and fast state of the bistability,
respectively. One interesting observation is that, for the first
steady state, the typical waiting times of the different rings are
approximately equal. In contrast, for the second steady state the
typical waiting time increases with the radial distance from the
center. This observation holds true for the jump times for all
magnetic torques considered.

These typical waiting times are also reflected by the time-
dependence of the mean squared displacement, which displays
a pronounced plateau at intermediate times. The corres-
ponding range of times decreases with increasing the magnetic
torque. Such a sub-diffusive region is very common in strongly
correlated sheared systems, such as colloidal glasses and dense
liquid crystalline mixtures. It is accompanied by an overshoot

of the shear stress relaxation curves, which we also find for
supercritical magnetic torques. Both phenomena are connected
to the breaking of particle cages, i.e. the plastic deformations
during the slip events. Overall, by monitoring the stress com-
ponents, we find a pronounced shear thinning behavior at the
critical magnetic torque, which is accompanied by a marked
increase of the azimuthal- and radial pressure. The latter
corresponds to a radial expansion of the outer rings, which
are observed both in simulation and experiments, as well as an
compression of the inner ring.

Finally, we have briefly discussed the consequences of the
depinning transition on two important stochastic thermo-
dynamics quantities, i.e. the work and heat. We find that the
depinning transition is reflected by the mean work and heat as
function of torque. Moreover, we find signatures in the
magnitude of the heat fluctuations as function of torque as
well as in dependence the of integration time. Interestingly,
we did not observe a direct correspondence between the work
rate and the shear stress, as we have reported for a planar slit
pore system.40

Overall, we find a very good agreement between numerical
simulations and experiments not only with respect to the mean
values but also the fluctuations of the mean angular velocity as
well as the azimuthal- and radial displacements. One open
question is the importance of the magnetic torque dependency
of the dipole–dipole interactions exerted between the paramag-
netic particles. Another interesting avenue is to analyze, in
more detail, the plastic events during slips and their time- and
space correlations. Here, one goal is to predict the emergence
of slips. Finally, in the future, we aim to develop a deeper
understanding of the stochastic thermodynamics in these
strongly correlated systems. One major challenge is that many
exact results from stochastic thermodynamics make predic-
tions for the entropy production, whose calculation is not
trivial. Research in this direction is in progress.

Conflicts of interest
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Fig. 12 Sketch of the considered setup, with position ri, rj of particle i and j
as well as the image Rj of particle j with respect to a plane boundary
condition at zW = 0.
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Appendix
A Hydrodynamic Interactions

The hydrodynamic interactions in our Stokesian dynamics

simulations are modeled via the two mobility tensors MTT
ij

and MTR
ij

that encode the hydrodynamic flow acting on particle

i that is exerted from the translation and rotation of particle j,
respectively. The setup we have in mind consists of two
spherical particles with different diameters close to a plane
boundary located at zW = 0, as sketched in Fig. 12.

In the present study, we derive appropriate mobility tensors
starting with the Blake solution51

GB ri; rj
� �

¼ GO ri � rj
� �

�GO ri � Rj

� �
þ Iz � 2zjG

D ri � Rj

� �
� 2zj

2GSD ri � Rj

� �h i
;

(19)

where the first term is GOðrÞ ¼ 1

8pZ
1

r
Iþ r� r

r2

h i
is the Oseen

tensor between the two point particles at position ri and rj,
whereas the remaining terms represent the corrections from
the plane boundary condition. Further, Rj = rj � 2zjez is the
position of the image of particle j, Iz ¼ I� 2ez � ez is a unit

matrix with negative zz-component, GD is a Stokes-doublet, and

GSD is a Source-doublet, which are defined as follows

GD ri � Rj

� �
¼ rRj GO ri � Rj

� �
� ez

h i
; (20)

and

GSD ri � Rj

� �
¼ 1

2
rRj

2GO ri � Rj

� �
(21)

with rRj being the gradient with respect to Rj. To account for
the finite extend of the spherical particles we expand the Blake
solution using the Faxén theorem52

MTT

ij
¼ 1þ di

2

24
rri

2


 �
1þ dj

2

24
rrj

2


 �
GB ri; rj
� �

(22)

MTR

ij
¼ 1þ di

2

24
rri

2


 �
1

2
rrj �GB ri; rj

� �
: (23)

Focusing first on MTT
ij

, plugging eqn (19) into eqn (22), we find

MTT

ii
¼ 1

3pZdi
I�GRP Riið Þ þ dG Riið Þ (24)

MTT

ij
¼ GRP rij

� �
�GRP Rij

� �
þ dG Rij

� �
; (25)

where GRP is the Rotne–Prager tensor and dG is the correction

term from in addition to the Rotne–Prager contribution of the

image particle, given by

GRP rij
� �

¼ 1

6pZaij

3aij

4rij
Iþ rij � rij

rij2


 �
þ aij

3

2rij3
I� 3

rij � rij

rij2


 �
 �
(26)

dG Rij

� �

¼ 1

8pZ
Iz � di

2dj
2

12Rij
5
ez� ezþ

2zj

Rij
3
þ
zj di

2� dj
2

� �
2Rij

5
� 5di

2dj
2Zij

12Rij
7


 �
ez�Rij




þ �2zj

Rij
3
þ di

2Zij

Rij
5
þ
zj di

2� dj
2

� �
2Rij

5
� 5di

2dj
2Zij

12Rij
7


 �
Rij � ez

þ 6zizj

Rij
5
� 10di

2dj
2

48Rij
7
�
10Zij zidj

2þ zjdi
2

� �
4Rij

7
þ 70di

2dj
2Zij

2

48Rij
9


 �
Rij �Rij

þ �2zizj
Rij

3
�

di
2� dj

2
� �

Zijzi

2Rij
5

þZij
2di

2

2Rij
5
þ di

2dj
2

24Rij
5
� 10di

2dj
2Zij

2

48Rij
7


 �
I

�
;

(27)

with aij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
di2 þ dj2
� ��

8
q

being the effective radius of the two

particles and Rij = ri � Rj being the distance between particle i
and the image of particle j. Note that these expressions differ
from that for polydisperse systems near a plane boundary
condition, such as reported by Karzar-Jeddi et al. in ref. 53.
Unfortunately, the latter seem to contain errors as the reported
expressions do not reduce to that of ref. 52 in the limit of di = dj.
For a detailed derivation of the above mentioned expressions
see ref. 54.

Turning now to MTR
ij

, plugging eqn (19) into eqn (23),
we find

MTR

ii
¼ 0 (28)

MTR

ij
¼ 1

8pZ
rij

rij3
� Rij

Rij
3


 �
ê; (29)

where ê is the Levi–Civita tensor, a third rank tensor which

represents the cross product as follows ê � ðA� BÞ ¼ A� B.

Note that these expressions are identical to that of the mono-
disperse case reported in ref. 52.
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