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Defective nematogenesis: Gauss curvature in
programmable shape-responsive sheets with
topological defects†

Daniel Duffy and John S. Biggins *

Flat sheets encoded with patterns of contraction/elongation morph into curved surfaces. If the surfaces

bear Gauss curvature, the resulting actuation can be strong and powerful. We deploy the Gauss–Bonnet

theorem to deduce the Gauss curvature encoded in a pattern of uniform-magnitude contraction/

elongation with spatially varying direction, as is commonly implemented in patterned liquid crystal

elastomers. This approach reveals two fundamentally distinct contributions: a structural curvature which

depends on the precise form of the pattern, and a topological curvature generated by defects in the

contractile direction. These curvatures grow as different functions of the contraction/elongation magnitude,

explaining the apparent contradiction between previous calculations for simple +1 defects, and smooth defect-

free patterns. We verify these structural and topological contributions by conducting numerical shell

calculations on sheets encoded with simple higher-order contractile defects to reveal their activated

morphology. Finally we calculate the Gauss curvature generated by patterns with spatially varying magnitude

and direction, which leads to additional magnitude gradient contributions to the structural term. We anticipate

this form will be useful whenever magnitude and direction are natural variables, including in describing the

contraction of a muscle along its patterned fiber direction, or a tissue growing by elongating its cells.

1 Introduction

Differential growth and differential muscular contraction under-
pin many impressive and important shape transformations found
in biology,1 ranging from embryonic gastrulation and limb for-
mation to gut peristalsis and the beat of a heart. The key idea is
that, with the right spatial patterning, a limited set of local moves –
isotropic growth, directional growth, or uniaxial muscular con-
traction – can be choreographed into a complex and reliable
global shape transformation. Correspondingly, there is considerable
interest in developing spatially-programmable shape-changing
materials,2,3 both to elucidate the basic geometric and mechanical
principles of differential shape change,4–6 and for use in soft
machines7,8 and deployable structures.9

Several different programmable shape-changing materials
have been developed, each responding to different stimuli and
offering a different palette of local shape changes. Recent work
has highlighted patterned (isotropic) swelling in hydrogels,10–13

patterned contraction/elongation in liquid crystaline elastomers/
glasses (LCE/Gs) subject to heat or light,14–17 and patterned contrac-
tion in ‘‘baromorphs’’ subject to inflation.18,19 A natural distinction

thus arises between a patterned magnitude of a locally isotropic
shape change, and a patterned direction of a fixed magnitude shape
change (Fig. 1). Returning to biology, although evolution is surely
able to pattern magnitudes,1,20 most biological tissues are anisotro-
pic and also exhibit patterned directions, be they patterns of
elongational growth21,22 or patterns of muscular contraction.

In each of the above responsive materials, shape change is
programmed into an initially flat sheet, which, on activation,
morphs into a curved surface. Strikingly, such transformations are
often impossible with passive sheets, generating timeless struggles
for tailors, mapmakers, architects, gift-wrappers and manufacturers.
As immortalized in Gauss’s Theorema Egregium,23,24 the key
difficulty is geometric: the Gauss curvature of a surface (calculated
as the product of the two principal curvatures, K = 1/(R1R2)) cannot
be modified without changing the in-surface distance between
points, encoded by the surface’s metric. Thus a flat sheet of paper
can be bent into a cylinder, but cannot be coerced into a sphere.
Active shape-changing sheets, like their biological counterparts,
can side-step this geometric constraint as their programmed
shape-change does indeed change the in-surface distance between
points.10,25,26 Directional growth offers a unique additional possi-
bility: patterns with topological defects. Such directional defects
are familiar from liquid nematics27 and have inspired many
patterns encoded in LCE/Gs.26,28,29 Indeed, LCE sheets encoded
with concentric circles of contraction, forming a +1 nematic defect,
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have become a ubiquitous test-case for new patterning
techniques.15,28,30–33 Such sheets morph dramatically into cones
(Fig. 1) demonstrating that topological defects offer a way to
produce sharp features with divergent Gauss curvature.26

Conversely, Gauss’s geometric coupling of bend and stretch
make curved surfaces strong and mechanically favourable. For
example, if a flat sheet is bent in one direction, it cannot then
bend in the transverse direction without stretch.34 This
curvature-induced rigidity, which is familiar from corrugated
cardboard and pizza consumption,35 leads to the general result
that, whilst flat sheets buckle in a pure bending mode at a
characteristic compressive force F p t3, curved shells require
both stretch and bend to buckle, leading to a much higher
buckling force F p t2 dictated by the harmonic mean of the
bending and stretching moduli.36–38 Consequently, when an
active sheet morphs into a Gauss-curved surface, the transition
is mechanically strong: the LCE defect cones will lift 2500 times
their own weight32 as they activate. Patterns of Gauss curvature
are also an essential component of inverse design: in order to
program a sheet to morph into a desired shape it is necessary
(though not sufficient) that the programmed shape change
produces the desired Gauss curvature.11,16,28,39–41

In this paper, we use the Gauss–Bonnet theorem to calculate
the distribution of Gauss curvature in an initially flat sheet
programmed with a directional pattern of shape change. Our
calculation is greatly facilitated by the use of the natural
coordinate system of a nematic field, recently introduced by
Niv and Efrati.42 The Gauss–Bonnet approach allows us to con-
struct a single result that unifies previous work on distributed
Gauss curvature39,40,43,44 and sharp points with divergent Gauss

curvature.26,45 Our unified result reveals a delicate interplay
between topology and spatial patterning in the resultant Gauss
curvature, and allows us to calculate the Gauss curvature encoded
in topological defects with charges other than +1. We extend and
verify these results by conducting numerical shell calculations on
sheets encoded with higher-order defects to clarify the full 3D form
of the surface that emerges. Finally, we present an analogous result
for sheets encoded with directional growth in which both the
magnitude and direction vary spatially in plane. Although such
patterning is yet to be demonstrated in liquid crystalline solids, we
anticipate that it will soon (either via local crosslink density or via
control of the imprinted order parameter), and has already been
achieved by evolution in many different biological contexts.

2 Curvature induced in flat sheets with
a programmed direction of
contraction/elongation

We first consider a planar sheet, in which each point is pro-
grammed with a planar direction n = (cosc,sinc) along which the
material will contract/elongate by a factor of l8 upon activation,
accompanied by, a sympathetic change of l> in the perpendicular
direction. In an LCE/G, n would correspond to the nematic director
(alignment direction), and, as indicated in Fig. 1, the response on
heating/illumination is a large contraction, 0.25 o l8 o 1, while
the lateral expansion, l> = l8

�n, is determined by the opto-thermal
Poisson ratio, which is strictly n = 1/2 in incompressible
elastomers, but can be as high as 2 in photo-glasses. In
baromorphs, n is the programmed pneumatic channel direction,
and on inflation the channel does not change in length, l8 = 1,
but ideally contracts laterally by l> = 2/p = 0.63. . ..

As shown in Fig. 2, we may also define an orthogonal dual
director on the sheet with c - c + p/2, such that n* =
(�sinc,cosc). Then, in the undistorted sheet, the infinitesimal
length element dl = (dx,dy) has length dl2 = dlTIdl, which, on
activation, becomes

dlA
2 = dlT(l8

2nn + l>
2n*n*)dl � dlT

%adl.

The activated sheet (indicated via subscript A) must deform
into a surface following the programmed metric, %a. Suitable

Fig. 1 A sheet of shape-shifting material contracts along a programmed
direction (blue lines) on activation. If the direction is constant the sheet
remains flat (top). Concentric rings of contraction morph a disk into a
cone, while a radial contraction pattern makes an anticone.

Fig. 2 An initially flat patch of nematic elastomer encoded with a spatially
varying director n (left) will, upon activation, contract everywhere along n
and expand along n*, causing it to morph into a curved surface (right). The
nematic pattern defines a natural orthogonal coordinate system for the
patch, (u,v), with u-lines along n and v-lines along n*.
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spatial variation in n will generate a spatially varying metric
bearing Gauss curvature, guaranteeing that the resultant surface
will also be curved.

Our task is to compute the intrinsic geometry of the resultant
surface, as characterized by its geodesic and Gauss curvatures.
The metric is invariant under n - �n, which is an inevitable
consequence of the quadrupolar nature of nematic order. How-
ever, even if the underlying order really were vectorial, the metric,
as a quadratic form, would nevertheless have this quadrupolar
symmetry. Thus nematic rather than vectorial patterns are
the natural language of directional shape change, and nematic
defects, including half integer defects, could be found in any
directional shape-changing system.

Previous authors have applied the Theorema Egregium to
directly calculate Gauss curvature from gradients of the metric,
yielding40,43,44

KA ¼
1

2
l?�2 � lk

�2� �
@y

2c� @x2c� 4@xc@yc
� �

sin 2c
�

þ2 @x@ycþ @yc
� �2� @xcð Þ2

� �
cos 2c

i
:

(1)

This form has been used successfully to design surfaces with
uniform finite Gauss curvature (such as spherical caps) and
arbitary surfaces of revolution,46,47 and underpins recent work
on inverse design.40

However, if we attempt to apply the above derivative formula
at a topological defect in the pattern we encounter a problem:
the derivatives are divergent. To clarify this, let us first consider
two well-understood +1 defect nematic director patterns: those
with the director in concentric circles around a single point,
and those with the director emanating radially from a single
point, each shown in Fig. 1. If a disk is encoded with concentric
circles and then activated, it forms a new surface where a circle
with original radius r has new (in material) radius rl> 4 r, and
new circumference 2prl8 o 2pr. This geometric contradiction
is resolved by the disk morphing into a cone, with half-angle
sin�1(l8/l>). The sides of the conical surface are Gauss flat
everywhere, KA = 0, in agreement with a direct application of
eqn (1). However, at the tip of the cone the Gauss curvature is
clearly infinite. Furthermore, this tip of infinite Gauss curvature
makes a finite contribution to the integrated (aka total) curvature,Ð
KAdAA ¼ 2p 1� lk

�
l?

� �
4 0, as may be computed by regulariz-

ing the tip with a spherical-cap: the cone’s Gauss curvature is a delta
function at the tip, with an infinite value but a finite integral. In
contrast, the radial defect pattern creates a surface where the
circumferences are too long for the radii, which buckles out of plane
into an ‘‘anticone’’ shape resembling a saddle. This surface is also
Gauss flat, except for an infinite negative curvature at the center
which, since this is equivalent to exchanging l8 and l>, gives a finite
integrated curvature

Ð
KAdAA ¼ 2p 1� l?

�
lk

� �
o 0.26,48

With suitable care, differentiation can yield delta functions;
for example in 3D electrostatics we routinely write r2r�1 =
�4pd3(r). Thus one might reasonably hope to derive these
cone/anticone tip curvatures via a careful application of eqn (1).
However, any such attempt is doomed to fail. Eqn (1) has the

general property that the Gauss curvature encoded by an orthogo-
nal dual pattern (c- c + p/2) is the negative of that of the original
pattern, KA - �KA. In contrast, although the cone and anticone
are orthogonal duals, and do have opposite signs of integrated
Gauss curvature, the magnitudes are not equal.

A new approach is provided by the Gauss–Bonnet formula,24

which relates the integrated Gauss curvature over a surface S, the
geodesic curvature (kg) of the surface’s boundary, and the topological
classification of the region via its Euler Characteristic w(S):

ð
S

KdAþ
ð
@S

kgds ¼ 2pwðSÞ:

Geodesic curvature, like Gauss curvature, is an intrinsic
property of a path on a surface, and can be computed directly
from the metric. We may use Gauss–Bonnet to calculate

Ð
KdA

for any patch of surface from the geodesic curvature of the
patch boundary. Gauss–Bonnet thus provides a rigorous basis
for the assignation of finite integrated curvature to the tip of an
(anti)cone, since it can be inferred from the finite geodesic
curvature of an encircling path. Furthermore, we may slit a
cone along a straight generator and unroll it isometrically into
the plane to form a sector of a disk. Applying Gauss–Bonnet in
the unrolled state, we then see that the tip’s finite integrated
curvature is exactly equal to the angular deficit of the sector,
which becomes an angular surplus in the anticone case.

In general, any such point with finite integrated curvature is
associated with a sharp (aka singular) point in the surface with a
discontinuous surface normal. Unlike many other sharp points,
such as those created in paper-folding origami, these sharp points
cannot be removed by isometric bending deformations, as inte-
grated curvature is a property of the metric alone. We thus describe
them as intrinsically sharp points of the surface, and interpret the
finite integrated curvature as an angular deficit/surplus associated
with the point itself. Away from such points, where K is finite, we
may apply Gauss–Bonnet to an infinitesimal patch (over which K is
effectively constant) to infer the value of K itself. We will term the
finite K in such regions distributed Gauss curvature.

Returning to nematogenesis, our general approach is thus to
consider a region of patterned nematic sheet, bounded by a
curve along which the nematic director is smooth, compute the
geodesic curvature along this path, and then use Gauss–Bonnet
to deduce the integrated Gauss curvature within. This approach
will work even if the region contains topological defects, and
whether or not the activated region contains intrinsically sharp
points. Since we may choose any patch of surface, we will thus
be able to identify the value of KA in regions with distributed
finite curvature, and the finite integrated curvature

Ð
KAdAA at

intrinsically sharp points where KA itself is infinite.

2.1 Geodesic curvature

The first step is to compute the geodesic curvature in the
activated surface, of a path r(l) = (x(l),y(l)), defined in the flat
sheet. In general this is a very involved calculation, but given an
orthogonal coordinate system (u,v), in which the metric will
take the simplified form diag (E,G), the geodesic curvature for
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the unit-speed curve (u(l),v(l)) takes the simple form (24p. 296)
sometimes known as Liouville’s formula:

kg ¼ f0 � 1

2
ffiffiffiffiffiffiffi
EG
p u0Ev � v0Guð Þ: (2)

Above, f is the angle between the curve tangent and the u-line
tangent in the tangent plane of the surface (as shown in Fig. 2).

Following Niv and Efrati,42 we thus move into the nematic
pattern’s natural coordinate system (u,v) in which u-lines (i.e.,
v = const.) are tangent to n and v lines (u = const.) are tangent to
n* (Fig. 2). Since this parameterization is locally orthogonal, the
metric of the flat (non-activated) sheet will be diagonal,

dl2 ¼ du; dvð Þ
Z2 0

0 b2

 !
du

dv

 !
; (3)

where the scalar fields Z(u,v) and b(u,v) are computed from the
geometry of the pattern in question.42 Furthermore, given the
principal stretches on activation are also along n and n*, the u
and v lines will also be orthogonal on the deformed surface,
and the (diagonal) activated metric is simply40

dlA
2 ¼ du; dvð Þ

lk2Z2 0

0 l?2b2

 !
du

dv

 !
:

These activated u and v lines thus also describe a nematic
field (and its orthogonal dual) on the deformed surface. Given
the activating deformation is continuous, this nematic field has
the same topology as the reference state field, including any
topological defects. A direct application of eqn (2) reveals that
the integrated geodesic curvature along a path (u(l),v(l)) in the
activated surface isð

kgAdlA ¼
ð
dfA þ

ð
l?
lk

bu
Zb

bdv�
lk
l?

Zv
Zb

Zdu
	 


: (4)

Examining Fig. 2, the angle f between the path and a u-line in

the unactivated flat (aka reference) state is given by tanf ¼ dv
du

which, upon activation becomes tanfA ¼
l?dv
lkdu

¼ l?
�
lk

� �
tanf.

This allows us to compute the fA term in the geodesic curvature
as a reference-state integralð

dfA ¼
ð
d tan�1 l?

�
lk

� �
tanf

� �� �

¼
ð

lkl?
lk2 cos2 fþ l?2 sin

2 f
df:

The second term of eqn (4) can also be evaluated in the
reference state by recognizing that dl = Z du n + b dv n*:ð

kgAdlA ¼
ð
dfA þ

ð
l?
lk

bu
Zb

n� �
lk
l?

Zv
Zb

n

	 

� dl: (5)

Along a u line or a v line we have fA
0 = 0, as the angle between

the curve tangent and the coordinate line is fixed. Setting l8 = l> =
1 to interrogate the non-activated flat sheet, we see that the
curvature of a u-line is �Zv/(Zb), and the curvature of the v-line is

bu/(Zb). However, these curvatures are simply the 2D bend
and splay (i.e., 2D curl and divergence) of the flat nematic
pattern,42

b ¼ r� n ¼ n � rc ¼ � Zv
Zb
; (6)

s ¼ r � n ¼ n� � rc ¼ bu
Zb
; (7)

which allows us to eliminate the unknown fields Z and b from
eqn (5), to get a coordinate-free result for the activated geodesic
curvature along any path:ð

kgAdlA ¼
ð

lkl?
lk2 cos2 fþ l?2 sin

2 f
dfþ

ð
l?
lk
sn� þ

lk
l?

bn

	 

� dl:

(8)

This integrated geodesic curvature is appropriate for
Gauss–Bonnet. To evaluate the local value, kgA one may equate
integrands of eqn (8), whilst accounting for the infinitesimal

arc length, dlA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lk2 cos2 fþ l?2 sin

2 f
q

dl to get

kgA ¼
lkl?

lk2 cos2 fþ l?2 sin
2 f

� �3=2 dfdl
þ

l?
�
lk

� �
s sinfþ lk

�
l?

� �
b cosfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lk2 cos2 fþ l?2 sin
2 f

q :

(9)

2.2 Gauss curvature away from topological defects

We now apply Gauss–Bonnet to a closed loop built from
alternating u and v line segments. Along each segment dfA =
df = 0, so the only contribution to kgA comes from the final
term in eqn (8), whilst at each corner there is a concentrated
contribution

Ð
dfA ¼ �p=2, since the u and v lines meet per-

pendicularly even in the activated surface. In the simplest case,
we combine two u lines and two v lines to form a quadrangular
region, as shown in Fig. 2, giving four +p/2 contributions in the
Gauss–Bonnet formula, which, given the region is topologically
a disk with w = 1, exactly cancel the 2pw.ð

KAdAA ¼ �
I

l?
lk
sn� þ

lk
l?

bn

	 

� dl: (10)

The value of this integral is unchanged by an equal rotation
of each vector. Taking a clockwise p/2 rotation, the line element
rotates to point along the loop’s outward normal, dl - v̂dl, so
the integral is re-cast as a boundary flux. This rotation also
transforms n - �n* and n* - n, yielding:ð

KAdAA ¼ �
I

l?
lk
sn�

lk
l?

bn�
	 


� m̂dl:

We further simplify this expression by introducing the bend
and splay vectors, b = bn* and s = sn, respectively the curvature
vector of u lines and minus the curvature vector of v lines.
Unlike the director fields themselves, these are true nematic
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objects (invariant under n - �n) and lead to a particularly
natural expression:

ð
KAdAA ¼

I
lk
l?

b� l?
lk

s

	 

� m̂dl: (11)

In a region without intrinsically sharp points, we may now
apply the divergence theorem to identify the local value of the
Gauss curvature

ð
KAdAA ¼

ð
r �

lk
l?

b� l?
lk
s

	 

dA:

Although this was derived for a quadrangular region bounded
by u and v lines, it applies to any shape of region, as can be seen
by tiling with infinitesimal quadrangles. Expanding the diver-
gence, and recognizing that dAA = l8l>dA, we find that the local
value of Gauss curvature is KA = l>

2(�b2 + (n*�r)b) + l8
�2(�s2 �

(n�r)s), in exact agreement with42 and.40 Given the dependence
on and l8 and l>, this form doesn’t immediately resemble
eqn (1), although direct substitution of (smooth) b, s, n and n*
reveals the two do indeed agree.

2.3 Gauss curvature with topological defects

However, the above analysis fails if there is a topological defect
within the region because, as seen in Fig. 3, the simplest region
is no longer quadrangular: it will require different numbers
of sides depending on the topological charge, m, enclosed.
Working in the reference domain, the tangent vector must wind
by 2p around the closed loop. Of these, it will wind by 2pm in
the u and v line segments, and hence the contribution from the
corners must be 2p(1 � m). This introduces an additional 2pm
into eqn (11) leading to

ð
KAdAA ¼

I
lk
l?

b� l?
lk
s

	 

� m̂dl þ 2p

X
i

mi;

where the mi are the topological charges enclosed. This form
can be simplified by noting that rc = bn + sn*, and hence

2pm ¼
I

bnþ sn�ð Þ � dl ¼ �
I

b� sð Þ � m̂dl; (12)

so we can integrate the b � s component of our previous
result, to get

ð
KAdAA ¼

1

2

lk
l?
� l?

lk

	 
I
bþ sð Þ � m̂dl

þ
X
i

mip 1� l?
lk

	 

1�

lk
l?

	 

:

(13)

This formula is our main result for the Gauss curvature. We
will call the first term the structural curvature, since it depends
on the local structure of the pattern, while the second term is
naturally called the topological curvature. The topological curva-
ture contributes to any patch containing the defect, so it is a finite
contribution to the integrated curvature at the point of the defect.
Importantly, this does not imply that all defects with the same
charge encode intrinsically sharp points with the same integrated
curvature, as the structural term may also make a contribution
potentially canceling or even reversing the topological one. If we
are away from any defect, we can again apply the divergence
theorem and equate integrands to compute the local distributed
Gauss curvature. Recognizing that dAA = l8l>dA, this gives

KA ¼
1

2
l?�2 � lk

�2� �
r � bþ sð Þ;

which manifestly has the same dependence on l8 and l> as
eqn (1), and matches exactly upon substitution for b and s.

Alternatively, one may use the gradient result to bring all the
topological terms into the integral, which leads to a particularly
compact form for the Gauss curvature:

ð
KAdAA ¼

I
lk
l?
� 1

	 

bþ 1� l?

lk

	 

s

	 

� m̂dl: (14)

In both cases, the new forms are equivalent to the original
result for distributed Gauss curvature in the absence of defects,
but also give the correct result for a region containing defects
provided the director is smooth on the boundary.

3 Constant-rotation m = 1 defects

We first test our new form on the familiar constant-rotation +1
defect patterns26 which, in plane polar coordinates (r,y) have
the form c = y + a and hence rc = ey/r, n = cos(a)er + sin(a)ey,
and n* = �sin(a)er + cos(a)ey. The director curves thus form log-
spirals with constant angle a between the director and the
radial direction, such that a = 0 is a radial defect and a = p/2
produces circles. In this case the bend and splay are given by

b ¼ sin a
r

n�; s ¼ cos a
r

n: (15)

In the particular case of a circular pattern, the splay vanishes
and b = �er/r, while a radial pattern has vanishing bend
and s = er/r. Applying eqn (14) to a circular patch centered

Fig. 3 Examples of defect patterns with topological charge �1/2. Note
that a path around the defect consisting of u and v segments must have
different numbers of segments for each charge.
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on the origin, we can calculate the integrated Gauss curvature
as ð

KAdAA ¼ � 2p
lk
l?
� 1

	 

sin2 að Þ þ 2p 1� l?

lk

	 

cos2 að Þ

¼ 2p 1� sin2ðaÞ
lk
l?
� cos2ðaÞl?

lk

	 

:

Since this is independent of the radius of the patch (and the
patterns have rotational symmetry), we conclude that there is no
distributed Gauss curvature, but there is an intrinsically sharp
point at the origin with finite integrated curvature. Equivalently,
we can reach this conclusion directly by applying the divergence
theorem to eqn (14) and recalling that r�(er/r) = 2pd2(r) and
r�(ey/r) = 0, so r�b = �2pd2(r)sin2 a and r�s = 2pd2(r)cos2 a.

We can compute the same result from eqn (13) by noting

that bþ s ¼ 1

r
cosð2aÞer þ sinð2aÞeyð Þ to get:

ð
KAdAA ¼ p

lk
l?
� l?

lk

	 

cos 2að Þ þ p 1� l?

lk

	 

1�

lk
l?

	 


¼ 2p 1� sin2ðaÞ
lk
l?
� cos2ðaÞl?

lk

	 

:

(16)

Either way, setting a = 0, p/2 we recapitulate the familiar results
for anticones/cones formed from radial/circumferential patterns
respectively. However, for an intermediate angle, cos(2ac) = (l8 �
l>)/(l8 + l>), the integrated curvature at the origin is zero, so there
is no intrinsically sharp point in the activated surface; in fact, given
the distributed curvature is also zero everywhere in the flanks, the
activated nematic sheet will be completely flat.26

The second approach clarifies that the integrated curvature
at the origin contains a topological contribution, which is
identical for all m = 1 defects, and a pattern-dependent struc-
tural contribution p cos(2a) which is not. The structural
contribution reverses sign under taking the orthogonal dual,
while the topological contribution does not, leading circular
and radial patterns to have different but not exactly opposite
curvature. Perhaps surprisingly, the structural term contributes
a finite integrated curvature at the origin, despite the distrib-
uted curvature being zero throughout the flanks.

4 Integrated curvature at a general
nematic defect

We next consider the neighborhood of a general defect with
topological charge m. Constructing a polar coordinate system
centered on the defect, the director will have the form c = y +
a(y,r), where a is now a varying function that will wind m � 1
times on a path around the origin. Computing the bend and
splay, we now get

b ¼ sin a
r

1þ @a
@y

	 

þ @a
@r

cos a (17)

s ¼ cos a
r

1þ @a
@y

	 

� @a
@r

sin a; (18)

so, defining a0(y) = a(y,0), near the defect we have

bþ s ¼ 1þ a00
r

cos 2a0ð Þer þ sin 2a0ð Þeyð Þ þOð1Þ: (19)

Considering a small circular patch at radius r, we can again
use eqn (13), to find the finite integrated curvature at the
defect point,ð

KAdAA ¼ p
lk
l?
� l?

lk

	 

cosð2a0Þh i þmp 1� l?

lk

	 

1�

lk
l?

	 

;

(20)

where the angle brackets indicate an angular average around the
defect. This result is strongly reminiscent of eqn (16), and again
is the sum of a structural part, which depends on the particular
pattern of the defect, and a topological part which depends only

on its charge. Given that the factor 1� l?
lk

	 

1�

lk
l?

	 

is strictly

negative, we conclude that positive charge defects are inclined to
produce negative Gauss curvature, and vice versa. Furthermore,
given �1 o hcos(2a0)i o 1, the structural contribution provides
an identical range of curvatures in all defect charges, while the
topological term produces an offset to this range proportional to
the defect charge. In particular, a higher-order defect will have
zero integrated curvature, and hence will not generate an
intrinsically sharp point in the surface, if

cosð2a0Þh i ¼ m
lk � l?
lk þ l?

;

which, for a fixed value of l8/l>, will be possible to satisfy over
a range of m centered on zero.

4.1 Constant-speed higher-order defects

The simplest manifestations of higher-order defects are those
with constant rotational speed, which, in plane polar coordinates
(r,y) have the form c = my + g, and hence a(y,r) = a0(y) = (m� 1)y + g.
These patterns are also of particular interest because they have been
experimentally realized.29 In this case we have simply

bþ s ¼ m

r
cosð2aÞer þ sinð2aÞeyð Þ: (21)

Away from the origin we have distributed Gauss curvature
which arises, via the structural curvature, from the divergence
of this term:

KA ¼
1

2
l?�2 � lk

�2� �
r � ðbþ sÞ

¼ 1

2
l?�2 � lk

�2� �2ðm� 1Þm
r2

cosð2aÞ:
(22)

This distributed curvature vanishes for m = 1, as is familiar
for log-spiral patterns. In contrast, all other constant-speed
defects produce surfaces with distributed Gauss curvature
KA p cos(2a) = cos(2(m � 1)y + 2g), in agreement with the
calculations in ref. 43 and 45.
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The integrated curvature at the defect point itself is char-
acterized by eqn (20). Along an infinitesimal circle around the
defect we have hcos(2a0)i = 0 for all m a 1, so the structural
term vanishes leaving only the topological term. For m = 1 the
angle a is constant, so hcos(2a0)i = cos(2a) and both terms
contribute. Within the circle we thus have

ð
KAdAA ¼ mp 1� l?

lk

	 

1�

lk
l?

	 

þ d1mp

lk
l?
� l?

lk

	 

cosð2aÞ;

(23)

where the Kronecker d1m equals one when m = 1 and zero
otherwise. Constant speed defects thus always encode intrinsically
sharp points, with the sole exception of m = 1 defects at the critical
angle ac discussed previously.

This result highlights a profound difference between m = 1
and m a 1 constant-speed defects. For m = 1, the structural
curvature gives zero distributed curvature, but produces a finite
contribution to the integrated curvature at the point of the
defect. For m a 1 the structural curvature encodes a pattern of
distributed Gauss curvature that diverges in strength towards
the defect point, but makes no contribution to the integrated
curvature at the point itself because it cancels under integration due
to its angular variation. A (heuristic) differential perspective on this
difference is that taking the divergence in eqn (22) also produces a
singular term at the origin, (l>

�2 � l8
�2)pm cos(2a)d2(r). Then,

integrating the combined (singular + distributed) divergence over an
infinitesimal disk, the cos(2a) variation causes the resulting
structural curvature to vanish for all m a 1; but the singular
term leads to a finite structural contribution for m = 1. This
reflects a key symmetry difference in the patterns: adding an
equal increment to a everywhere fundamentally changes the
structure of an m = 1 pattern, but simply rotates an m a 1
pattern about the origin. Correspondingly, such an increment
may change the integrated curvature at the defect point for
m = 1, but not for m a 1.

4.2 Numerical calculation of activated surfaces for constant
speed higher-order defects

Constant-speed higher-order defects thus offer a clear test of our
main result, since the structural term accounts for the distributed
curvature while the topological term accounts entirely for the finite
integrated curvature at the defect point, and hence the intrinsically
sharp point in the activated surface. We thus conduct numerical
calculations using a bespoke shell-elasticity code (MorphoShell) to
independently quantify their Gauss curvature and reveal their full
activated shapes. Our approach closely follows the spirit of ‘‘non-
Euclidian shells’’ with programmed metrics,5 including both
stretching and bending energies, with some specializations for
incompressible rubber sheets.

In more detail, our elastic shell calculations describe the
current shape of the sheet via the (3D) position x(r) of the
material originally at the (2D) position r in the flat unactivated
state. Using Latin indices for 3D and Greek for 2D, one can then
compute the local deformation gradient Fia = qaxi, and hence the
local metric of the deformed sheet as dxTdx = drTFT�Fdr � drTadr.

If this current metric differs from the activated target metric %a =
(l8

2nn + l>
2n*n*) then the sheet must pay a stretching energy

ES ¼
ð
mt
2

tr a � �a�1
� �

þ 1

det a � �a�1½ � � 3

	 

dA; (24)

which is simply the familiar stretching energy for a thin
membrane of incompressible Neo-Hookean elastomer, with shear
modulus m and (unactivated) thickness t. This energy is minimized
(and vanishes) if the sheet achieves an isometry, a = %a.

However, minimizing this stretching energy alone quickly
reveals infinite numbers of non-smooth and unphysical iso-
metries. To obtain sensible and physical surfaces, one must
also include a sub-dominant bending energy, that penalizes
extrinsic curvatures, encoded via the surface’s second funda-
mental form, Bab = (qaqbx)�N̂, where N̂ is the current surface
normal. Following,5 we use the standard bending energy for an
incompressible sheet,

EB ¼
ð

mt3

12 det½�a� tr �a�1 � B
� �2h i

þ tr �a�1 � B
� �� �2� �

dA; (25)

which is minimized when B = 0, (i.e., flat), as expected when the
encoded metric does not vary through the thickness.

MorphoShell represents the deforming sheet via an unstructured
triangulated mesh. The current metric for each triangle, a, requires
first derivatives and is estimated from the unique linear deforma-
tion that describes the current positions of the triangle’s three
nodes: a standard constant-strain finite-element approach. The
current second fundamental form, B, requires second derivatives
and hence is estimated from the unique quadratic deformation
consistent with the positions of six ‘patch’ nodes close to the
triangle’s centroid. Full details of these estimates are given in the
ESI.† The activated form of the surface is then given by minimizing
the total energy, ES + EB, over current node positions via either
damped Newtonian dynamics or gradient descent.

The resultant surfaces for a range of 10 higher-order constant-
speed defects are shown in Fig. 4. Since the defects form compli-
cated 3D surfaces, additional viewpoints are provided in Fig. S1
and supplementary videos M1–M10 (ESI†). Our calculations are for
free floating films, and have a large (rubber-like) actuation strains,
leading to dramatic high-amplitude shapes. The results clearly
exhibit the azimuthally oscillating distributed Gauss curvature given
by eqn (22), leading to increasingly flowery surfaces at higher-orders,
and good qualitative agreement with the experiments in ref. 29. As
familiar from arrays of cones,15 many of the defect shells can pop
into different stable configurations. The configurations shown in
Fig. 4 were selected as likely global energy minima, and some
examples of alternatives are given in Fig. S2 (ESI†).

To verify our predicted structural and topological contributions
to the Gauss curvature, we first compute the Gauss curvature of the
activated surfaces, KA(r,y), via the angular deficit at each node in
the mesh (see ESI† for details). In Fig. 5 we plot the local activated
Gauss curvature around a ring of fixed large reference radius,
KA(194t,y), for the m = +5/2 defect. Since this radius is far from the
intrinsically sharp point at the origin, the local Gauss curvature
stems only from the distributed contribution, and shows excellent
agreement with the magnitude and form predicted in eqn (22).
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However, since the topological curvature is concentrated in a
delta function at the origin, it cannot be interrogated by plotting KA

directly. Rather, in the spirit of Gauss–Bonnet, in Fig. 6 we plot the
integrated Gauss curvature within a reference-state disk centered on

the origin,
Ð r
0

Ð 2p
y¼0KAdAA, as a function of integration disk radius.

In a perfect isometry the only contribution to the integrand would
be a delta function of concentrated curvature at the center, leading

the integral to have a constant value, mp 1� l?
lk

	 

1�

lk
l?

	 

,

stemming entirely from the topological curvature. In practice, the
bending energy prohibits a singular curvature at the origin, so this
contribution is ‘smeared out’ over a finite non-isometric region
around the origin. However, as one moves away from the origin, all
the programmed curvature is indeed accounted for, and each
integral asymptotes to the expected topological constant. We
emphasize both the quantized nature of the ladder of asymptotes
shown in Fig. 6, which reflects their topological origin, and also the
different scalings with l8 and l> of the curvatures in Fig. 5 and 6,
which highlight the distinction between the topological and
structural contributions to the curvature.

The smeared-out regions near the origin in Fig. 6 involve a
stretch-bend trade-off, resulting in locally non-isometric defor-
mations that are beyond the scope of this paper. The extent of
the smeared region is doubtless p t (as explored for m = +1
cones in ref. 26), and would vanish in the vanishing thickness
limit. In practice, the region extends a surprisingly large multi-
ple of t in higher-order defects, which we attribute to the very
high distributed curvatures near the origin in these samples.
However, ultimately Gauss–Bonnet guarantees that all the
curvature encoded at the origin must be accounted for, once
the boundary of the integration disk is large enough that the
surface is isometric at the boundary.

5 Gauss curvature induced by
directional fields with varying magnitudes

Finally, we consider a programmed directional growth field in
which l8 and l> are also functions of position. Such programming

Fig. 4 Computational results for the activated morphologies of constant-speed defects in nematic elastomer sheets. The unactivated sheets are thin
disks of radius R and thickness t E R/100, as is typical for programmed nematic elastomer sheets. In all cases the programmed metric has l8 = 0.75,

l? ¼ 1
� ffiffiffiffiffi

lk
p

except for m = +5/2, where l8 = 0.9 is depicted to avoid self-intersection. The m = +1 defect is programmed with a = p/4, to isolate the

topological contribution to the Gauss curvature, resulting in a weak anticone and enabling comparison with the higher-order defects.

Fig. 5 Activated Gauss curvature as a function of y at r E 194t (far from
the defect core), for an m = � 2 constant-speed defect with g = p/4 and
thus cos(2a) = sin(6y). The values estimated numerically on a simulated
surface show good agreement with eqn (22).

Fig. 6 Integrated Gauss curvature (up to radius r) for 10 simulated
defects. Each defect generates the topological curvature predicted by
eqn (23), forming a quantized ladder. Owing to finite-thickness effects, the
curvature is not singularly concentrated at a point at the origin, but is
spread over a finite core.
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has not yet been demonstrated in LCEs (although it could be
achieved by additionally patterning the crosslink density or the
strength of the order parameter), but is commonly found in biology:
for example the exaggerated nectar spurs in Darwin’s orchid develop
via a process of cell elongation,21 but the degree of elongation varies
with distance from the tip of the spur. Given the local metric now
has three degrees of freedom, c, l8 and l>, it is possible to
represent any programmed metric in this form. However, this is
likely to be a natural representation in cases where the direction n is
physically meaningful, such as being the direction of cell polariza-
tion. In this case we can again adopt the nematic coordinate system,
(u,v); the metric is still diagonal, but now l8 and l> are functions of
u and v. Applying eqn (2), the geodesic curvature is thusð
kgAdlA ¼

ð
dfA þ

ð
1

lk

l?bu þ l?ub
Zb

bdv� 1

l?

lkZv þ lkvZ
Zb

Zdu
	 


:

(26)

To bring this into a coordinate-independent form, we again use
dl = Z du n + b dv n* and recognize the (scalar) bend and splay, but

must also recognize that
1

Z
@u ¼ n � r and

1

b
@v ¼ n� � r, which

allows us to eliminate the unknown fields Z and b and writeð
kgAdlA ¼

ð
dfA þ

ð
l?
lk
sn� þ n � rl?

lk
n� þ

lk
l?

bn�
n� � rlk

l?
n

	 

� dl:

(27)

As an aside, we note that this can be neatened up to giveð
kgAdlA ¼

ð
dfA þ

ð
1

lk
r � nl?ð Þn� � 1

l?
r � n�lk
� �

n

	 

� dl:

(28)

However, returning to eqn (27) and again applying Gauss–
Bonnet to a patch built from u lines and v lines, and containing
defects with charge mi, we can compute the contained Gauss
curvature asð
KAdAA¼2p

X
i

miþ
I

lk
l?

b�
n� �rlk

l?
n��l?

lk
s�n �rl?

lk
n

	 

� m̂dl:

(29)

If desired, eqn (12) can again be deployed to either bring the
topological term inside the integral, or to evaluate the b � s
component of the integral. The resulting expressions are identical
to eqn (13) and (14), except with an additional contribution,

�
Ð n� � rlk

l?
n� þ n � rl?

lk
n

	 

� m̂dl, to the structural curvature

arising from the varying magnitudes.

6 Discussion and conclusions

We have presented a simple result for the Gauss curvature
developed by a flat sheet programmed with patterned directional
growth. Our result is valid for all patterns of growth, even if they
contain topological defects, and thus unifies previous (and super-
ficially contradictory) results on continuously distributed Gauss

curvature and singularly concentrated Gauss curvature at simple +1
defects, and extends these results to include all defect charges.

As seen most clearly in eqn (13), our result reveals a subtle
interplay between the topology of defects and the precise
structure of a given defect’s realization, which in turn generates
a subtle interplay between topological defects and intrinsically
sharp points. The topological term in eqn (13) contributes a
finite integrated curvature to the defect point, which depends
only on the charge of the defect and the value of l8/l>. In
particular, the topological term always gives negative contributions
for positive charge defects and vice versa, and is invariant under
taking the orthogonal dual of a pattern. In contrast, the structural
term in eqn (13) can produce both distributed Gauss curvature,
and contribute finite integrated curvature to points with dis-
continuous director. At topological defects, the director is dis-
continuous, and the structural term makes a finite contribution
to the defect point. This structural contribution depends on the
exact spatial form of the defect pattern, and is always inverted,
Kstr - �Kstr, by taking the orthogonal dual of a pattern. As seen
in eqn (20), the resultant integrated curvature at a point with a
topological defect contains both structural and topological
contributions, and can thus lie anywhere in a given range,
centered on the topological term and spanned by the structural
term. Generically the two contributions do not exactly cancel, so
the defect point has a finite integrated curvature and encodes an
intrinsically sharp point in the activated surface. However, it is
possible to structure defects such that the two contributions
exactly cancel. In this case the defect point carries zero integrated
curvature and does not create an intrinsically sharp point in the
activated surface.

Conversely, although all the intrinsically sharp points we
have covered are generated at topological defects, it appears
possible to program one via the structural curvature alone, at a
point without a topological defect. A full treatment of the
conditions required for such points lies beyond the scope of
this paper. However, heuristically, the structural curvature within a
patch is controlled by

H
bþ sð Þ � m̂dl, which may encode a finite

value at any point with divergent b or s. Since bend and splay are the
curvatures of director lines and orthogonal dual lines respectively,
such a divergence certainly requires infinitely curved director/dual
lines, and hence a discontinuity in director at the point. However,
such a discontinuity would arise at any kink in a director curve,
which need not carry a topological charge. An intrinsically sharp
point thus requires a point of discontinuous director, but the
discontinuity need not be a topological defect.

The key enabling approach to characterizing the curvature
encoded at defects has been to use Gauss–Bonnet to evaluate
the Gauss curvature within a patch in terms of its boundary
properties, resulting in a formula for the Gauss curvature that
needs integrating along the boundary but not over the (defect-
containing) area of the patch itself. In the particularly simple
case where the patch boundary is constructed from u and v lines
(integral curves of n and n*) we can go a step further and
conduct the boundary integral along each segment to calculate
the Gauss curvature in terms of properties at the corners.
More precisely, we can conduct the integral in eqn (14) along
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each segment, which yields the change in angle of the path
segment, so the Gauss curvature within isð

KAdAA ¼ 1�
lk
l?

	 
X
Dcu þ 1� l?

lk

	 
X
Dcv;

where Dcu and Dcv are the change in director angle (and hence
change in path angle) along the u line and v line segments. The
Gauss curvature within the patch is thus entirely determined
from the director angles at the corners. For example, for the
quadrangular path shown in Fig. 2, the Gauss curvature within
is simply ð

KAdAA ¼
l?
lk
�

lk
l?

	 

ca � cb þ cc � cdð Þ:

Going further, if the boundary is largely composed of u lines,

the Gauss curvature within will be
Ð
KAdAA ! 1�

lk
l?

	 

2pm,

while if it is largely composed of just v lines it will be

1� l?
lk

	 

2pm: results that are familiar from radial and circum-

ferential +1 defects, but now generalized to patches containing
multiple higher-order defects with the correct shape of boundary.

We anticipate that these geometric insights will be of use for
designing patterns of growth to achieve particular surfaces.
Current strategies for inverse design cannot produce patterns
containing defects,40 but our results highlight that defects not
only offer a route to designing surfaces with sharp features, but
can also occur without any concentrated Gauss curvature as part
of the programming of a smoothly curved surface. Furthermore,
our results show that the integrated Gauss curvature of a surface
is intimately related to the total topological charge it contains,
suggesting that the inclusion of topological defects may be
crucial to the design of surfaces containing large integrated
amounts of Gauss curvature, such as needed to wrap (or even
double-wrap) a sphere.

Looking beyond our current results, we first note the possibility
of encoding growth into an initially curved surface, so that it
morphs into a different curved surface on activation. This situation
is actually typical in biology, and, via ‘‘4D’’ printing, is increasingly
accessible to engineers.30 Although we defer a full investigation to
a later date, we anticipate that our existing approach will generalize
straightforwardly; indeed, as long as one uses nematic coordinates,
the metric of an initially curved surface could be represented via
eqn (3) without modification suggesting that many of our current
results will be directly applicable. A second extension would be to
compute Gauss curvature when the director is discontinuous
along a seam, rather than a simple point defect.45,49,50 Our
current approach relies on the director being continuous on a
patch boundary, then using Gauss–Bonnet to capture the
curvature within. Our results thus apply directly to a seam that
lies entirely within a patch (rather like a Kirigami cut) which can
be circumnavigated without difficulty, and an appropriate m
assigned from the winding of n around the boundary. However,
if the seam passes through the patch boundary then director

discontinuity also occurs on the boundary, and the concept of
enclosed topological charge breaks down. As we will show in a
forthcoming paper, in this case the Gauss–Bonnet approach still
works, but yields rather different results.

Finally, we comment that many biological tissues also have
nematic or polar order (stemming from the anisotropy of their
cells), and there is growing appreciation of the physiological
implications of defects: for example +1/2 and �1/2 defects in
epithelial tissue are known to be drive cell shedding.51 Similarly
the patterns of directional elongation that generate both the
exaggerated nectar spurs in Darwin’s orchid21 and the reproductive
whorl in the green alga Acetabularia acetabulum22,25 are centered
on +1 defects, and these must be accounted for properly to
compute the Gauss curvature and understand the shape program-
ming. Unlike in LCEs, biological growth fields tend to be patterned
in both direction and magnitude, but fortunately our results
straightforwardly generalize to this case (eqn (29)). Furthermore,
given the metric itself has quadrupolar symmetry, this formulation
is not limited to tissues with nematic order, but encompasses
the full spectrum of encodable metrics, and is likely to be useful
in polar tissues with topological defects as well as their nematic
counterparts.
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