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Controlled propagation and jamming
of a delamination front†

Mrityunjay Kothari, a Zoë Lemon,a Christine Rothab and Tal Cohen *ac

We study the birth and propagation of a delamination front in the peeling of a soft, weakly adhesive

layer. In a controlled-displacement setting, the layer partially detaches via a subcritical instability and

the motion continues until arrested, by jamming of the two lobes. Using numerical solutions and

scaling analysis, we quantitatively describe the equilibrium shapes and obtain constitutive sensitivities

of jamming process to material and interface properties. We conclude with a way to delay or avoid

jamming altogether by tunable interface properties.

1 Introduction

The crawling motion of a caterpillar serves as a common
pedagogical analogue to dislocation theory;1,2 although the soft
bodied larva may not be able to push forward the entire length
of its body simultaneously, without much effort it can form an
arch at its hind, and work that arch forward to conquer a short
distance. In a metal crystal, the caterpillar is representative
of one sheet of atoms, and the arch, of one atomic spacing,
which promotes deformation by moving. Clearly, these repre-
sentations are oversimplified. On the one hand, the motion
of an arch cannot accurately predict the behaviour in the bulk
of a crystalline material. On the other hand, the locomotion of
caterpillars is now known to be conspicuously more complex.3

Regardless, studying and understanding physical phenomena
that appear in the simplified model can ultimately feedback
into our understanding of the analogous system. In this paper,
we report on a jamming phenomenon that appears following
the nucleation and propagation of a peeling arch in compliant,
weakly adhesive layers. The arch is formed by subjecting the
layer to a controlled in-plane compressive displacement at one
end. Its motion is then resisted by the adhesive forces, until it is
completely arrested by jamming, thus producing stick-slip
behaviour in a fully controlled manner.

The motion of a ruck in a puckered carpet, serves as a
similar and common analogue to dislocation theory and has
been extensively studied in recent years.4–7 There, the motion is

resisted by gravitational forces. In contrast, here we consider
the resistance due to adhesive forces between the layer and a
substrate.8 This not only mimics the atomic interactions
between sheets, but also applies to a myriad of additional
physical systems: the stick-slip behavior of the delamination
front is akin to a Shallamach wave,9–11 and is considered to be a
fundamental mechanism in earthquakes;12–14 evolution of geo-
logical formations also involves inter-layer binding forces;15,16

adhesion and peeling are key mechanisms in emerging methods
for fabrication and patterning of nanowires and flexible
electronics;17–19 several additional examples appear in biology,
where the control and propagation of adhesive interfaces is
used to promote motility both at the level of a single cell20,21

and at the level of an entire organism.22–24 For further reading,
a comprehensive review of the literature and applications
related to delamination of thin films is provided in a recent
work by Davidovitch and Démery25 where they analyze the role
of different length scales in the process.

2 Observation

The delamination and jamming behavior described above is
demonstrated by a proof-of-concept observation in Fig. 1. A soft
layer of Polydimethylsiloxane (PDMS) is placed on a glass plate
and compressed by controlling the horizontal displacement of
its end, u0. The resulting horizontal and vertical displacements
of the layer are denoted by u(x) and v(x), respectively, where x,
the material coordinate, is measured from the loaded end, such
that u0 = u(0). Initially, the layer deforms in the plane while the
adhesive bond appears to remain intact, until, at a critical
displacement uc, an arch forms thus delaminating a length l = lc

of the undeformed layer. As this quasistatic process continues,
the arch length, la = l � u0, of the delaminated region varies

a Department of Civil and Environmental Engineering, MIT,

77 Massachusetts Avenue, Cambridge, MA, USA. E-mail: talco@mit.edu
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until the two sides of the arch come into contact, and are joined
by the adhesive forces, thus arresting the peeling process. In the
present formulation, all length scales are nondimensionalized
with respect to the thickness of the layer, h.

In this work, we facilitate this model system, which permits
control over the entire delamination process, and employ an
analytical model and scaling arguments to ask: how do the
properties of the layer and the adhesive interface influence the
conditions for formation and jamming of the delamination front?
Can these material properties be tuned to allow the delamination
front to propagate indefinitely?

A key property that must be accounted for, to answer these
questions, is the nature of the adhesive interaction between the layer
and the substrate. Considering small strains and weak bonding,
such as the van der Waals forces that attach the elastomer layer to
the glass in our model system (Fig. 1), we account for the effect of the
deformation of the adhesive bonds, prior to their detachment,
as previously suggested in Cohen et al.23 Accordingly, we divide
the interface interactions into elastic and inelastic components.
The bond stiffness, k, governs the elastic resistance to tangential
(in-plane) sliding prior to detachment, and the surface energy, G,
represents the energy required to debond a unit area of the surface.

3 Model

For the mathematical derivation, we consider a semi-infinite
elastic layer that is bonded to the surface and occupies the

region 0 o x oN, in its undeformed state. Upon displacement
of the end (x = 0) by an amount u0, a section of length l
delaminates to form an arch, while the rest of the layer
(x 4 l) experiences compression u0(x) o 0, but remains adhered
to the surface. The horizontal span of the arch can be calcu-
lated from the integral

la ¼
ðl
0

cos yðxÞdx; (1)

where y(x) is the local angle between the arch tangent and the
substrate, and changes in length of the detached region are
neglected.‡ The displacement of the end that is accommodated
by formation of the arch is thus

ua ¼ l � la ¼
ðl
0

ð1� cos yðxÞÞdx; (2)

whereas, the displacement accommodated by the in-plane
motion of the adhered part is

ul ¼ uðlÞ ¼ �
ð1
l

u0dx: (3)

Accordingly, we write the kinematic constraint on the total
deformation of the end

u0 = ua + ul. (4)

The shape of the layer is determined by minimizing the total
energy of the system for any prescribed u0. In our formulation,
the shape of the layer is fully described by the two functions y(x)
and u(x) for a given detached length l. The total energy P
invested in deforming the layer comprises of contributions
from two parts: the delaminated region of the layer, and the
adhered region of the layer.

Delaminated region

The energy of the delaminated region comprises of the bending
energy and the surface energy invested in breaking the bonds
between the layer and the substrate,

Pd½yðxÞ; uðxÞ; l� ¼
ðl
0

EI

2

y0

h

� �2

þ2G
 !

dx; (5)

where E is the Young’s modulus, and I is the area moment of
inertia of a layer of unit width. Here, assuming l c 1 we neglect
contributions due to in-plane compression of the detached
region.§

Adhered region

The energy of the adhered region includes elastic energy stored
by the in-plane compression of the layer, and the energy stored

Fig. 1 Controlled delamination in a PDMS layer of thickness h = 5 mm and
elastic modulus E = 30 kPa,26 adhered to a rigid glass plate. Displacement
control was used and a zero-slope boundary condition on the left end was
devised. Three trials were carried out (see ESI† for details on sample
preparation, experimental setup, additional trials and video of the experiment).

‡ It has been verified that displacements due to compression of the delaminated
region are negligible.
§ Recall that all lengths in the formulation are nondimensionalized with respect
to the thickness of the layer.
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in extending the adhesive bonds

Pa½yðxÞ; uðxÞ; l� ¼
ð1
l

Eh

2
ðu0Þ2 þ 1

2
kðhuÞ2

� �
dx: (6)

The adhesive bonds (before their detachment) can be thought
of as a bed of springs with stiffness k, per unit area, and
therefore the second term in eqn (6) is the energy invested in
stretching the springs.

With the above contributions, we can write the total energy
for an arbitrary set [y(x),u(x);l], as the sum P = Pd + Pa. An
equilibrium solution is an extremum of this energy functional.
However, to be admissible, it must also obey the kinematic
constraint (4). To enforce this constraint we augment the
energy functional by an additional term

C yðxÞ; uðxÞ; l½ � ¼ F � u0 � ua � u1ð Þ

¼ F � u0 �
ðl
0

ð1� cos yÞdxþ
ð1
l

u0dx

� �
; (7)

where F is a Lagrange multiplier that can be interpreted as
a generalized force applied at x = 0, to ensure the displace-
ment u0.

Finally, the augmented energy functional is given by adding
the separate contributions P = Pd + Pa + C, which by inserting
eqn (5)–(7) reads,

P½yðxÞ; uðxÞ; l� ¼
ðl
0

EI

2

y0

h

� �2

þ 2G

 !
dx

þ
ð1
l

Eh

2
ðu0Þ2 þ 1

2
kðhuÞ2

� �
dx

þ F � u0 �
ðl
0

ð1� cos yÞdxþ
ð1
l

u0dx

� �
:

(8)

A stable equilibrium shape for an imposed displacement u0

is found through a two step minimization procedure: first, we
find the shape that minimizes the energy for a prescribed
detached length l; then we find the minimum energy solution
among all values of l, including the fully adhered solution for
which l = 0. Mathematically we can write

ðyðxÞ; uðxÞ; lÞ ¼ argmin
l

min
y;u

P
� �

: (9)

The optimal solutions obtained in the first minimization
follow from the Euler–Lagrange formulation, which results in
two differential equations, readily written in nondimensional
form as

y00 � 12f sin y = 0 for x A [0,l] (10)

l2u00 � u = 0 for x A [l,N], (11)

where the dimensionless number, l2 = E/kh, emerges naturally
from the formulation, and the dimensionless force

f = F/Eh = �u0(l), (12)

is derived using I = h3/12, and ensures balance of horizontal
forces at x = l.

Integration of (10) is performed numerically to determine
y(x), which is then used to obtain the displacements

ðuðxÞ; vðxÞÞ ¼ u0 þ
ðx
0

cos ydx;
ðx
0

sin ydx
� �

for x 2 ½0; l�:

(13)

Here we consider situations in which a zero angle is maintained
on both ends of the arch, namely y(x = 0) = y(x = l) = 0. Hence,
the numerical solution is obtained via a shooting method.

In the adhered region, eqn (11) is integrated analytically.
Here, the displacement is expected to decay in the remote field,
namely u(x - N) - 0, while its slope, at x = l, balances the
force f. Accordingly, we have

(u(x),v(x)) = (lfe(l�x)/l,0) for x A [l,N). (14)

From this result, it is apparent that l serves as a characteristic
decay length in the adhered region. The dimensionless force, f,
is obtained by the requirement of displacement continuity
at x = l.

The solutions obtained through this procedure are equilibrium
configurations for a prescribed detached length l. Hence, they are
independent of the surface energy, G, which enters the formula-
tion in the second minimization procedure (9), where an optimal l
is obtained by comparison among the energetic states. This is
done separately for each prescribed displacement u0.

4 Numerical results

Representative results are shown in Fig. 2, where we examine
the sensitivity of the process to the dimensionless charac-
teristic decay length, and the dimensionless counterpart of
the surface energy

l ¼
ffiffiffiffiffi
E

kh

r
; and g ¼ G

Eh
; (15)

respectively. The length of the delaminated region, l, is shown
as a function of u0 in Fig. 2a. In all cases, delamination of
a finite region appears as a first order transition, where the
critical displacement, uc, depends on both l and g. Quite
interestingly, l influences the barrier for delamination, but
has a negligible effect on the shape of the curve that follows
and, thus, on the shape of the arched region. Prior to the
delamination, the response is linear and is dictated solely
by the elastic properties through l, as shown by the force–
displacement curves in Fig. 2b. Then, at uc a sudden drop in the
applied force is observed and followed by a monotonic decrease
as displacement progresses. The corresponding sensitivity of
the shape of the layer is shown in Fig. 2c for three representa-
tive values of u0. The curves clearly indicate negligible effect of
l on the shape, once the delamination has taken place. Higher
g leads to a smaller detached section as it increases the
energetic cost of delamination.

To study the jamming limit, we examine the evolution of the
archlength as shown by the black curves in Fig. 3, for different

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
Se

pt
em

be
r 

20
20

. D
ow

nl
oa

de
d 

on
 7

/3
0/

20
25

 9
:1

9:
41

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sm01164a


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 9838--9843 | 9841

values of g. In all cases, following the initial detachment, the
arch increases its length up to a maximal value, beyond which
the tendency is reversed and the arch begins to contract with
increasing u0, until it jams. This limit is estimated here by the
intersection between the two sides of the layers’ mid-line.
Upon jamming, the shapes of the arched region in different
layers are self-similar, namely jamming occurs once the ratio
la/u0 B 0.2 is obtained, as shown by the dashed gray line
in Fig. 3.

5 Scaling analysis

The sensitivities observed in Fig. 2 can be further clarified by
a scaling analysis. We consider arch formation under the

assumption u0 { l and, thus, y { 1. At this limit, eqn (10)
can be integrated analytically, which upon implementation of
boundary conditions, reads y(x) = A sin(2px/l), where the com-
patibility requirement (4) translates to A2 = 4(u0 � ul)/l, and
force balance implies ul = lf = lp2/3l2. Now, we substitute these
relationships into (8) and omit small terms under the assump-
tion l/l4 { 1, to obtain the total energy

P B Eh(p2u0/3l
2 + 2gl) (16)

which admits a minimal value at

l � p2u0
3g

� �1=3

: (17)

Corresponding curves are shown by the dotted gray lines in
Fig. 2a, and agree well with the numerical results for moderate
displacements, u0.

Next, to estimate the critical values at which the arch
forms, i.e. (uc,lc), we compare the total energy invested
in deforming the layer into the arched configuration (by
inserting (17) into (16)), with that of the layer in a fully
adhered state, i.e. P = Eh(u0

2/2l). Initially, the flat configu-
ration is energetically favorable. Then, the arch emerges when
these energies intersect, which after some algebra and by
substitution of (18) reads

u5c B 72p2l3g2. (18)

We find a striking agreement between this relation and the
results obtained via the numerical scheme, which are shown in
the form of a phase portrait in Fig. 4. According to (18), at the
limit of infinite bond stiffness (l - 0), which is commonly
assumed in theories for interfacial fracture, an arch would form
immediately upon loading with uc = 0, and would result in
lc = 0, thus showing the importance of accounting for the bond
stiffness to determine the nucleation limit.

Fig. 2 Theoretical results for three combinations of (l,g) provided as multiplications of the base pair l0 = 10, g0 = 10�3: (a) evolution of detached length l with
applied displacement u0 shows a jump at a critical displacement at u0 = uc. Increasing g delays detachment and leads to a smaller detached length; increasing l
only delays detachment. Scaling predictions, indicated by dotted gray lines, are in agreement with numerical results. (b) Applied force f undergoes a drop at
u0 = uc as the peeling initiates. Only l controls the slope of the initial linear part of the f–u0 curve, prior to detachment. Higher g leads to a lower peak-force and
earlier detachment. (c) The corresponding shapes at different values of u0 are shown for the three cases. In determining the delaminated shape l is shown to
have negligible impact (red and green curves), while increasing g delays detachment and decreases the delaminated length for a given u0.

Fig. 3 Jamming transition shown for l = 10 with four values of g = (5, 2, 1,
0.5)g0 with g0 = 10�3: archlength, la, is plotted as function of the applied
displacement. The black curves represent cases with spatially constant
surface energy (g). The dashed gray line marks the points where the lobes
of the layer come into self contact and jamming is initiated. If the surface
energy decays spatially with g = g0 exp(�x/l0), the jamming can be delayed
or avoided altogether by tuning the decay length, as shown by the green-
colored curves for three values (l0 = 130, 170, 600).
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6 Discussion and concluding remarks

To confirm the results of the above formulation, we now return
to our observation in Fig. 1. Recall from Fig. 2 that g controls
both the critical displacement uc and the subsequent evolution
of l with u0, while l only affects uc. In order to fit the model to
the experimental data, we first obtain the g that best captures
the l 4 0 part of the l � u0 curve. Then, keeping g fixed, we tune
l to match the experimentally observed uc. The outcome of this
fitting process is shown in Fig. 5 (see ESI† for two additional
cases). We show the mid-line curves of the PDMS sample at
different displacements in comparison with theoretical shapes.
The discrepancy in the arch shape for small u0, where the arch
is shallow, is due to the extensibility of the layer. This effect
becomes less significant as u0 increases. At larger displacements,
when jamming is approached, symmetry breakage may occur due
to gravity, which is neglected in the present model.¶ From
the fitting process outlined above, we have for the PDMS layer
g B 3.2 � 10�2 and l B 0.7 for a trial showed in Fig. 5. The
combined results from the three trials give g = (2.63 � 0.296) �
10�2 and l = 0.6 � 0.058 (these values are also indicated in
Fig. 4), which from eqn (15) translate to dimensional values
G B (3.95 � 0.44) � 10�3 N mm�1 and k B (1.76 � 0.34) �
10�2 N mm�3. These values agree with representative values in
the literature.23,27 The present peeling method thus provides a
novel technique to measure these properties, which are otherwise
difficult to obtain. Since the adhesive properties of PDMS are
coupled with stiffness, their individual control is an experimental
challenge that is left for future work.

Finally, a key result of this work is the identification of
the terminal jammed state and its dependence on the layer
properties. While intermediate configurations are unstable to
perturbations of the applied force, the jammed state is expected
to be most ubiquitous in the natural world. Moreover, recent

works have demonstrated that by employing surface wrinkling
and kirigami techniques to control interface morphology, it is
possible to tune the surface adhesive properties.28,29 Therefore,
given our understanding of this phenomenon, it is now possible
to tune the system not only to prescribe the jamming distance,
but to avoid jamming completely. As an example, the latter can
be achieved by spatially varying the surface energy, as shown
in Fig. 3. This potential of active control raises the question as
to whether caterpillars or even cells exploit similar in-plane
mechanisms to form an arch and control their motion, and
can artificial smart systems do the same?
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