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Tuning the selective permeability of polydisperse
polymer networks†

Won Kyu Kim, *a Richard Chudoba, bc Sebastian Milster, bd Rafael Roa, e

Matej Kanduč f and Joachim Dzubiella *bdg

We study the permeability and selectivity (‘permselectivity’) of model membranes made of polydisperse

polymer networks for molecular penetrant transport, using coarse-grained, implicit-solvent computer

simulations. In our work, permeability P is determined on the linear-response level using the solution–

diffusion model, P = KDin, i.e., by calculating the equilibrium penetrant partition ratio K and penetrant

diffusivity Din inside the membrane. We vary two key parameters, namely the network–network inter-

action, which controls the degree of swelling and collapse of the network, and the network–penetrant

interaction, which tunes the selective penetrant uptake and microscopic energy landscape for diffusive

transport. We find that the partitioning K covers four orders of magnitude and is a non-monotonic

function of the parameters, well interpreted by a second-order virial expansion of the free energy of

transferring one penetrant from a reservoir into the membrane. Moreover, we find that the penetrant

diffusivity Din in the polydisperse networks, in contrast to highly ordered membrane structures, exhibits

relatively simple exponential decays. We propose a semi-empirical scaling law for the penetrant diffusion

that describes the simulation data for a wide range of densities and interaction parameters. The resulting

permeability P turns out to follow the qualitative behavior (including maximization and minimization) of

partitioning. However, partitioning and diffusion are typically anti-correlated, yielding large quantitative

cancellations, controlled and fine-tuned by the network density and interactions, as rationalized by our

scaling laws. We finally demonstrate that even small changes of network–penetrant interactions, e.g., by

half a kBT, modify the permselectivity by almost one order of magnitude.

1 Introduction

Being a key transport property in materials science, the permeability
of membranes has been excessively studied for more than a
century.1–5 The permeability determines the fundamental ability
of functional solutes, such as ions, ligands, proteins, and
reactants to penetrate and be transported through dense but

permeable membranes of various kinds. Membranes, constituting
typically quite crowded environments, are mostly polymer-based,
and are ubiquitous in soft matter applications, materials science,
and naturally in biological systems. In the latter, bio-hydrogels
such as cytoskeletons, mucus gels, and the extracellular matrix
(ECM) are complex molecular assemblies composed of hydrated
polymer networks.4,6–11 In general, they function as selectively
permeable barriers for solutes to penetrate.9 For instance, the
ECM constructs a selective barrier around the cells, thereby
regulating the transport of signaling molecules.9,12–18 Hence,
the permeability of bio-hydrogels plays a decisive role in
maintaining life.

Other important examples of polymer-network-based membranes
can be found in functional soft matter composed of synthetic
hydrogels, such as cross-linked poly(N-isopropylacrylamide)
(PNIPAM).19 Due to their thermoresponsiveness and relatively
sharp volume transition, they are widely used as representative
and promising components in emerging material technologies
for stimuli-responsive carrier particles, actuators, sensors, or
responsive nanoreactors.20–33 In the latter, for instance, the
hydrogel embeds nano-sized enzymes or metal nanoparticles
catalyzing chemical reactions, which are ultimately controlled
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by responsive membrane permeability.34–36 In general, responsive
polymeric matrices can be expected to control the permeation of
solutes (penetrants) in a selective manner, modulated by external
stimuli such as temperature, pH, and salinity. The tunable selectivity
of permeability (‘permselectivity’)4 thus bears enormous
potential for the development of ‘intelligent’, programmable
and adaptive membranes for diverse applications ranging from
gas separation,37–43 water purification, and filtration44–50 to
dialysis and drug delivery.51,52

Typically, the permeability of dense membranes is quanti-
fied by the so-called solution–diffusion model on the linear-
response level, via3,5,37,38,43,53–60

P = KDin, (1)

which is the product of two key quantities measured in equili-
brium, namely the partitioning (partition ratio) K = cin/c0,
simply given by the ratio between the penetrant concentrations
inside the membrane cin and in the bulk reservoir c0, and the
diffusivity (diffusion coefficient) Din of the penetrants inside
the membrane. In this definition, the permeability of the bulk
reservoir reference is thus equal to the free penetrant diffusivity
in the bulk reservoir, i.e., P0 = D0. Definition (1) is based on
linear Fick’s type of laws,5,56,61 where penetrant flux j is
generated by a concentration difference Dc, i.e., j = �PDc/L
across the membrane of thickness L, and the proportionality
constant is given by eqn (1). Note that in the gas separation
field, the permeability is often very similarly defined as the
product of a solubility coefficient and a diffusion coefficient,37

which may lead to different physical units of P, depending on
the exact definition of solubility.62 Other definitions of perme-
ability exist depending on length scales and transport mecha-
nisms, e.g., Knudsen diffusion or convection, which are not
applicable to our simulations.63 The elegance of the model
represented by eqn (1) is that it is simply based on two intuitive
and fundamental properties of a medium in equilibrium, which
should be easily accessible in experiments and theoretically
tractable.

However, there is still a growing number of theoretical
studies pursuing a better understanding of partitioning39–41,64–71

and diffusivity37,53,55,56,72–94,131 in polymer-based membranes and
hydrogels. It is the complexity arising from diverse molecular
interactions (e.g., excluded volume and attraction) and confor-
mational structures (cross-linked, ordered, polydisperse) inside
the membrane that renders the problem very challenging. Since
the pioneering attempts95–99 to tackle this problem, computer
simulations have become powerful, requisite tools used to
understand the permeability in polymers.100–110 In this context,
for instance, we recently presented a simple coarse-grained (CG)
simulation model of penetrant transport across a rigid immobile
lattice-based membrane, pursuing a better comprehension of
permeability, particularly in dense and attractive systems.87

Despite the simplicity of that model, we demonstrated a very
intricate behavior of permeability: it varied over many orders of
magnitude, and could even be minimized or maximized by
tailoring the potential energy landscape for the diffusing penetrants
through small variations of membrane attraction, structure,

and density. Supported by limited scaling theories, we showed
that the possible occurrence of extreme values is far from trivial,
being evoked by a strong anti-correlation and substantial
(orders of magnitude) cancellation between penetrant partition-
ing and diffusivity, especially in the case of dense and highly
attractive membranes.

In this work, we extend the previous study of a fixed, ordered
membrane topology to a more complex and more realistic case
of a membrane composed of fluctuating and cross-linked poly-
disperse polymers to study the transport of diffusive penetrants.
For this, we consider a polydisperse tetra-functional network,
i.e., each cross-linker connects four polymer strands, which have
a polydisperse length distribution. As considered previously,69,87

the system includes the network region and the bulk reservoir
region, enabling a direct calculation of partitioning, diffusivity,
and thus permeability. We focus on two important control
parameters: the polymer network density fn (volume fraction),
tuned by internal interactions, and the interaction between the
network monomers and the penetrants. We calculate the linear-
response permeability P according to eqn (1) and systematically
analyze and rationalize our findings by presenting semi-empirical
scaling laws. Finally, we demonstrate how minute changes of the
interactions can modify the permselectivity of the membrane
substantially.

2 Methods
2.1 Simulation model

2.1.1 Network structure and setup. We performed implicit-
solvent Langevin dynamics computer simulations of a model
membrane made of a polydisperse, tetra-functional polymer
network111–114 including diffusive penetrants (see Fig. 1a). As
described in our previous studies on penetrant partitioning in
regular polymer networks,69 and permeability of highly ordered
membranes,87 we used LAMMPS software115 with the stochastic
Langevin integrator. The iteration time step dt = 5 � 10�3t was

used with the time units t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ms2=kBT

p
, where m is the unit

mass, and kBT = 1/b is the thermal energy. The friction
coefficient g was chosen such that the momentum relaxation
time tg = m/g = t, thus the free penetrants’ motion becomes
diffusive after 200 time steps.

For the initial configuration of the network, we considered
4 � 4 � 4 unit cells of a diamond cubic lattice, where Nxlink =
64 � 8 = 512 cross-linkers were located on the lattice points. The
unit cell length is 25s (with s defining the penetrant size and our
length scale) with the initial normalized cross-linker positions
per cell, {(0,0,0),(0,0.5,0.5),(0.5,0,0.5),(0.5,0.5,0),(0.25,0.25,0.25),
(0.25,0.75,0.75),(0.75,0.25,0.75),(0.75,0.75,0.25)}. In the tetra-
functional network, each cross-linker connects four polymer
chains. The number of polymer monomers between the (closest
neighboring) cross-linkers was randomly drawn from a uniform
distribution between 2 and 18, thereby resulting in the polydis-
perse structure with an average chain length of 10 monomers,
and a standard deviation of about 5. With the above construction
we ended up with Nm = 10 364 monomers in the network,
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yielding a cross-linker fraction of fxlink = 4.7%. This cross-linker
fraction is in the range of typical experimental values for tetra-
functional polymer networks, such as cross-linked PNIPAM
hydrogels.88–92

For initial equilibration, the membrane was placed in the
middle of a simulation box of lateral lengths Lx = Ly = 100s
and longitudinal length Lz = 300s, with periodic boundary
conditions in all three Cartesian directions. For a small mole-
cule of typical size s = 0.4 nm, the longitudinal box length then
corresponds to Lz = 120 nm. Note that the periodic boundary
conditions lead to an infinitely large membrane in the x and y
directions, while the membrane-reservoir regions periodically
repeat in the z direction with a spatial period Lz, reminiscent of
a stack of lamellar hydrogel layers.116 The membrane was first
equilibrated in the NVT ensemble using the force-field
described below. We then added Np = 1000 penetrant particles
to the bulk reservoir region, and equilibrated the whole system.

In the next step, the longitudinal box length Lz was kept
fixed, while Lx and Ly could adjust equivalently according to the

NpT ensemble with a given particle number N = Nm + Nxlink +
Np = 11 876, pressure px = py = p, and temperature T. To
maintain the target pressure p on an average, we used the
Berendsen barostat with semi-isotropic pressure coupling.117

Since we consider the implicit-solvent model, the anisotropic
pressure couples only to the virial coefficients in the x and y
directions of the polymer monomers and the penetrants. The value
of the lateral pressure defines the network reference states without
penetrants and was chosen to be p = 1 bar E10�2 kBT nm�3. The
latter is in fact negligibly small (essentially p E 0) compared to
the interactions in our system,67,118 which are of the order of
kBT nm�3 E 41 bar c p. The pressure relaxation time tp and
bulk modulus Kb for the barostat were chosen in the range of
1 r tp/t r 2 and 1 r Kb/p r 10, respectively, to maintain
reasonable dynamic pressure relaxation comparable to the
Langevin momentum relaxation, which depends on the inter-
action parameters.

After an equilibration time of 1.5 � 105t, we performed the
production simulations typically up to 107dt = 5 � 104t. As the

Fig. 1 (a) Simulation snapshot of the polydisperse tetra-functional polymer network in the swollen state with diffusive penetrants (blue). The polymer
segments (red beads) are connected by tetra-functional cross-linkers (yellow beads) and have a random length distribution (see the text in the Methods
section). (b) Various network conformations depending on enn and enp. The network collapses as the the network–network interaction parameter enn

increases (i.e., lowering the solvent quality to poor solvent conditions). (c) Polymer network volume fractions fn vs. the solvent quality parameter enn at
different values of the network–penetrant parameters enp (see the text for details). The solid line interpolates between the mean over the volume fraction

fnðennÞ averaged over all simulated enp values.
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finite network membrane is connected to the large bulk reservoir
region of solute penetrants, the penetrants can always equilibrate
their partitioning between the large bulk reservoir and the (respon-
sive) membrane. The resulting equilibrium density profiles of the
monomers as well as the penetrants within the membrane and in
the bulk reservoir are considerably homogeneous along the z
direction, cf. Fig. S1 in the ESI† demonstrates that the systems
are well equilibrated. For the chosen typical molecule size s =
0.4 nm, the corresponding membrane widths, determined from
the monomer concentration profiles, equilibrate then typically
from C4 to 16 nm. The lateral equilibrated lengths of the
simulation box Lx (= Ly) are shown in Table S2 in the ESI.†

Selected two-dimensional radial density distribution functions
between the cross-linkers, g2D

xlink(r), shown in Fig. 2, also demon-
strate that the equilibration procedure leads to reasonable and
homogeneous network structures in the lateral directions (note
that g2D

xlink(r) is averaged over thin two-dimensional membrane
slabs in the x and y directions, see Fig. S2 in the ESI† for details).
Especially in the dense state, apart from some short-ranged
packing effects, for r \ 3s, g2D

xlink(r) becomes homogeneous in
the lateral directions. For the swollen network, g2D

xlink(r) reveals
some more structures with a local peak at 3s t r t 4s, reflecting
short-range correlations between the crowded cross-linker regions,
and a second peak close to the average chain length (i.e., average
mesh size in the swollen case) of r C 10s. Changing the
network–penetrant interaction affects these distributions only
slightly in the dense systems, while in the swollen case few
structures are observed for large attractions between the network
and the penetrants (see Fig. S2 in the ESI†), indicating some
amount of penetrant-induced homogenization.

2.1.2 Force-field. For the non-bonded interactions, all particles
(i.e., monomers, crosslinkers, and penetrants) interact via the
generic Lennard-Jones (LJ) potential Uij

LJ for i, j = n or p, where n
denotes the network particles (polymer monomers and cross-
linkers), and p denotes the penetrant. The LJ size is s for all
particles and sets the length unit. (Note that our model is quite
generic and, while we have molecular sizes st 1 nm in mind, it can
be applied also to, e.g., macromolecular penetrants of larger size.)

The LJ energy epp = 0.1kBT of the LJ potential U pp
LJ is fixed such

that the mutual penetrant interaction is essentially repulsive69,87

(see also the positive second virial coefficient of the LJ interaction
in Table S1 in the ESI,† and the following sections including
Fig. 4 for details of the virial coefficients). In this work, we vary
two interaction parameters, the network–network interaction enn,
and the network–penetrant interaction enp between 0.1 and
1.5kBT. Here we should mention that, in fact, we considered even
higher attractions, benp 4 1.5, but the simulations revealed
metastable non-equilibrium phases where penetrants were
kinetically trapped within the membrane, evading equilibration.
For details, see Section D and Fig. S3 in the ESI.†

The intra-network interaction enn is interpreted as a measure
of solvent quality,69,87,119 thereby controlling the network
volume fraction fn = (Nm + Nxlink)v0/Vn, where v0 = ps3/6 is
the monomer volume with diameter s = snn = snp, and Vn is the
network volume. As discussed in previous works,69,87,119 small/
high enn corresponds to a good/poor solvent leading to a small/
high volume fraction, respectively. The network–penetrant
interaction enp governs the strength of attraction between the
polymers and the penetrants.

For the bonded interactions of the (semi-flexible) polymers,
we employed harmonic stretching (bond) and bending (angle)
potentials.69 The bonded polymer parameters were determined
via coarse-graining from explicit-water, all-atom simulation
results of cross-linked PNIPAM chains, utilizing a force-field
from our group’s work.120 Since the cross-linker connects mono-
mers of four polymer chains, the network is tetra-functional, and
in addition to the m-m-m bending, there are six bending potentials
for the m-xlink-m arrangement. Therefore, we have nine different
bonded (7 bending (angles), 2 stretching (bonds)) potentials in
total and we determined eighteen bonded parameters K ij

r , r ij
0, K ijk

y ,
and yijk

0 by fitting harmonic potentials to the free energies obtained
from the all-atom simulations. The details of all the bonded
interactions, that is, their calculation from the all-atom (explicit-
water) simulations of PNIPAM and their final definition, can be
found in the last section in the ESI.†

2.2 Analysis

In order to determine the solution–diffusion permeability given
in eqn (1), we need to individually evaluate the partition ratio
and the penetrant diffusion inside the network. Note again that we
analyze the simulation results in equilibrium, not by measuring
any fluxes of the penetrants.

The partition ratio, K = cin/c0, was computed by counting
and averaging the equilibrium number density of penetrants
inside the network and bulk reservoir, as similarly done in our
previous works.36,69,87 We carefully divided the simulation box
into three regions (inner membrane, membrane surface, and
bulk reservoir) to sample the concentrations without any effects
of the surface and the finite membrane width. See Fig. S1 in the
ESI† for details.

For the calculation of the penetrant diffusivity in the net-
work, Din, to avoid the surface effect, we generated 20 auxiliary
simulation boxes of diamond unit cells of the polydisperse
tetra-functional networks periodically repeated in all three

Fig. 2 Two-dimensional radial distribution function between the cross-
linkers g2D

xlink(r) for three different polymer volume fractions, from swollen
(fn = 0.06) to collapsed (fn = 0.36) states. The network–penetrant
interaction parameter is benp = 0.1. The distribution function g2D

xlink(r) is
averaged over thin 2D membrane slabs in the x and y directions, see the
ESI† for details and more data.
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dimensions. We included the penetrants for each parameter set
of enn and enp and we performed additional simulations of
these periodic cells (see Fig. S4 in the ESI†). To determine
the cell size and the number of the penetrants in the cell, we
used the equilibrium values of the penetrant density and the
polymer density obtained from the main simulation data.
We computed the mean-squared-displacement (MSD) of the
penetrants in the networks, averaged over time and particles,121

as shown in the ESI,† Fig. S5 (upper panels), within the
dimensionless simulation time range from t = 100 to t = 1000
to obtain diffusivity via MSD = 6Dint, ensuring the normal

diffusion,121 which fulfills a ¼ d lnMSD

d ln t
¼ 1 (see Fig. S5 (lower

panels) in the ESI†). This auxiliary setup is fully isotropic and
can possibly differ from the network structure in the main
simulations, where the membrane deformations can be globally
anisotropic. We therefore checked the isotropy of the membrane
simulations using several shape descriptors.122,123 Our examinations
with results shown in Fig. S6 in the ESI,† confirm that the polymeric
structure is highly isotropic in the central membrane region
throughout the whole range of interaction parameters.

Note that in our implicit-solvent simulations in the NpT
ensemble, the penetrant’s concentration in the bulk reservoir is
not a conserved quantity among the systems (as it would be in a
grand canonical ensemble), as the penetrants partition differently
in the membrane. Therefore, we intentionally employed small
penetrant concentrations in the reservoir and only weak inter-
actions (epp = 0.1kBT) to reduce non-ideality corrections.
To check the effects of a varying reservoir concentration, we
compare the partitioning results for two different numbers of
penetrants (Np) for all polymer densities at the lowest and
highest network–penetrant interaction in Fig. S7 in the ESI.†
This comparison indeed reveals a small quantitative difference
in the partitioning, but only for large polymer packing fractions and
without changing the qualitative picture. Hence, the conclusions
based on our generic simulation model should not depend on the
ensemble. Actually, our periodic isothermal–isobaric representation
(with fixed N) could be adequate to describe permeability
experiments using lamellar hydrogel layers.116

We note here that there are other simulation approaches to
study the solvent permeability in polymeric networks: Masoud et al.
developed DPD (dissipative particle dynamics) CG simulations to
investigate the solvent permeability in random networks under
external flow.103 Wang et al. developed explicit-solvent simulations
to study pressure-driven water transport in a polyamide membrane
in the isotropic NpT ensemble.107 A similar all-atom approach was
presented by the same authors to study pressure-driven water
transport through a CNT (carbon nanotube) membrane pore in
the presence of moving walls in the longitudinal direction.104 This
method as an alternative to the grand canonical ensemble124

was originally proposed by Ghoufi et al.125 and used to study the
water transport through a polyamide membrane.108 These
approaches successfully elucidated the permeability of solvents,
especially under non-equilibrium situations. However, our
approach is different since we focus on the permeability of
solutes in an implicit-solvent model in equilibrium, in the

absence of pressure gradients. In particular, the chosen solution–
diffusion approach has the advantage that effects of partitioning
and diffusion on permeability can be studied separately.

3 Results and discussion
3.1 Network density response to solvent quality and
penetrants

Six representative simulation snapshots of the system are
shown in Fig. 1b for different values of the solvent quality
parameter enn and the network–penetrant interaction para-
meter enp. The most swollen state is shown by the lower left
snapshot, whereas the most compact state is depicted by the
upper right snapshot. The polymer network collapses due to
strong network–network attractions enn (poor solvent), other-
wise it swells (good solvent). In addition, upon changing the
network–penetrant interaction, particularly while using inter-
mediate solvent quality (enn = 0.5kBT), we note that the larger
the attraction enp, the more packed is the network (lower
volume). This is due to the bridging effects of highly attractive
penetrants, contracting the network to maximize favorable
interaction contacts.69 See Fig. S8 in the ESI† for details of
the network volume change depending on the interactions.

In this respect, note that for the same solvent quality benn = 1, the
membrane width is increasing with growing network–penetrant
interaction benp, i.e., there is a penetrant-induced deformation.
Recall that we apply isotropic pressure with independent scaling
of the box in the x and y directions with essentially vanishing target
pressure, hence the membrane can simply freely deform based on
its internal virial. For large network–penetrant attractions, the
polymer tends to maximize contacts with penetrants (a volume
effect) and therefore the membrane deforms to increase the
volume-to-interface ratio.

The global effects of the two interaction parameters are
summarized in Fig. 1c, which depicts the network volume
fraction fn, i.e., the ratio of the volume occupied by the polymers
to the entire network volume, as a function of the solvent quality
parameter enn for different values of the network–penetrant
interaction enp. The network undergoes a typical collapse transi-
tion as enn increases at small and intermediate values of enp, while
the transition becomes more gradual when the penetrants are
very attractive (enp = 1.5kBT). This is probably due to local
monomer clustering and less structured networks, cf. Fig. S1
(ESI†), indicating a smooth transition. The solid line interpolates

between the mean values over the volume fraction fnðennÞ
averaged over all simulated enp values. Also note that the grey
data for fn(benp = 0.1) almost coincide with the purple data for
fn(benp = 0.7) as shown in Fig. 1c.

3.2 Penetrant partitioning, diffusivity, and permeability

3.2.1 Partitioning. In Fig. 3 we show the partitioning K,
the penetrant diffusion inside the network Din, and the perme-
ability P, as a function of the network volume fraction (a–c) and
the network–penetrant interaction parameter (d–f).
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The partitioning as a function of the network volume fraction,
K(fn), exhibits diverse behavior, ranging over four orders of
magnitude depending on the interactions, as shown in Fig. 3a.
For low network–penetrant interaction parameters enp, K

decreases monotonically with increasing network density, since
the essentially repelled penetrants are excluded by highly packed
polymers (see the second virial coefficient of the LJ system as
shown in Fig. 4). For higher values of the LJ potential depth enp,
the penetrants are increasingly more attracted to the network.
The partitioning K, however, becomes non-monotonic and
reaches a maximum around fn C 0.3. This partitioning maxi-
mization is due to the volume exclusion of the penetrants,
which wins over the attraction at high densities.70,87

The cross-over from penetrant exclusion to enrichment for
increasing enp at fixed polymer density fn becomes obvious in
Fig. 3d, where we plot K(enp). At around benp C 0.5–0.7
(depending on details of polymer density) the attraction out-
values the steric obstruction and penetrants are on average
preferentially adsorbed rather than being in the bulk reservoir,
i.e., K 4 1. We also observe that partitioning K(enp) roughly
exhibits an exponential increase with a larger slope as fn

increases. The exponential increase of partitioning is also

found in ordered membranes,87 reflecting that the overall
scaling behavior of partitioning (upon changing the inter-
actions) is rather insensitive to the regularity of the network.
For dense and attractive polymer networks, we empirically find
that K B e7benp, as depicted in Fig. 3d. The prefactor 7 reflects
the total mean attraction in the dense systems, where the
potential wells of many attractive monomers densely overlap.

In order to gain more theoretical insight and develop an
analytical framework for describing the data, we perform a
virial expansion of the transfer free energy bDG ’ 2B

np
2 fn=v0þ

3

2
Bnnp
3 ðfn=v0Þ2, and apply it to the partition coefficient

K = exp(�bDG),87 as

K ¼ exp �2Bnp
2

fn

v0
� 3

2
Bnnp
3

fn

v0

� �2
" #

; (2)

where Bnp
2 is the second virial coefficient, Bnnp

3 is the third virial
coefficient, and v0 = ps3/6 is the network monomer volume with
the diameter s = snn = snp. The expansion eqn (2) is compared
with the simulation data by fitting the parameters Bnp

2 and Bnnp
3 .

The final best fits are depicted by the solid curves in Fig. 3a and

Fig. 3 Simulation results (symbols) and theoretical fits (solid lines). (a) Partitioning K as a function of the network volume fraction for different values of
network–penetrant interaction enp. The solid lines are the fits from virial expansion eqn (2) (see the text and Table S1 in the ESI† and Fig. 4 for details).
(b) Penetrant diffusion in the polymer network Din as a function of fn. The solid lines are the fits (also depicted in (e)) from the free-volume approach
eqn (4) (see Table S3 in the ESI† for the details). The dashed line is e�fn as a reference. (c) Permeability P as a function of fn. The solid lines are the
predictions from eqn (5) using the fitting values from (a) and (b). (d) Partitioning K as a function of enp. The solid lines are the prediction according to the
virial expression eqn (2) using the Bnp

2 and Bnnp
3 values from the fit in (a) and the mean density fn ¼ fn. The data scale roughly as KB e7benp for dense and

attractive polymers (the red dashed line). (e) Penetrant diffusion Din as a function of enp. The solid lines are the fits according to the exponential (Kramers’)
scaling Din/D0 B e�benp from eqn (4). (f) Permeability P as a function of enp. The solid lines are the predictions from eqn (5) using the fitting values from (a)
(see also panels (d) and (e)). The cross symbols in each panel are corresponding reference values in the bulk reservoir.
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are in very good agreement. The comparison implies the
pronounced contribution of many-body (Bnnp

3 ) correlations,
which are responsible for the non-monotonicity in the attractive
and dense regimes.

The fitted Bnp
2 and Bnnp

3 parameters can be found in
Fig. 4a and b. We find that the second virial coefficients
Bnp

2 agree well with the values from the explicit relation
Bnp
2 ðenpÞ ¼

Ð1
0 dr2pr2½1� expð�bUnp

LJ ðr; enpÞÞ� for LJ particles, cf.

the solid line in Fig. 4a. However, as shown in Fig. 4b, the third
virial coefficient Bnnp

3 from the fitting deviates from the expli-
citly computed values of the LJ fluid. This implies that as the
polymer density increases, many-body interactions, in particu-
lar at the crowded cross-linker regions,120 play a major role,
which is beyond the correlations of a simple LJ liquid. In fact,
the fitted Bnnp

3 values are always positive, i.e., the many-body
effect can be identified as, on average, a repulsive contribution.

The data in Fig. 3d are also well described by the virial form,
eqn (2), where the solid lines agree with the simulation data. For
this, we use eqn (2) with the same virial coefficients obtained

from the result shown in Fig. 3a, and assume fn ¼ fn, which is
in fact a good approximation particularly for low and high
polymer densities. The dependence of the partitioning on the
network volume fraction can thus again be explained by a
balance between the network–penetrant attraction and exclusion,
which is particularly important for high volume fractions.

3.2.2 Diffusivity. In Fig. 3b, penetrant diffusivity Din in the
network is shown versus the polymer packing fraction fn. Note
that the diffusivity is rescaled by the diffusivity in the bulk reservoir
D0. The diffusivity decreases monotonically and tends to decay
rapidly as the network volume fraction increases.40,75,76,126,127 The
dashed line depicts e�fn as a simple reference. We further-
more compare the simulation results with the ‘free-volume’
theory,53,72,73,76,128–130

Dfv
in=D0 ¼ b exp �c fn

1� fn

� �� �
: (3)

The solid lines show the fitting with the prefactor b and the
exponent c, which perform in an excellent fashion. The fitting
values of b and c are shown in Fig. 4c. We note that b decays

exponentially with enp, while c is rather independent. This is
physically reasonable if we regard diffusion for large attractions
as an activated process, in which the penetrants have to escape
from locally bound states (‘traps’). Therefore, here we present a
semi-empirical scaling expression for the penetrant diffusivity,

Din=D0 � e
�benp�c

fn
1�fn

� �
: (4)

In Fig. 3e we confirm that Din(enp) indeed tends to exponen-
tially decrease. Hence, the Kramers’ type scaling Din p e�benp

for the diffusion limited escape from a single attractive well75

fits well, such that our prediction from eqn (4) holds. It is
interesting that the energy barrier in the dense systems (i.e., the
micro-roughness of the energy landscape) is simply described
by enp and not by multiples of it, as we observed in the more
ordered systems.87 Apparently, the random structure (e.g.,
polydispersity of the network) in thermal fluctuations smoothens
out the roughness significantly. Note again that the overall mean
attraction (i.e., the mean of the landscape in contrast to its
roughness) is much higher than enp, since we needed 7enp to fit
the partition ratio above. We remark here that our semi-empirical
scaling law eqn (4) has limitations since it does not behave well
when fn - 0, where Din/D0 should go up to unity. However, this
highly dilute membrane limit with little influence on transport is
not interesting anyway for applications and selectivity-control.

We recall that in the literature there are in fact various
proposals for scaling theories of diffusivity, depending on micro-
scopic diffusion mechanisms and length scales.75,76 In Fig. S9 in
the ESI,† we present several appropriate scaling theories for the
diffusivity, which are compared to our simulation results. We
concluded that for our systems, eqn (4) performs the best through-
out the range of fn, including the dense regimes.

It is interesting that the diffusivity is a simple monotonic
function of fn. In fact, this result is very different from our
previous finding for regular topologies, that is, membranes
made of a fixed (static) fcc (face-centered-cubic) or simple-cubic
lattice of LJ spheres.87 There, we found that the diffusivity is
rather a complex function of the density of the membranes. We
rationalized the effect by the roughness of a potential landscape,

Fig. 4 Virial coefficients (a) Bnp
2 and (b) Bnnp

3 in eqn (2) obtained as fitting parameters in Fig. 3a, shown by symbols for different values of enp. The exact
values of BLJ

2 and BLJ
3 for LJ potential are shown by the solid lines for comparison. (c) Fitting parameter values b and c in the free-volume scaling theory

eqn (3) (see also Fig. 3b). See the ESI† for details.
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which for ordered potential wells on a regular lattice can be a very
rapidly changing function of membrane density in certain density
regions.87 But in the case here, the fluctuations and the poly-
dispersity of the polymer network smoothen out the sharp
density effects on the energy landscape and all diffusivities
scale similarly exponentially, qualitatively almost independent
of parameter enp.

3.2.3 Permeability. In Fig. 3c we present permeability
P = KDin versus the packing fraction. The permeability varies
by about 4 orders of magnitude in our parameter range. Due to
the generic monotonic behavior of the diffusion, the nature of
the permeability depending on the volume fraction reflects
essentially the one of the partition ratio K, while the diffusivity
only quantitatively scales the results. Hence, we find that for
small interactions enp, the permeability monotonically decreases
with density, whereas for stronger interactions, it becomes a
non-monotonic function of density. Therefore, as an important
finding, the permeability can be maximized in our network
model system. For the largest network–penetrant attraction, the
permeability is maximized at around fn C 0.28 by a factor of
around 20 when compared to the bulk reservoir reference
permeability P = D0 (the cross symbol).

Having well-performing scaling laws for K and Din from
eqn (2) and (4), now we attempt to empirically construct a
scaling law for the permeability, via their product, eqn (1),

P ¼ exp �benp � c
fn

1� fn

� �
� 2Bnp

2

fn

v0
� 3

2
Bnnp
3

fn

v0

� �2
" #

; (5)

which comprises the attractive contribution as a function of the
network–penetrant interaction enp, and the exclusion contribution
as a function of the packing fraction. The maximization of P can
therefore be understood via eqn (2) and (4). The solid lines in
Fig. 3c are the predictions from eqn (5) using the fitting para-
meters determined already in panels a and b, showing very good
agreement with the simulation results.

The permeability as a function of the network–penetrant
interaction, P(enp), as shown in Fig. 3f, is an increasing function
from the global minimum at around benp = 0.1, which substantially
depends on membrane density. Here, the selective tuning of P
is mainly controlled by the penetrant’s excluded volume. The
prediction from the empirical scaling eqn (5) indeed agrees
well with the simulation data, in particular, capturing the
competition and cancellation between the exponentially growing
partitioning and the exponentially decreasing diffusion.

3.3 Correlations between K and Din and tuning of permselectivity

The diagram in Fig. 5 plots the partitioning K versus the
diffusivity Din and thus presents a landscape visualizing how
they are correlated, i.e., a partitioning–diffusivity correlation
diagram. The plot shows a wide landscape of the permeability
spanning over several orders of magnitude. The black dashed
line depicts the iso-permeability line of the bulk reservoir
permeability P/D0 = 1, where the two contributions exactly
cancel out. The data in Fig. 5 at low and intermediate polymer
densities lead to final permeabilities close to the iso-permeability

line, hence exhibiting clear anti-correlations and cancellations.
Such cancellations were also observed, even more massively, in
membranes constructed of static regular obstacles.87

The anti-correlations can be understood by glancing back at
our empirical scaling law for permeability, eqn (5). The attraction
between monomers and penetrants increases the uptake of
penetrants in the membrane roughly exponentially. However,
at the same time the attraction enhances the microscopic
roughness and deepens local traps, thereby impeding the
thermally activated (Kramers) escape, which in turn also leads
to an exponential decrease of diffusion. In many regimes, these
two effects cancel out, but the exact behavior depends on the
details of the variation of the energy landscape.87

In fact, the data do not simply follow one universal trend
with some statistical scatter. On the contrary, we observe a set
of distinct non-monotonic trends, each of which has its own
physical explanation. For example, for the most repulsive
penetrants (gray upside triangles) the data diverge substantially
downwards, as both partitioning and diffusion decrease with
polymer density due to excluded-volume (steric) constraints. In
contrast, for the most attractive penetrants (red circles) the
permeability stays closer to the bulk permeability P/D0 = 1 but
shows a distinct maximum. The reason for this is that parti-
tioning first increases stronger (beyond unity) than diffusion
decreases for increasing polymer density, but then steric exclusion
limits the uptake. Diffusion apparently does not decrease as much
as partitioning increases because in our fluctuating, polydisperse
network the energy landscape for diffusion stays relatively smooth
and independent of density, in contrast to highly ordered
membranes.87 This knowledge can be harvested to tune and
optimize the selectivity of a polymer membrane. In contrast

Fig. 5 Partitioning–diffusion K–Din/D0 correlation diagram. As depicted
in the legend, symbols of the same color have the same network-
penetrant interaction, but different polymer densities, i.e., the network-
network interaction and hence the polymer volume fraction increases
(for each color individually) from right (high diffusion) to left (low diffusion).
The black dashed line depicts the iso-permeability line P/D0 = KDin/D0 = 1
(reference bulk reservoir permeability), where the actions of K and Din on
the membrane permeability exactly cancel each other. The arrow connects
two states II (benp = 1.2) and I (benp = 0.7) at packing fraction fn C 0.17,
featuring the selectivity ratio aII,I � PII/PI C 6 (see the text).
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to the ordered membranes,87 however, this work indicates that
the diffusivity in fluctuating, disordered networks only rescales
the permeability, while the shape of the dependence is dictated
by the partitioning behavior. Hence, membrane design for
polydisperse networks should focus more on the behavior of
solubility in the network than on the mobility.

Hence, the diagram in Fig. 5 presents non-trivial pathways of
the permeability P along the two variable parameters, density
and network–penetrant attraction. This clearly shows how the
permeability can be tuned substantially over several orders of
magnitude already by a relatively small material parameter
space. With this, a significant selective permeability (perms-
electivity) can be demonstrated depending on the interaction
parameter, enp (which in reality is different for various chemically
specific penetrants). For instance, defined as aII,I � PII/PI,

42 the
selectivity for the states II (benp = 1.2) and I (benp = 0.7) depicted by
the arrow in Fig. 5 at a packing fraction fn C 0.17 amounts to
aII,I E 6, which is large. Hence, a small difference in inter-
actions of half a kBT results already in a permeability ratio of
almost one order of magnitude.

We note here that there are various mechanisms that govern
the selectivity. We limit our study to varying the interaction
strengths (enn and enp) at fixed penetrant size (s). Varying the
size, in fact, leads to even more complex behavior, such as
molecular sieving, once the penetrant size becomes larger than
the mesh size of the network.109,110 In this work, we focus on
the interaction-dependent permselectivity, where the sieving
can be effectively tuned by changing the interactions.

4 Conclusion

We presented extensive (implicit-solvent) coarse-grained simu-
lations and scaling theories for penetrant transport through
semi-flexible, cross-linked, and polydisperse polymer networks
with a focus on the linear-response permeability, calculated by
the equilibrium partitioning and diffusion of the penetrants
inside the network. The permeability has been found to be
largely tunable by varying the polymer network density and the
microscopic interactions between the network and the diffusive
penetrants. In particular, significant maximization and mini-
mization of the permeability were found, fine-tuned by the
solvent quality and the network–penetrant interactions. The
results were rationalized by phenomenological scaling theories
that we developed in this work, which include a virial expansion
with two-body attractions and many-body exclusion effects for
the partitioning, and a combination of the free-volume and
Kramers’ escape scaling laws for the diffusivity. Our presented
laws, despite their simplicity, capture salient features of the
system, showing good agreement with the simulation results.

The penetrant diffusivity turned out to be a rather smooth
function of the network density, implying substantial effects
of the fluctuation and randomness of the polymer network.
The highly fluctuating and polydisperse nature of the network
averages out the roughness of the energy landscape, which was
more pronounced and sensitive to parameter changes in highly

ordered, lattice-based and static membrane systems.87 However,
it is not clear whether smoothing-out is more a consequence of
polydispersity, or just a consequence of the irregular distribution
of polymer segments in space, which might also occur in mono-
disperse fluctuating networks that may be studied in the future.

Nevertheless, permeability revealed a rather intricate, non-
monotonic behavior over several orders of magnitude, originating
from the complex nature of partitioning, while quantitatively and
substantially modified by the anti-correlated and canceling con-
tributions of the diffusion. As a consequence, only small changes
of interactions, e.g., by half a kBT can already modify the selectivity
of the membrane by a factor of 6. Our study provides a further step
in the fundamental understanding and development of a minimal
theory to characterize better the permeability in flexible and
fluctuating polymer-based membrane systems.
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S. Angioletti-Uberti, ACS Catal., 2017, 7, 5604–5611.
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