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The role of temperature in the rigidity-controlled
fracture of elastic networks†

Justin Tauber, Aimée R. Kok, Jasper van der Gucht * and Simone Dussi

We study the influence of thermal fluctuations on the fracture of elastic networks, via simulations of the

uniaxial extension of central-force spring networks with varying rigidity. Studying their failure response,

both at the macroscopic and microscopic level, we find that an increase in temperature corresponds to

a more homogeneous stress (re)distribution and induces thermally activated failure of springs. As a

consequence, the material strength decreases upon increasing temperature, the microscopic damage

spreads over a larger area and a more ductile fracture process is observed. These effects are modulated

by network rigidity and can therefore be tuned via the network connectivity and the rupture threshold of

the springs. Knowledge of the interplay between temperature and rigidity improves our understanding of

the fracture of elastic network materials, such as (biological) polymer networks, and can help to refine

design principles for tough soft materials.

1 Introduction

Many soft materials have a microstructure that consists of a
disordered network. The building blocks that constitute this
network range from stiff fibers1 in paper or textiles, to semi-
flexible filaments in biological cells and tissues,2–4 to flexible
polymer chains in elastomers.5 The network architecture is
known to be important for the mechanical response and failure
of these materials;1,2,6,7 yet, most theoretical studies describe
the failure response via continuum mechanics8 or using a
mean-field approach,9 which ignore details of the network
topology and neglect the role of structural disorder. Such
models thus cannot provide a microscopic understanding of
the failure process. Therefore, coarse-grained network models
have been developed, which treat the material as a disordered
network of elastic springs, and which explicitly take connectivity
and disorder into account.10–13 Recent computational studies,
complemented with experiments on architectured elastic net-
works, have shown that under athermal and quasistatic conditions
the elastic response and failure behaviour of an elastic network is
controlled by both the connectivity of the network and the strength
of the individual elements.12–15 The network architecture, in
particular its connectivity, determines the network rigidity.
Commonly, the average connectivity of a random network is
described using the average number of bonds per crosslink.
Central-force spring networks, where the elements only resist
stretching, are rigid above a connectivity 2d, with d the

dimensionality of the network; this is called the isostatic
point.16 Below the isostatic point, central-force spring networks
are mechanically floppy. However, simulations have shown that
even floppy or sub-isostatic networks can be rigidified by an
external deformation13,17,18 or by the presence of additional
interactions such as a bending rigidity.6,10,11,19–23 These recent
studies suggest that if the static network structure and the
element strength of a soft athermal material are known, the
material response can be predicted based on the physical
concept of rigidity.

However, these athermal network models completely ignore
thermal fluctuations. While this may be justified for networks
composed of very stiff fibers, it is highly questionable for softer
networks. For example, the mechanics of flexible polymer net-
works, such as elastomers and hydrogels, are known to be
governed by thermal fluctuations and entropy, while network
connectivity is usually not taken into consideration.24,25 This
raises the question how connectivity and thermal fluctuations
interplay for networks consisting of fibers of intermediate
stiffness, as found, for example, in many biological materials.
Recent Monte Carlo simulations for such networks suggest that
in the presence of thermal fluctuations the linear modulus is
dependent on both rigidity and temperature. In particular, it is
shown that thermal fluctuations can stabilize (sub-isostatic)
central-force spring networks at the network level in a similar
way to bending interactions.26,27 Also, when looking at failure,
it is predicted that the average external force required to break a
single element or bond is typically reduced in presence of
thermal fluctuations.28,29 However, experiments on polymer
networks30 that demonstrate the presence of this thermally
activated failure process in network materials also imply that in
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networks the thermally activated failure is enhanced. These results
suggest that, when thermal fluctuations are present, the elastic
and failure response can be controlled by temperature, but also by
the structure of the network. However, it remains unclear how
these two parameters together govern the failure process.

In this paper we explore to what extent network rigidity
controls the influence of thermal fluctuations on the failure
behaviour of an elastic material. To this end, we study the
response of diluted central-force spring networks (see Fig. 1),
similar to previous studies.12–14,26,27 To introduce thermal
fluctuations into these systems we perform Langevin dynamics
simulations, which means that the networks are effectively
embedded in an implicit solvent. We find that the strength of
the networks is dependent on temperature and that the effect
of the thermal fluctuations is coupled to the rigidity of the
network. The simple structure of the model allows us to high-
light the interplay between rigidity and temperature, and to
provide insight in the underlying microscopic mechanisms of
stress homogenization and diffuse failure.

2 Model and methods

We consider diluted spring networks with a 2D triangular
topology consisting of L � L nodes separated by a distance
c0. Nearest neighbors are connected by bonds, which gives a
maximum network connectivity zmax = 6. The network is sub-
sequently randomly diluted by removing a fraction 1 � p of the
bonds, such that the average connectivity becomes hzi = pzmax.
Periodic boundary conditions are employed in all directions.
The bonds are harmonic (linear) springs with spring constant m
and rest length c0. Excluded volume interactions are not pre-
sent in the system. During fracture simulations, bonds break
irreversibly when their relative extension Dc/c0 exceeds a rup-
ture threshold l, which is the same for all the springs. We will
focus on networks with l = 0.03.

Simulations are performed using LAMMPS31 and nodes
follow Langevin dynamics:

m
d2r

dt2
¼ F� z

dr

dt
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mzkBT

p
RðtÞ; (1)

where F = mDc, m is the mass, z is a friction coefficient, kB the
Boltzmann’s constant, T the temperature and R(t) white noise
with zero-mean. The terms on the right hand side of eqn (1)
describe all the contributions to the movement of the nodes:
the elastic interaction with the network via the springs (first
term), a velocity dependent friction term with the implicit
solvent (second term), and a stochastic term which represents
random kicks from the molecules in the implicit solvent (third
term). The simulation is performed in reduced units with c0 = 1
as the unit for distance, m = 1 the unit for mass, E = 1 the unit
for energy and kB = 1 the Boltzmann constant. By replacing
these reduced units with values corresponding to an experi-
mental system, the results of this model can be expressed in
terms relevant for that system. The integration time step is set

to dt = 0.001t, where t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m‘02=E

p
is the unit time of our

simulations. The spring stiffness is set to m = 2000E/c0
2. In our

analysis, we will use the reduced temperature T* = kBT/(mc0
2),

indicating the ratio between thermal and elastic energies. We
set the friction with the implicit solvent to z = 10Et/c0

2. The
friction coefficient controls how quickly fluctuations in the
system are damped by the implicit solvent. A high friction
coefficient, e.g. a high solvent viscosity, results in fast damping
of fluctuations, while a low friction coefficient results in slow
damping of fluctuations so that inertia plays a dominant role in
the system dynamics. The friction coefficient chosen here
corresponds to the intermediate (underdamped) regime. In
addition, we can define a time scale t0 = z/m, the time that
a node requires to travel a distance c0 if it is subjected to a
force mc0. For our set of simulations t0 = 5 � 10�3t.

2.1 Measuring linear modulus and non-affinity

We calculate the linear Young modulus E from the difference in
average stress at 0% strain and 1.5% strain. At both strain
values the system is equilibrated for 100t and averaged over
1900t. The stress s is defined as the yy-component (along the
deformation axis) of the virial stress tensor normalized by m. In the
manuscript we only show the virial stress based on mechanical
interactions. Inclusion of the kinetic component of the virial stress
does not change the conclusions of this paper (see ESI,† Fig. S3).
Due to the thermal fluctuations a hydrostatic component is
present, even at 0% strain (see ESI,† Fig. S4). Analysis using
the deviatoric stress shows that substracting the hydrostatic
component does not alter our conclusion (see ESI,† Fig. S5). We
also calculate the non-affinity parameter defined as

Gmech ¼
r� raffð Þ2

D E
e2‘02

; (2)

where %r is the time averaged position of the individual nodes
after an applied deformation and %raff the position assuming an
affine displacement with respect to the time averaged position
of individual nodes at rest. e is the strain and h�i indicates the
average over all nodes. For these simulations, both non-percolating
clusters and primary dangling ends (i.e. nodes that are only
connected to one bond after dilution) are iteratively removed
from the network.

Fig. 1 Fracture of thermal spring networks. (a) Portion of a spring network
under 1.5% extensional strain. Several snapshots (corresponding to different
shades of gray) are overlaid to indicate the effect of thermal motion.
(b) Example of the stress–strain response of a diluted spring network
(p = 0.65, l = 0.03, T* = 10�4, L = 128). We highlight the peak-stress sp,
the corresponding peak strain ep, and the maximum drop in stress Dsmax.
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2.2 Non-linear elasticity and fracture

The network is uniaxially deformed in the y-direction up to
100% strain with a fixed strain rate of _e = 0.001t�1 (i.e. 0.0001%
deformation per unit time) while the lateral size is kept constant.
We remap the node positions between time steps, temporarily
enforcing affine deformation. The deformation is relatively slow
compared to the t0, _e = 5 � 10�6t0

�1, which indicates the system
has time to respond to the affine deformation via structural
rearrangements. Results for varying _e are reported in the ESI†
(see Fig. S7). A quick equilibration run of 50t precedes the
deformation. The network response is quantified by looking at
the stress s as a function of strain e. In addition, we follow the
instantaneous non-affine response

G ¼
r� raffð Þ2

D E
e2‘02

; (3)

where the affine response is calculated with respect to the
equilibrium position of the nodes at 0.0% strain (averaged over
1900t). Please note that G is only based on the instantaneous
positions and the non-affine response is therefore a combi-
nation of both rigidity controlled non-affine network rearrange-
ments and instantaneous thermal fluctuations (see ESI† for
details on the relation between G and Gmech).

In fracture simulations bonds are broken every 100 steps (i.e.
0.1t) when the connected nodes are separated by a distance
more than c0 + lc0. While the interval chosen for the evaluation
of rupture events influences the stress–strain curves somewhat,
it does not affect the conclusions of our paper (see ESI,† Fig. S8
and S9). From the measured stress–strain curves we extract
several quantities (see Fig. 1). All quantities are averaged over
several configurations and expressed in reduced units. The peak
stress sp is defined as the highest measured stress, and the peak
strain ep is its corresponding strain value. The maximum stress
drop Dsmax is calculated according to a procedure13,32 where we
(i) calculate the derivative of the stress–strain curve, (ii) make a
list of consecutive data points which have a negative derivative
and note the initial and final strain of each interval,
(iii) calculate the stress drops by subtracting the stress at the
final strain from the stress at the initial strain, (iv) identify the
largest stress interval, which corresponds to maximum stress
drop Dsmax. For the stress distribution analysis, we make
instantaneous histograms of the bond lengths ci during the
simulation at every percent strain. Based on these histograms,
we calculate the excess kurtosis

ke ¼

P
i

ð‘i � h‘iÞ4

Nbs4
� 3; (4)

where s is the standard deviation of the histogram, Nb the total
number of bonds, and hci the average bond length. For all these
parameters the standard error is calculated as the standard
deviation divided by the number of sampled configurations
(standard error of the mean). The errors are shown when they
are larger than the symbols displayed in the graphs.

3 Results and discussion

Using Langevin dynamics simulations, we uniaxially deform
diluted triangular central-force spring networks to study both
linear and non-linear network mechanics. By analyzing the net-
work response on both a macroscopic and microscopic level, we
gain insight into the effects of thermal fluctuations on the fracture
process of spring networks as well as how the rigidity controlled
failure of networks is affected by thermal fluctuations. Throughout
the manuscript we use the reduced temperature T* = kBT/(mc0

2)
which is a measure for the energy of the thermal fluctuations
relative to the energy required to extend the springs in the network.

3.1 The effect of thermal fluctuations on linear elasticity

First, we study the effects of thermal fluctuations on the linear
elasticity of central-force spring networks to check if the rigidity-
dependent elasticity observed via Monte Carlo simulations,26,27

an equilibrium method, can also be observed in our dynamical
model based on the Langevin equation (eqn (1)).

In Fig. 2(a) we plot the linear modulus E of the network as a
function of the network connectivity factor p for several reduced
temperatures T*. The linear modulus E describes the resistance
of a network to deformation and we observe that networks
below the isostatic point of mechanical stability16 (i.e. networks
below piso E 0.66) display a finite linear modulus E, which
would be absent for athermal systems (in the limit of T = 0).
This finite E is an effect of entropic stiffness, a temperature-
dependent phenomenon. Please note that this entropic

Fig. 2 Characterization of the linear elastic response for diluted triangular
networks of fixed system size L = 128. (a) Young’s modulus E as a function of
the connectivity parameter p for different temperatures T*. (b) Temperature
dependence of E for networks below, around, and above the isostatic point
(value of p indicated in the legend). The dashed lines indicate the power-law
fit Ta. (c) Rescaling of Young’s modulus according to ref. 26 with a = 1.4,
b = 2.8, and zc = 3.78. (d) The non-affinity parameter Gmech at 1.5% strain as a
function of p for different temperatures, same legend as (a). Every data point
is based on simulations of at least 10 independent configurations.
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stiffness is a network effect and is not the same as the entropic
elasticity arising from individual polymer chains. As reported in
literature,26,27 the scaling of the linear modulus with tempera-
ture E p Ta depends on both connectivity and temperature
itself. By plotting E as a function of T* we extract the scaling
exponent a from a power-law fit for three different values of p,
as shown in Fig. 2(b). For a sub-isostatic network with a
connectivity parameter p = 0.55 the linear modulus scales with
a = 0.84, which roughly corresponds to the dependence found
in the anomalous regime as defined in ref. 26, where a shear
deformation was instead considered. It was argued that the
disordered network structure causes this sub-linear depen-
dence. Whilst there is a clear dependence of the linear modulus
on the temperature below the isostatic point, the curves for the
different temperatures start to converge when approaching a
structurally rigid network (Fig. 2(a)). Accordingly, stiff networks
display temperature insensitivity (a E 0), as can be seen for a
network with p = 0.70 in Fig. 2(b). As T* increases, however, the
network connectivity becomes less important as the energetic
contribution arising from the structural rigidity becomes negligible
compared to the entropic elasticity. This is noticeable in Fig. 2(a)
where the curve for T* = 10�2 is roughly flat for the entire p-range,
and also in Fig. 2(b) where for p = 0.70, E increases for T* 4 10�3. As
predicted in ref. 26, we also find a different scaling for networks
close to the isostatic point, see, e.g., the curve for p = 0.62 in Fig. 2(b).
Although the exponent a is slightly different from the findings of
ref. 26 (where shear deformation and different simulation methods
were employed), we were also able to obtain critical rescaling as
shown in Fig. 2(c). We can conclude that there are different regimes
of dependence for the linear modulus on the temperature based on
both rigidity and temperature.

Furthermore, we find similar rigidity-dependent behaviour
of the thermal fluctuations in the non-affinity parameter Gmech

(eqn (2)), reported in Fig. 2(d) as a function of p for different T*.
The non-affinity of the network describes how much the time-
averaged local deformation differs from the global (externally
imposed) deformation. At low T* we find a peak in non-affine
deformation around the isostatic point (p E 0.66). This peak
arises from the tendency of the spring network to minimize
internal stress upon deformation. If the spring network is far
below the isostatic point, the stress can be reduced significantly
by a small amount of non-affine rearrangements while at the
isostatic point many non-affine rearrangements are required. At
the isostatic point, an increase in T* decreases Gmech, which
suggests that thermal fluctuations act as a stabilizing field,
similar to the bending rigidity in fiber networks.10 However, we
note that the effect of thermal fluctuations is always present,
even without external deformations, leading to structural rear-
rangements in the rest state (see ESI,† Fig. S1). Above the
isostatic point, we observe that the non-affinity converges for
most values of T* (see ESI,† Fig. S1 for details), which indicates
that above the isostatic point the network rigidity dominates
the non-affine response. Only if T* 4 10�4, we see that thermal
fluctuations affect the non-affine response, increasing Gmech.
This is in contrast to fiber networks, where the non-affinity
decreases with an increase in bending rigidity. We hypothesize

that this difference occurs because in the case of fiber networks
the fibers have a preference to remain straight to minimize stress
caused by fiber bending, while in the case of thermal fluctuations
an affine displacement of the nodes will not minimize the stress
caused by the randomly oriented thermal fluctuations. Below the
isostatic point, the effect of thermal fluctuations on the non-
affine response is significant. We observe that at T* = 10�8 the
non-affine response is the smallest and that a moderate increase
in T* up to T* = 10�6 leads to an increase in the non-affine
response, corresponding to what is observed for fiber networks.
However, we also observe a decrease in Gmech if the temperature
is increased beyond T* = 10�6, which is not observed in fiber
networks. It is unclear if this deviation is caused by a funda-
mental difference between thermal fluctuations and bending
rigidity as a stabilizing field or that longer equilibration times
are required to gain quantitative information on the non-affine
response in this regime (see ESI,† Fig. S1 and S2 for details).

In general, we find that at a global level thermal fluctuations
act as a stabilizing field in central-force spring networks,
dampening rigidity-dependent behaviour around the isostatic
point. However, our results suggest that the random nature of
the thermal fluctuations causes significant differences in the
local response with respect to stabilizing fields in athermal
systems such as bending.

3.2 The effect of thermal fluctuations on non-linear elasticity

In the previous section, we have shown that thermal fluctuations
rigidify sub-isostatic networks. Here, we analyze the non-linear
elasticity of unbreakable networks to quantify the effect of
temperature when networks become more and more strained.
The strain-stiffening observed for sub-isostatic networks in the
athermal limit has been extensively studied.6,11,18,19,33–36 In
Fig. 3(a), we report the stress–strain curves for a network with
p = 0.56 at different temperatures. It is evident that the network
strain-stiffens for all the T* investigated. We observe that the
onset of strain-stiffening is barely dependent on temperature.
Furthermore, the stress response becomes independent of T* at
high strains, similarly to what has been observed for other
stabilizing fields, e.g. bending.11,19

Signatures of strain-stiffening can also be observed in the
non-affine response of the network. In Fig. 3(b), we report the
instantaneous non-affinity parameter G, that intrinsically
includes both the non-affine contributions from instantaneous
thermal fluctuations and structural rearrangements. As a
result, high non-affinity values can be observed at low strains,
where the size of the non-affine thermal fluctuations is large
compared to the applied strain. At low temperatures, a peak can
be observed in the non-affine response around the onset strain.
At high temperatures, this peak is overshadowed by the non-
affine thermal fluctuations. At high strain, the network elasticity
is controlled by stretching of the bonds and the network
response becomes increasingly affine for most temperatures.
Only at T* = 10�2, the non-affine fluctuations are still visible.

To disentangle the effects of temperature and network
connectivity, we normalize the stress–strain curve with the ones
obtained in the athermal energy-dominated limit. In particular,
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we plot the stress ratio s/sath in Fig. 3(c), where we used the
data obtained at T* = 10�8 for sath. At this temperature the
network behaves according to a network in the athermal limit,
but still a small amount of stress is observed i.e. the stress is
not zero at small strains even below the isostatic point. A ratio
of s/sath E 1 implies that the mechanical behaviour is basically
insensitive to variations in temperature. As can be seen in
Fig. 3(c) for a network with p = 0.56, there is a regime of strain
in which the stress ratio depends on T* and decreases upon
stretching the network more and more. At increasing temperature,
this stress ratio is both higher at the start and approaches
temperature insensitivity at a higher strain. The start of the
decrease in stress ratio for all temperatures occurs at approximately
the same strain value, corresponding to the onset of strain-
stiffening. This transition could therefore be interpreted as a
transition between a regime dominated by thermal fluctuations

to a regime dominated by bond stretching. This is analogous to the
bending-to-stretching transition observed in fiber networks.11,33,37

We summarize these observations in a mechanical phase diagram
sketched in Fig. 3(d), where we can distinguish two regimes: a
mechanically-dominated regime (blue) where structural rigidity
overpowers the effect of thermal fluctuations and a temperature-
controlled regime (orange) where thermal fluctuations play a more
important role in the elastic behaviour. The transition between
these regimes depends on the reduced temperature T* (and
therefore both on the actual temperature T and the bond
stiffness m), the connectivity parameter p and the strain e. This
transition is in general very gradual as can be seen in the two cross-
sections of the mechanical phase diagram reported in Fig. 3(e and f)
where we show the stress ratio obtained by some of our simulations.
When T* is fixed (Fig. 3(e)) and we increase p, we observe a steep
decrease in the strain associated to the thermal-stretching transi-
tion. Above the isostatic point, the mechanics of the rigid networks
is barely affected by thermal fluctuations at this temperature. In
Fig. 3(f), we observe that with increasing temperature the stress ratio
increases but the strain characterizing the transition seems to reach
a limiting value. This limiting value is a result of the onset of strain-
stiffening, which is independent of temperature and corresponds
to the transition to the elastic regime.

In summary, we identified a rigidity-dependent transition
between two regimes where thermal fluctuations are or are not
important. In the following sections, we will investigate whether
this underlying transition also influences the fracture of these
elastic networks.

3.3 The effect of thermal fluctuations on macroscopic fracture

Under athermal conditions, bonds break only after the onset
strain, as only at this stage the bonds are under tension.
Furthermore, Fig. 3 indicates that the contribution of the
thermal fluctuations to the stress in the system is significantly
reduced beyond the onset strain. Does this mean that there is
only a minor influence of temperature on the failure response?

We first focus on macroscopic descriptors and characterize
the stress–strain curves obtained from fracture simulations. In
Fig. 4(a and b), we show the response of two representative
networks with a small rupture threshold l = 0.03 and different
connectivities at several temperatures T*. For the network with
p = 0.65 C piso (panel a), a clear decrease in peak stress sp for
increasing T* is observed, while a variation in the peak strain ep

is less evident as the fracture becomes more ductile and the
decrease in stress after the peak is less pronounced. For the
very rigid network (p = 0.90, panel b), the decrease in both sp

and ep is clearly observed. Similarly, the fracture becomes more
ductile for higher T*, even though a clear stress drop is still
recognizable at the highest temperature simulated. In both
cases, the networks become weaker with increasing T*. Further-
more, when approaching the athermal limit (T* - 0) the peak
stress becomes less sensitive to variation in temperature. In
Fig. 4(c), we show the temperature dependence of sp for several
connectivities with l = 0.03. The common trend is little varia-
tion at low temperatures, almost a plateau that is indicative of
approaching the athermal limit, followed by a decrease when

Fig. 3 The role of temperature in the non-linear elasticity of unbreakable
spring networks with fixed system size L = 128. (a) Stress–strain curves for
p = 0.56 and several T* (indicated in the legend). (b) Instantaneous non-
affinity as a function of strain. (c) The stress ratio s/sath as a function of
strain for different reduced temperatures T* with sath the stress measured
in the athermal limit (practically, for T* = 10�8). (d) Schematic mechanical
phase diagram based on the stress ratio with two regimes: a temperature
dominated regime (orange) and a mechanically dominated regime (blue).
The gradual transition between the regimes depends on deformation e,
network connectivity p, and temperature T*. (e and f) Two cross-sections
of the diagram based on the simulations: (e) e–p plane for T* = 10�3 and
(f) e–1/T* plane for p = 0.56. Every data point is based on simulations of at
least 10 independent configurations.
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temperature is increased, with sp eventually dropping to zero
when a temperature of T* C 10�4 is reached. On the one hand,
for low T* the peak stress is evidently controlled by the network
rigidity, as previously investigated in the athermal limit.12,13 On
the other hand, when the thermal energy is of the order of

Ebreak ¼
1

2
mðl‘0Þ2 the network structure is irrelevant, as springs

spontaneously break and the system shows melting behaviour. We
will later describe the melting point using the reduced quantity

Etherm=Ebreak ¼ kBT

�
1

2
mðl‘0Þ2

� �
¼ T�

�
1

2
l2

� �
. In between these

limits, there is a broad cross-over regime. To better assess the role
of rigidity in this intermediate regime, we normalize sp by its value
in the athermal limit sp,ath and plot this ratio in Fig. 4(d). The
transition between the athermal limit, where sp/sp,ath = 1, and the
melting limit, where such a ratio goes to zero, depends on a
subtle coupling between connectivity and temperature itself. Far
below ( p o 0.60) and far above the isostatic point ( p 4 0.80) the
connectivity plays a small role since at every temperature the
curve exhibits two plateaus (at small and large p). However,
around the isostatic point rigidity and thermal fluctuations are
coupled, since at all the intermediate temperatures we can
observe a sharp increase in sp/sp,ath upon increasing p, con-
necting the two limiting plateaus. On passing, we note that the
plateau for small p is lower, suggesting that temperature starts
to affect failure of very diluted networks earlier than for net-
works with large p. Furthermore, we speculate that the complex

temperature-dependence around the isostatic point arises from
locally floppy regions that are rigidified by thermal fluctuations
(whose magnitude depends on temperature itself) and are
therefore able to sustain and concentrate stress, and break.
Since the isostatic point marks the onset of mechanical stability,
such an effect is largest for networks close to it.

3.4 The effect of thermal fluctuations on microscopic fracture

Clearly, the failure response is temperature dependent across
the entire connectivity range, but the influence of temperature
indeed seems to depend on the distance with respect to the
isostatic point i.e. on the network rigidity. Are these differences
also apparent at the microscopic level? To investigate this, we
monitor the number of broken bonds during the simulations.
As shown in Fig. 5(a and b), the fraction of broken bonds f as a
function of deformation indicates that higher temperature
leads to earlier and overall increased damage. However, the
effect of temperature is more significant close to the melting

temperature T� ’ 1

2
l2 ¼ 4:5� 10�4, whereas for lower tempera-

tures the system response is still highly influenced by rigidity. By
focusing on the fraction of bonds broken at the peak strain fp,
counting also the bonds broken during the peak event, as shown
in Fig. 5(c), the diverging behaviour when approaching melting
is evident. This increase in broken bonds could explain the

Fig. 4 Stress–strain curves from fracture simulations for networks with
l = 0.03, L = 128 at different T* (see legend) and (a) p = 0.65, (b) p = 0.90.
Average over 10 independent configurations, standard error falls within the
width of the line. (c) Temperature dependence of the peak stress sp for
networks with different connectivity p (values indicated in the legend).
Every data point is based on simulations of at least 60 independent
configurations. (d) Connectivity dependence of sp normalized by the peak
stress in the athermal limit sp,ath for several temperatures, same color code
as panel (a). Every data point is based on simulations of at least 10
independent configurations.

Fig. 5 Effect of temperature on the development of microscopic damage.
(a and b) Fraction of broken bonds f as a function of strain for networks
with L = 128, l = 0.03 and (a) p = 0.65, (b) p = 0.90. Average over 10
independent configurations, standard error falls within the width of the line.
(c) Fraction of broken bonds at the peak strain fp (including the peak event)
as a function of T* for a range of dilution factors p = 0.50–0.90. Every data
point is based on simulations of at least 60 independent configurations.
(d) Fraction of broken bonds after the peak strain up to failure of the entire
system as a function of T* for a range of dilution factors p = 0.50–0.90.
Data are only shown for systems that lose percolation during the simulations
(before 100% strain). All fractions are calculated with respect to the initial
number of bonds in the diluted network.
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decrease in material strength sp. The fraction of broken bonds
observed here is of the same order of magnitude as the fraction of
broken bonds observed in literature for athermal systems where
all elements have equal strength.12,13,21 Also the fraction of bonds
that break above ep (Fig. 5(d)), the post-peak response, increases
close to the melting point, which points towards a prolonged
post-peak response, i.e. higher ductility.

A direct inspection of the simulation snapshots (Fig. 6) suggests
that bonds that break up to the peak strain ep (red bonds) are
dispersed more homogeneously throughout the sample at a higher
temperature. The snapshots also reveal a big difference in the
response to temperature between networks around (p = 0.65) and
far above the isostatic point (p = 0.90). Around the isostatic point,
the damage up to ep is already diffusive in the athermal limit, and
its delocalization is enhanced when the temperature is increased.
In contrast, the failure response far above the isostatic point shows
a clear transition from crack nucleation in the athermal regime
to a more diffuse failure response close to the melting point.
However, the post peak response at p = 0.90 is clearly still
dominated by the propagation of cracks. Nevertheless, at high
temperatures we observe the development of multiple cracks,
sometimes even not perpendicular to the deformation direction,
and evidence of crack merging.

In summary, we show that an increase in temperature leads
to an increase in diffuse failure, implying suppression of stress
concentration before the peak stress. These observations suggest
that thermal fluctuations are responsible for two apparently
contrasting effects: on the one hand, they create ‘‘instantaneous
defects’’ resulting in more regions with broken bonds, that
reduce material strength; on the other hand, the fluctuations
allow to delocalize stress away from such defects, delaying the
propagation of large cracks. As a result, the damage pattern is
diffuse throughout the system.

3.5 Thermal fluctuations increase the length scale of stress
redistribution

In the last section we have interpreted the effect of thermal
fluctuations on the microscopic failure mechanisms in terms of

defects and stress concentration. However, it should be realized
that the use of these terms in (spring) networks comes with
more challenges than the use of these terms in a continuum
description of a material. In a disordered network, it proves
challenging to identify defects, because the edges of a large void
do not necessarily coincide with locations of stress concen-
tration. Moreover, we observe that in networks stress can be
redistributed over a large part of the network via non-affine
rearrangements of the network. As a result, both the concen-
tration of stress and the failure response in spring networks are
dependent on the size of the network. It might therefore be
possible to identify a characteristic lengthscale associated to
stress concentration (or to stress delocalization) in these spring
networks. For example, we have recently13 shown that in
athermal systems, brittle (abrupt) fracture always occurs for
networks above a certain system size L*. This critical size can be
tuned by the network rigidity, i.e. by varying p and l. The onset
of the size-induced brittleness can be determined by looking at
the non-monotonic size-dependence of Dsmax. Here we investi-
gate whether temperature affects this critical system size, which
can be interpreted as a characteristic lengthscale at which the
concentration of stress can be observed. This analysis is there-
fore another way to further assess the role of temperature on
stress concentration.

Therefore, we examine how thermal fluctuations affect the
macroscopic fracture descriptors for different system sizes,
focusing on the maximum stress drop Dsmax that quantifies
fracture abruptness. In Fig. 7(a–d), we plot the size-scaling of
the maximum stress drop Dsmax (closed symbols) together with
the peak stress sp (open symbols) for four combinations of p and
l at different temperatures. In all cases, we observe a monotonic
decrease of sp as a function of the system size. These trends can
be fitted by a power law sp = (L/a)�b + sNp , where sNp is the failure
stress in the thermodynamic limit (infinite system size), b the size
scaling exponent and a a fitting constant. Values for b are
comparable to values found in literature.13,22 It is interesting to
note that we find a finite value for sNp , which is different from
many other studies on network failure.38 This is because in our
work all elements have the same strength and therefore a finite
amount of stress is required at all network sizes to start the
failure process. In contrast, some studies reported a vanishing
sNp since they employed a distribution in element strength
extending to zero.38 In Fig. 7(e), we plot sNp normalized by its

athermal value sNp,ath as a function of T* normalized by
1

2
l2 (see

ESI,† Fig. S6 for the other fitting parameters). The observed trend
underlying a transition from low T* to melting is consistent with
the data at fixed system size and fixed rupture threshold
l presented earlier in Fig. 4. Here, we can also appreciate the
effect of varying l in the intermediate temperature regime. For
example, the largest l = 0.30 (downward triangles, networks with
p = 0.90) shows a steeper decrease in the normalized fracture
stress, suggesting that thermal effects kick in at higher temperatures
for these very rigid networks.

Finally, we focus on the maximum stress drop Dsmax. From
Fig. 7(a–d), we observe that a non-monotonic trend is present in

Fig. 6 Failure patterns are presented as snapshots of the networks
(L = 128) in their rest state, only showing broken bonds. The bond color
indicates whether the bond was broken before (red) or after (grey) ep.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
O

ct
ob

er
 2

02
0.

 D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 1
:0

3:
42

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sm01063d


9982 | Soft Matter, 2020, 16, 9975--9985 This journal is©The Royal Society of Chemistry 2020

basically all cases, consistent with our previous results in the
athermal limit.13 We speculated that the initial decrease,
implying a more ductile fracture upon increasing system size,
is associated to the rupture and reformation of locally stressed
regions (often consisting of aligned springs, and sometimes
called force chains12,39–41). However, upon increasing the
system size Dsmax starts to increase, suggesting that stress
concentration around defects is present in the system, since
it fractures in a more abrupt way. At even larger L, Dsmax

decreases again, now following the same trend for the peak
stress sp that sets the upper bound to the possible stress drop.
In Fig. 7(c) the entire trend is visible for the system sizes
explored in this work, whereas in the other panels only parts
of it are captured. Importantly, for all systems, the trend
depends on temperature. In particular, in Fig. 7(f) we quantify
the effect of temperature by plotting the system size Lmin

corresponding to the minimum Dsmax as a function of T*.
We observe that thermal fluctuations increase the value of Lmin,
which can be interpreted as a lengthscale for stress concentration.
The role of temperature seems particularly relevant at low
connectivity, where the stress is already very delocalized in the
athermal limit.

In summary, we find that also in the thermodynamic limit
there is a crossover from an athermal regime to a melting
regime where the failure behaviour is determined by both

rigidity and thermal fluctuations. Moreover, thanks to the
analysis of Dsmax, we find evidence that temperature increases
the region over which stress is delocalized.

3.6 Thermal fluctuations homogenize stress

The delocalization of stress is mediated by structural rearrange-
ments in the network. Therefore, if temperature helps to
delocalize stress as suggested by Fig. 6 and 7(f), this must be
evident in the distribution of stress within the network. In
Fig. 8(a and b) we show two snapshots of the same deformed
network (p = 0.65) at two different temperatures, together with the
associated histograms of the bond deformation Fig. 8(c and d),
which is equivalent to the probability distribution of the micro-
scopic stresses since the springs are linear. Both networks are
deformed up to 10% strain, which is close to ep and well above
the onset strain discussed in Section 3.2. At the lower temperature,
the stress is distributed very heterogeneously, as indicated by an
asymmetric distribution with an exponential tail containing few
bonds carrying a high load. The regions of high stress, typically
composed of aligned highly-stressed bonds, that we call force
chains, can be readily identified in the simulation snapshot.
On the contrary, for the higher temperature, the distribution is
symmetric, resembling a Gaussian distribution, and the force
chains can not be identified. This indicates that even above the
onset strain thermal fluctuations act as a stabilizing field as

Fig. 7 Size-scaling and temperature. (a–d) Maximum stress drop Dsmax (closed symbols, solid lines) and peak stress sp (open symbols, dotted lines) as a
function of system size L for systems with (a) p = 0.56 and l = 0.10 (square), (b) p = 0.65 and l = 0.03 (triangle), (c) p = 0.80 and l = 0.15 (circle), and
(d) p = 0.90 and l = 0.30 (downward triangle). Depending on system size the minimum number of independent simulations per data point is 60
(L = 8, . . ., 128), 30 (L = 192, . . ., 256), 10 (L = 512) or 5 (L = 1024). (e) Peak stress in the thermodynamic limit sNp normalized by the corresponding value in
the athermal limit sNp,ath as a function of reduced temperature T* normalized by its melting value

1

2
l2. Error bars represent the standard error in the fit for sNp .

(f) Estimate of the system size where Dsmax is minimal as a function of T*. In both (e) and (f) the marker shape corresponds to the value of p as introduced in
panels (a–d).
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discussed in Section 3.1 and do affect the distribution of stress in
the network. To quantify this heterogeneity, we calculate the excess
kurtosis ke of the stress distribution, an indicator of the tail
heaviness of a distribution (being zero for a Gaussian). This
measure has been recently used to quantify stress heterogeneities
in porous materials.42 To illustrate how the heterogeneity of the
stress distributions is linked to the macroscopic stress evolution,
in Fig. 8(c) we plot both ke and s as a function of strain for
an example simulation run. As observed in most cases, the strain-
stiffening of the network is accompanied by a similar increase in
kurtosis. The stress distribution becomes more heterogeneous
until (approximately) the first bond breaks (the dashed black line
in Fig. 8(c)), after which strain softening occurs and the stress
distribution becomes more homogeneous. This decrease in
heterogeneity is presumably caused by redistribution of the
stress after bonds are broken. Strikingly, in correspondence
with the peak stress, a local minimum for the kurtosis is
observed. The subsequent stress drops are instead accompanied
by an increase in ke, and therefore in the microscopic stress
heterogeneity. This increase indicates stress concentration
somewhere in the network leading to significant bond breakage
that does not allow for a larger stress response. To show how
the stress heterogeneity changes with temperature, we plot the
maximum and the minimum of ke as a function of T* in
Fig. 8(d). To determine the minimum kurtosis, we take the

smallest value of ke in a strain interval close to the peak strain ep, to
avoid lower values that might be found before strain-stiffening.
Analogously, for the maximum kurtosis, we only look at the
maximum up to and including the peak strain, to avoid post-peak
values. Both quantities clearly decrease when the temperature is
raised, but follow different curves. In particular, the maximum of ke,
that is associated to the network strain-stiffening, is immediately
sensitive to temperature changes, in line with our previous observa-
tions on the non-linear elasticity (Section 3.2), while the minimum
of ke, associated to the fracture peak, exhibits an initial temperature
insensitive interval, similarly to the other fracture descriptors
investigated above. Furthermore, as the temperature increases, the
difference between the maximum and minimum becomes
smaller, and eventually both quantities reach zero (homogeneous
stress distribution) at the melting temperature. Note that, while
we have shown here results only for a given connectivity, the fact
that a higher temperature allows for better redistribution of the
stress during fracture was a consistent observation in our
simulation study.

4 Concluding remarks

In this work we explored the relation between rigidity and the
failure of central-force spring networks under the influence of

Fig. 8 Influence of temperature on the stress distribution in networks with p = 0.65, l = 0.03 and L = 128. (a and b) Snapshots of the local bond
extension at 10% strain and (c and d) the corresponding histograms. The color scale indicates the amount of bond extension (i.e. local stress) on the
network bonds, purple corresponds to high stress and orange to low stress. (a) For T* = 10�7, aligned highly-stressed bonds (‘‘force chains’’) are visible.
(b) For T* = 5 � 10�5, the stress distribution is highly homogeneous. (e) Stress and excess kurtosis ke of the stress histogram, a measure of heterogeneity,
as a function of the strain for a single simulation. The dashed black line indicates the strain at which the first bond breaks, also corresponding to the
maximum of ke; whereas the minimum of ke occurs at the peak stress. (f) Maximum and minimum of ke as a function of T*. Every data point is based on
simulations of 10 independent configurations.
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thermal fluctuations. Our results demonstrate that thermal
fluctuations couple with network rigidity and affect the non-linear
mechanics of elastic networks. In general, thermal fluctuations lead
to a lower failure strength (Fig. 4), an increased ductility, and an
increased fraction of broken bonds (Fig. 5). We have shown that at
the microscopic level the failure response is altered with respect to
the athermal case in two ways: (i) bond failure can be activated by
instantaneous thermal fluctuations, creating additional weak spots,
and (ii) stress is delocalized, suppressing the expansion of existing
defects (Fig. 6). We reveal that temperature acts as a stabilizing field
that resists large structural non-affine deformation within the
network (Fig. 2 and 3). Specifically, the thermal fluctuations
increase the lengthscale over which stress is redistributed,
which can be quantified via the maximum stress drop (Fig. 7)
and the excess kurtosis (Fig. 8). Although these trends can be
observed for all connectivities, there are distinct damage
mechanisms above and below the isostatic point. Above the
isostatic point, the failure up to the peak stress shifts from crack
nucleation at a single site to a more diffuse failure pattern, while
around the isostatic point the failure response is already delocalized
in the athermal limit and the fraction of broken bonds is enhanced
approaching the melting point (Fig. 6). These distinct failure
processes might explain the difference in how the peak strain
depends on temperature with respect to rigidity (Fig. 4).

We note that at a first glance central-force spring networks
subjected to thermal fluctuations behave like athermal net-
works in a stabilizing field. However, the instantaneous nature
of the thermal fluctuations introduces important differences. It
is striking that, without any applied deformation, the thermal
fluctuations induce structural rearrangements of the average
network structure (see ESI,† Fig. S1). Furthermore, providing
enough time, the thermal fluctuations allow the failure of bonds
even if they are not intrinsically under tension (activated failure),
leading to diffuse damage. A final consequence of introducing
thermal fluctuations is that time becomes an important para-
meter. In our simulations the system was deformed at a constant
strain rate, i.e. it was driven at a given speed. If the driving speed
is too low, the system will melt due to the process of activated
failure. If the driving speed is too high, the system has no time for
stress relaxation as it is held back by the viscous surroundings.
Therefore, the failure response of an elastic network is generally
determined by the coupling between the driving speed, viscosity,
rigidity and thermal fluctuations. Our study was focused on a
regime in which driving and viscosity effects were small (see ESI†
for discussion).

This work provides new insight into the relation between the
static network structure, thermal fluctuations and the failure
response of central-force spring networks. Above all, it shows
that rigidity remains a controlling parameter in the failure
response of spring networks in the presence of thermal fluctuations,
even close to the melting temperature. This suggests that the failure
response of thermal networks in experiment, such as semiflexible
polymer networks, could be rigidity-dependent as well. The ratio
between the energy of the thermal fluctuations, Etherm = kBT, and the
energy required to break an elastic element, Ebreak, emerges as a
relevant parameter to classify the failure regime of a particular

network (either the athermal regime, the cross-over regime, or
the melting regime) and could thus be a relevant parameter
to classify the failure response of experimental systems. For
example, a rough estimate of this ratio for experimental systems

Etherm=Ebreak ¼ T�
�

1

2
l2

� �
shows us that for a collagen network

Etherm/Ebreak E 1 � 10�6, which corresponds to the athermal
limit, while the values for a semiflexible network like actin
(Etherm/Ebreak E 8 � 10�3) and a flexible polymer network
(Etherm/Ebreak E 7 � 10�3) are significantly higher (see ESI† for
details). These examples show that it is not just the temperature,
but also the type of building block that determines the relevant
failure regime. Furthermore, the ratio also makes clear that the
temperature sensitivity is not only dependent on the element
stiffness m, but also on extensibility l. Therefore, it is a possibility
that a network with a temperature dependent elastic response at
the network level (determined by T*), might not be sensitive to
thermal fluctuations in the failure regime (determined by

T�
�

1

2
l2

� �
). Our model predicts that networks with weak cross-

linkers, i.e. small l, are most likely to have a failure response as
observed in the cross-over regime.

We hope that our simulation results will stimulate further
experimental work aimed at mapping out the roles that rigidity
and thermal fluctuations play in governing mechanical failure
of elastic networks.
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