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How size ratio and segregation affect the
packing of binary granular mixtures†

Salvatore Pillitteri, * Eric Opsomer, Geoffroy Lumay and Nicolas Vandewalle

For reaching high packing fractions, grains of various sizes are often mixed together allowing the small

grains to fill the voids created by the large ones. However, in most cases, granular segregation occurs

leading to lower packing fractions. We performed a wide set of experiments with different binary

granular systems, proving that two main parameters are respectively the volume fraction f of small beads

and the grain size ratio a. In addition, we show how granular segregation affects the global packing fraction.

We propose a model with a strong dependency on a that takes into account possible granular segregation.

Our model is in good agreement with both earlier experimental and simulation data.

1 Introduction

Granular and powdered systems are ubiquitous in nature. Their
peculiar behaviours are strongly linked to the packing fraction
Z, being the ratio between the true volume V and the apparent
volume Va of a granular assembly. Indeed, voids left by the grains
allow rearrangements in the structure such that Z triggers both
flowing and jamming behaviours.1–3 Therefore, increasing the
packing fraction of a granular medium is of great interest in
several sectors of applications such as construction, pharma-
ceutical industry and many other fields where powders are
manipulated.4–9

Granular materials are out of equilibrium systems.10 Con-
sequently, if one pours granular material into a recipient, the
measured packing fraction corresponds to a metastable state.11

Indeed, the initial configuration is often a Random Loose
Packing (RLP) which corresponds to a mechanical stable
assembly, far from minimizing the gravity potential. For mono-
disperse spherical particles under normal gravity conditions,
the RLP is found around ZRLP E 0.60.2,12,13 If one gently vibrates
the granular medium, the packing fraction will increase because
of the grain reorganizations. When Z increases, the mobility of
grains rapidly decreases and the system becomes jammed.14 A
monodisperse sphere packing can reach at most ZRCP E 0.64,
being the Random Close Packing (RCP).15 One should note that
this value is far below the packing fraction of an ordered mono-

disperse sphere packing Zfcc ¼
p

3
ffiffiffi
2
p � 0:74; corresponding to a

face centered cubic (fcc) lattice.15

In granular materials, binary mixtures are systems made of
particles with two different sizes. For the case of spherical

particles, one can define the size ratio a ¼ Rl

Rs
as control

parameter,16 Rl and Rs being respectively the radii of large
and small particles. Binary mixtures of spheres with low size
ratio 1 o a o 1.4 are commonly used by experimental and
numerical scientists to avoid crystallization phenomena.17–19

However, for larger size ratios, these mixtures are known to
reach higher packing fraction values than monodisperse sys-
tems. Both experimental and numerical studies have been
performed on these systems16,20–25 and methods to predict
the density of a bidisperse granular medium have been
proposed.26–30 These approaches are based on a model
proposed by Furnas et al.26 It considers two extreme mixing
scenarios: the first (I) being dominated by large particles and
the second (II) being dominated by small ones, as sketched in
Fig. 1 for three different grain size ratios.

The latter model is only valid for mixtures with large
difference in size between both granular species. For this
reason, analytical models27–30 have been proposed to take into
account the size ratio in binary mixtures. Stovall et al.27 intro-
duced the concepts of the loosening and the wall effects as an
explanation for the dependency of the packing fraction with the
size ratio. Both effects are modelized by interaction functions
which are added as correction terms to Furnas model. Yu
et al.28 and de Larrard et al.31 proposed different interaction
functions. Despite data agreement, these functions are experi-
mentally adjusted and their physical meaning is not easily
seen.32 Moreover, these models consider homogeneous mix-
tures while granular segregation often occurs in packing
experiments.

Experimentally, granular mixtures are rarely homogeneous.33

Indeed, when there is a difference in size between particles,
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mechanical manipulations such as vibrations or flowing lead to
segregation. Different effects such as the well known ‘‘Brazil Nuts
effect’’34 or percolation35,36 may be the cause. When the size ratio
is large enough, small particles naturally percolate due to gravity.
We often observed this phenomenon during our experiments.

One can see in Fig. 2 examples of segregated small beads
due to percolation. When the size ratio is higher than

ap ¼ 3þ 2
ffiffiffi
3
p� �

� 6:46;37 gravity systematically leads to percola-
tion of small particles through an ordered porous medium
made by large ones. Indeed, three kissing large particles define

the minimum pore size of
Rl

ap
: Any small bead with a radius

Rs o
Rl

ap
can then percolate. The segregation for the size ratio

a E 9 is consequently obvious. Moreover, percolation can
happen even for lower size ratios because the random structure
leads to larger pores than expected for a fcc lattice. For this
reason, one can observe percolation for a E 5 and a E 3.
During experiments, mechanical agitation of the granular pile
helps the percolation of small grains. Moreover, the pouring

procedure may lead to inhomogeneities in the horizontal
direction since segregation also occurs during flow.38

The objective of the present paper is to study binary mix-
tures and the impact of inhomogeneity on the packing fraction.
We propose an original model which takes into account the size
ratio and the inhomogeneity of the mixture. Our approach is
based on physical arguments, corroborated by literature. We
collected and analysed data from experimental and numerical
works in order to test our model. Some experimental data come
from our previous work S. Pillitteri et al.16 In this article, we
will demonstrate that taking into account inhomogeneities
allows to conciliate numerical and experimental results with a
single model.

2 Experimental results

For collecting our data, we prepared several granular mixtures
made of spherical glass beads with two different radii Rl and Rs,
giving different size ratio a. For each mixture with a specific a,
the relative composition of large and small beads can be tuned.

The volume fraction of small beads is defined as f ¼ Vs

Vl þ Vs
;

where Vl and Vs are respectively the true volumes of large and
small beads. Please note that in our mixtures, a small poly-
dispersity exists for each species. This means that a should be
considered in a range giving a relative error of at most 12%.

We performed measurements for various size ratios a and
volume fractions f of small beads. The relative humidity of the
laboratory was kept constant at RH = 35 � 5%. Indeed, previous
studies have shown that humidity affects the packing of gran-
ular media.39,40 Initially, the system is expected to be in a loose
configuration and is gently vibrated to increase the packing
fraction.16 This process is called compaction and is performed
with GranuPack instrument from GranuTools.8 The dynamic of
this phenomenon is well described by the logarithmic law41

ZðtÞ ¼ Z1 �
Z1 � Zi

1þ lnð1þ t=tÞ; (1)

where Zi and ZN are respectively the initial and asymptotic
packing fractions, and t the typical compaction time. By adjusting
the compaction curve of the mixture with eqn (1), one obtains ZN.
Examples of such curves adjustment can be seen in our previous
work S. Pillitteri et al.16 One assumes that ZN corresponds to the
Random Close Packing of the mixture. In this article, these values
are compared to data from other works.

Typical experimental results for ZN are plotted in Fig. 3 as a
function of f and for various size ratios a. A complete data set
for a ranging from 3 to 35 has been collected. Each point of ZN,
indexed by the pair of parameters f and a, is averaged over
10 experiments. The error bar of each point corresponds to the
standard deviation around the mean. The color code is used to
distinguish different a values throughout this paper. The
plot shows that for each size ratio, one can define a fraction
fmax A [0.2,0.4] for which the packing fraction is optimal.
Increasing the size ratio enhances this optimal packing fraction
Zmax = ZN( fmax).

Fig. 1 Sketch of binary granular mixtures for three different grains size
ratios: (orange) a = 3, (green) a = 5, (blue) a = 9. (I) Large beads dominate
the small ones. One can see that the small particles fill more easily the
voids between large ones when the size ratio increases. (II) Small beads
dominate large ones. The presence of the large bead locally affects the
random packing of the small ones on its surface.

Fig. 2 Example of three mixtures, aE 3, aE 5 and aE 9 with percolation
after few taps. One observes the inhomogeneity of the mixtures. Glass
containers are only used for this illustration.
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3 Model

Our model stems from Furnas’ approach which considers both
extreme cases (I) and (II) cited before. Furnas model assumes that
the mixture is homogeneous. Consequently, for each case, a
global apparent volume, respectively VI and VII, can be computed.
The global apparent volume of the mixture Va is defined as the
maximum between VI and VII and consequently depends on which
phase is dominant. Then, the global packing fraction is obtained
by the ratio between the total true volume (Vl + Vs) and Va.

In our case, the packing fraction is however computed
differently. Since the inhomogeneity of the mixture can affect
the packing fraction,42–44 and consequently the global apparent
volume, one has to compute the local apparent volume
V loc

a instead of Va for each case. Indeed, when the distributions
of large and small particles are inhomogeneous, the dominant
phase depends on the position in the granular pile. Under these
conditions, Va = max{VI,VII} is no longer valid. One has to
take into account Cl(r) and Cs(r), respectively the distribution
functions of the large and small beads in the normalized unit
volume V* of the granular pile. These functions follow the
constraints ð

V�
ClðrÞ dr3 ¼

ð
V�
CsðrÞ dr3 ¼ 1: (2)

In the first case (I), when f - 0, the system is mainly made of
large beads. The apparent volume only depends on the struc-
ture of the large beads when a - N. Indeed, the small beads
just fill the remaining voids, as illustrated on the top of Fig. 1
for a = 5 and a = 9. On the contrary, if a - 1, the remaining
voids are broadened by small particles as illustrated for a = 3.
The local apparent volume V loc

I is expected to be proportional to
1

a3
for an ordered cubic binary system. Indeed, any variation of

the radius of the small particle will lead to a displacement in

the three directions of space of the surrounding large beads, as
illustrated in Fig. 1, in the case (I) with a = 3. However, when the
size ratio is large enough, a small bead cannot be in contact
with more than two large beads. Indeed, it has been numeri-
cally observed that the average number of contacts of a small
bead with large ones is below 3 for random packings of binary
mixtures,20,45 even when the size ratio a is low. Consequently,
the displacement of large particles takes place only in one

direction. This results in a decrease of V loc
I in

1

a
: If one assumes

that both species take a random packing arrangement, each
weighted by its corresponding distribution function Cl and Cs,
one can write the local apparent volume as

V loc
I ¼ Cl

1� f

Z0l
þCs

f

Z0s

1

a

� �
Vl þ Vsð Þ; (3)

where Z0
l and Z0

s are the packing fractions of the monodisperse
cases for respectively the large and small beads. Generally, Z0

l

and Z0
s are supposed to be equal to ZRCP. However, depending

on experimental conditions such as the relative size of the
particles compared to the size of the cell,46,47 their surface
properties48,49 or the relative humidity39,40 in the laboratory,
these values can be slightly different from an experiment to
another. One therefore supposes that these experimental para-
meters are implicitly included in Z0

l and Z0
s. In our work, we

used the measured values Z0
l and Z0

s in the model.
In the second case (II), when f - 1, the mixture is in a

random packing configuration dominated by small beads.
However, one has to add an effective volume Veff coming from
the large ones. Indeed, if one places a large bead in this
granular medium, the small spheres on its surface are locally
at a lower packing fraction, as illustrated in Fig. 1. The effective
volume Veff takes into account the volume of the added parti-
cles and this disturbing effect. In Furnas model, this effective
volume is strictly equal to the real volume of the large particles.
In the extreme case, when a - N, one assumes that the
effective volume tends indeed to Vl. We propose to develop
the effective volume as the contribution of the volume Vl and a
shell with the thickness of a small sphere radius. As the small
particles in contact with the large one do not fill completely its
surrounding space, one should multiply this shell volume by
the local packing fraction f at the surface. Using first order
approximation, one can reduce the volume of the shell to the

first term in
1

a
: One has

Veff ’ Vl 1þ 3
f
a

� �
: (4)

If one assumes that the maximum number of small spheres
that can be randomly placed at the surface of a large one is
equivalent to a parking problem,50 one can estimate f. We
simulated the random placement of small particles at the
surface of a large sphere with various size ratios and system-

atically obtained f � 1

3
: We compared the number of small

beads at the surface to the mean number of contacts between

Fig. 3 Asymptotic packing fraction ZN as a function of the volume
fraction of small beads f in the mixture for different size ratios a. Experi-
mental data are represented by points with specific colors related to their
size ratio. Each set of data is fitted by eqn (6), with a step distribution Cl =
D1(z,p*) and a gradient distribution Cs = D2(z,f) respectively defined by
eqn (7) and (8). The dashed curves are obtained with p* forced to 0 (zero
free fitting parameter) while the plain ones are obtained with p* = 0.12
being a free fitting parameter.
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large and small beads and found similar results in the
literature.20,50–52 Accordingly, we propose to fix the local pack-

ing fraction with the value f ¼ 1

3
: Finally, the local apparent

volume for the case II can be written

V loc
II ¼ Cs

f

Z0s
þClð1� f Þ 1þ 1

a

� �� �
Vl þ Vsð Þ: (5)

The local apparent volume V loc
a is determined in the same

way as for the Furnas model and is defined as the maximum
between eqn (3) and (5). The global apparent volume is calcu-
lated by integration of V loc

a over the unitary volume V*. Dividing
the total true volume (Vl + Vs) by this global apparent volume,
one has consequently for the global packing fraction

Zcð f ; aÞ ¼
Vl þ VsÐ

V�max V loc
I ;V loc

II

	 

dr3

: (6)

One should note that both regimes of the Furnas model are
recovered by taking the limit a - N in eqn (3) and (5) for
homogeneous mixtures. With this model, the packing fraction
Zc( f ) increases with a, in agreement with experiment. This
increase is however limited. Indeed for the special case Cl = Cs

= 1, one obtains the Furnas model when a - N. When the
packing is not homogeneous with Cl a Cs a 1, the packing
fraction is lower, as we will show later in this article.

4 Discussion

Experimental and numerical data can be fitted by eqn (6), after
fixing Z0

l and Z0
s by the values obtained for monodisperse cases,

respectively at f = 0 and f = 1. The simplest case that can be
considered is the homogeneous mixture. The distribution
functions can be defined as uniform distributions Cl(r) =
Cs(r) = 1. We report our fit of eqn (6) on numerical data
obtained from various simulations in Fig. 4(a). Since simula-
tions consider generaly homogeneous packings, one can
observe a good agreement between the model and the data
from various numerical studies.20–23 The dependency with a is
well reproduced. Furthermore, the higher the size ratio, the
better the fit. When the size ratio is low, as for a = 3, one notes
smooth behaviour of the data close to the optimum at fmax,
quite different from the pointed shape predicted by the model.
Indeed, this sharp peak at fmax appears only when the size ratio
is large enough, as pointed out by Prasad et al.22

The numerical results differ from experiments. Indeed, one
can compare the simulations data to our experimental results
and some data taken from other experimental works,24,25

presented in Fig. 4(b). The smooth optimum is always observed
even for large a. Moreover, the slope in the left part of the
curve is lower than for the simulations. On the contrary, the
right parts of the experimental curves seem to have behaviours
similar to the simulations data. We report our fit of eqn (6) on
experimental data in Fig. 4, represented by dashed curves. If one
considers homogeneous mixtures, the model reproduces the
dependency with a, in agreement with experimental data.

However, it seems unable to fit the left part of the experimental
data. The slope is overestimated for the left part while the right part
remains in agreement with the data. One has to take into account
the inhomogeneity of the mixture to explain this difference.

Since percolation is observed experimentally, one assumes
as a first approximation the existence of a monodisperse phase
for the small beads in any mixture. The rest of small particles is
supposed homogeneously mixed with the large ones. We pro-
pose to keep the uniform distribution Cs = 1, and to define Cl

as a step function along the vertical axis z, represented by the
black plain curve in Fig. 5. We simplify the distribution to a one
dimensional problem because the segregation occurs essen-
tially in the direction of the height of the granular pile.

One has a step distribution Cl = D1(z,p) with

D1ðz; pÞ ¼
0; zo p

1

1� p
; z � p

8><
>: : (7)

The parameter p is called the segregation parameter. When
Cl = D1(z,p) and Cs = 1, it directly corresponds to the relative

Fig. 4 (a) Packing fractions Z obtained in earlier simulations as a function
of the volume fraction of small beads f in the mixture. The data are taken
from previous works.20–23 The distribution functions Cl = Cs = 1 are
uniform since the mixture is assumed to be homogeneous. (b) Packing
fractions Z experimentally obtained as a function of the volume fraction of
small beads f in the mixture. The data are taken from previous works.16,24,25

The plain curves represent the model with Cl = D1(z,p) and Cs = 1, and the
dashed ones the predictions for homogeneous mixtures. (a and b) Three
different size ratios a are considered. The color code remains the same as
Fig. 3. Each set of data is fitted by eqn (6), represented by a curve of the
same color. The black curve is obtained with the Furnas’ model.
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proportion of small particles in a monodisperse phase at the
bottom of the packing (z o p), while large particles are still mixed
with the rest of small particles for z 4 p. Indeed, integrating Cs =
1 between 0 and p gives the portion of monodisperse small
particles since the distribution of large ones is null in this range.
On average, we obtained p E 0.20 � 0.05 as best adjustment
parameter of experimental data of Fig. 4.

The results of such modelling are shown in Fig. 4(b). The
plain curves represent the model with Cl = D1(z,p) defined by
eqn (7) and p = 0.20 fixed. One can observe the difference
compared to a homogeneous system, when p = 0, represented
by the dashed curves. The existence of a monodisperse phase
leads to a higher global apparent volume Va. This results in a
lower packing fraction Zc (ESI†). Consequently, the slope of the
plain curves is lower than for the dashed ones, in the left part of
the model. This effect can explain the difference between
numerical and experimental data. Indeed, there is systemati-
cally inhomogeneities in mixtures for experiments while simu-
lations are expected to generate homogeneous mixtures.

Unexpectedly, the monodisperse phase of small beads has
no influence on the right part of the curves. Actually, the model
predicts that the latter would be affected by the presence of a
monodisperse phase of large particles. Indeed, with a small
amount of unmixed large beads, one can define Cs = D1(1� z,p)
and Cl = 1. With these distributions, p corresponds to the
proportion of large particles segregated in a monodisperse
phase. In this case, the slope of the right part will decrease
while the left part will be unchanged. This can happen, for
example, when the Brazil Nuts effect occurs. However, during
our experiments, the compaction procedure was not able to
create convection or sufficient shakes in the granular pile to
generate this phenomenon.

Nevertheless, it remains possible to control the fraction of
large particles in a monodisperse phase. Indeed, one can divide
the large particles into two parts, the first mixed with small
particles and the second kept unmixed. After pouring the mixture,
one can place on top of the granular pile the rest of large particles.

In this way, one obtain a monodisperse phase of large beads. In
addition, the proportion of segregated large particles is known.
We did so for different controlled proportions of segregated large
particles p. The experimental results are presented in Fig. 6, in
black, for the size ratio a E 9. They are compared to the model,
using the corresponding parameter p with the distributions Cl = 1
and Cs = D1(1 � z,p). One observes for experimental data the
decrease of the right part of the curve when the proportion of
segregated large particles increases while the left part remains
unchanged as predicted by the model.

We performed the same kind of experiment for small particles
by pouring an unmixed proportion p at the bottom of the cell
before pouring the mixture with the rest of small beads. Since
percolation can occur in the mixture itself, a large proportion of
unmixed small particles p = 0.75 was chosen in order to control as
much as possible the segregated part. Indeed, even if a small
quantity of small beads percolates in the mixture, this supplement
can be negligible compared to the part already unmixed. One can
see the results in red in Fig. 6. The data are also compared to the
model with Cl = D1(z,0.75) and Cs = 1. One effectively observes in
this case that the slope of the left part is greatly decreased while
the right one remains unchanged.

The agreement between the model and experimental data
seems good at first approximation. However, one should point
out the large deviations close to fmax. The experimental opti-
mum value Zmax is lower than expected. Moreover the smooth
shape at the optimum is still absent.

Let us investigate more deeply the model. We observed that
small beads tend to percolate for low values of f and are
preferentially distributed at the bottom of the granular pile.
On the contrary, for large values of f, they represent the
dominant phase and are homogeneously distributed. One
assumes that under gravity the small beads are distributed
according to a gradient along z when f - 0. When f - 1, Cs

must tend to a uniform distribution. We propose to define Cs =
D2(z, f ) with

Fig. 5 Distributions D1(z,p) and D2(z,f) as a function of the normalised
height z of the granular pile. The functions are respectively defined by
eqn (7) and (8). The slope of D2(z,f) decreases with f in order to reach an
uniform distribution in the limit f - 1.

Fig. 6 Comparison between the model and experimental data for mix-
tures with different proportions of segregated large (in black) or small (in
red) particles for a E 9. It this particular case, p is known and corresponds
to the proportion of segregated particles in the monodisperse phase. The
blue data are the mixtures with no control on the segregation, as
presented in Fig. 3 and 4.
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D2(z, f ) = f + 2(1 � z)(1 � f ). (8)

This empirical behavior is represented in Fig. 5 by dashed
lines. The distribution Cl = D1(z,p*), as defined by the eqn (7), is
used. We obtained p* E 0.12 � 0.02 as the best adjustment of
data in Fig. 3. One notes that p* o p. This can be understood as
follows: if one integrates Cs = D2(z,0) between 0 and 0.12, one
obtains a proportion of monodisperse small particles about
0.23, close to the previous value p = 0.20 obtained in Fig. 4(b).
One can understand that for a same proportion of unmixed
small particles, p* r p when Cs is a decreasing law. Unfortu-
nately, p* does not correspond directly to the proportion of
segregated small particles, even if it is strongly related. The
results of such modelling are reported in Fig. 3 (ESI†). The plain
curves are obtained with p* = 0.12. One can see the good
agreement with the experimental results. One notes that the
smooth shape can be obtained close to the optimum at fmax

when the inhomogeneous distribution Cs = D2(z, f ) is used in
eqn (6). Indeed, a step function just affects the slopes of the
right and left parts, as it has been demonstrated in Fig. 4 and 6,
since the distribution is null below p and uniform beyond. On
the contrary, the presence of a non uniform distribution, such
as a gradient, generates a smooth shape at the optimum.

One figures out that the smooth shape at the optimum of
experimental data may be due to the non uniform distribution
of small particles in the mixture. Indeed, because of the
granular segregation coming from percolation of small parti-
cles, Brazil Nuts effect or other phenomena, mixtures made of
different particles sizes are rarely homogeneous. Moreover, it is
probable that segregation leads to complex distributions of
particles, like gradients, rather than a simple separation into
monodisperse phases. Therefore, one should take into account
the distributions of small and large particles in the granular
medium to obtain the smooth curve at the optimum. Moreover,
one notes that for numerical data in Fig. 4(a), where the
packing is generated homogeneously, the smooth peak is
absent when the size ratio is large enough.

In Fig. 3, the dashed curves are obtained with the segrega-
tion parameter p* = 0. In this case, no small beads is considered
in a monodisperse phase. One notes that better fits are
obtained considering a small amount of unmixed small parti-
cles, with p* = 0.12.

5 Conclusion

In summary, we have experimentally and theoretically studied
the packing fraction Z in the case of binary mixtures. We
proposed a model that takes into account the size ratio a
between two kinds of particles and the distributions Cl and
Cs of both species in the granular pile. This model captures the
behavior of experimental and numerical data, with the segrega-
tion parameter p as a single free adjustment parameter.

However, we used p as a free parameter because the dis-
tributions Cl and Cs are unknown. If one imagines knowing
these distributions, no adjustment parameter would be needed.
Indeed, we intentionally segregated different proportions of

large or small particles in the granular pile in order to fix Cl

and Cs. We observed good agreement with experimental data
using directly these distributions, without any adjustment
parameter. It remains however difficult to control everything
in the mixture since natural segregation often occurs in granular
media during manipulation.

Future numerical study should investigate more deeply the
dependence of the distributions Cl and Cs on the packing
fraction Z. Indeed, in this case, more complex distributions
could be fixed and no adjustment parameter will be needed.
One could compare the numerical results with the model,
knowing exactly the distributions.
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