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Pattern formation in active model C with
anchoring: bands, aster networks, and foams†

Ivan Maryshev, *ab Alexander Morozov, a Andrew B. Goryachev b and
Davide Marenduzzo a

We study the dynamics of pattern formation in a minimal model for

active mixtures made of microtubules and molecular motors. We

monitor the evolution of the (conserved) microtubule density and

of the (non-conserved) nematic order parameter, focusing on the

effects of an ‘‘anchoring’’ term that provides a direct coupling between

the preferred microtubule direction and their density gradient. The key

control parameter is the ratio between activity and elasticity. When

elasticity dominates, the interplay between activity and anchoring

leads to formation of banded structures that can undergo additional

bending, rotational or splaying instabilities. When activity dominates,

the nature of anchoring instead gives rise to a range of active cellular

solids, including aster-like networks, disordered foams and spindle-like

patterns. We speculate that the introduced ‘‘active model C’’ with

anchoring is a minimal model to describe pattern formation in a

biomimetic analogue of the microtubule cytoskeleton.

1 Introduction

A suspension of cytoskeletal filaments and motor proteins is a
paradigmatic example of active matter.1–4 This system is active
as the filaments can be moved with respect to each other by
molecular motors, which consume chemical energy in the form
of ATP and drive the system out of equilibrium. A typical
example of such motors is given by kinesin5 and its synthetic
analogues that were shown to cross-link microtubules (MTs)
and to push them apart.

In the last two decades, reconstituted systems containing
stabilised microtubules and kinesin motors have become a stan-
dard experimental platform to investigate active phenomena.6–9

Such biomimetic systems harbour a striking variety of different

patterns including extensile active bundles,9–12 asters6,13 or
aster networks.7,14,15 Notably, the same motors can organize
MT filaments into different types of structures. For example,
kinsein-5 can, under distinct conditions, lead to the formation
of bundles, asters or networks.15

Active behaviour of MT-motor mixtures has traditionally been
explained within the active gel framework.16 This approach usually
tacitly assumes momentum conservation and an incompressible
active system. However, experimental results show that the spatial
distribution of MTs can be strongly inhomogeneous, as they
often form distinct dense clusters separated by almost empty
spaces.11,17,18 Therefore, the MT-motor mixture is normally
compressible. Additionally, in the experimentally relevant case
of MT-motor mixtures bound to a substrate, the latter works as a
momentum sink which quenches fluid flow, so that momentum
is not conserved.

On symmetry grounds, it is reasonable to expect a coupling
between the density gradients and the orientational order
parameter within a general inhomogeneous active system.
Previous work has shown that extensile activity can lead to a
preferential tangential alignment of MTs/active filaments at the
surface,12,19 and that an interfacial active torque can arise when
a microscopic model for a MT-motor mixture is coarse-grained.
Such a torque is proportional to double gradients of the MT
density r.12 From theories of passive liquid crystalline mixtures
we also know that there is always a thermodynamic ‘‘anchoring’’,
or preferential alignment, of the director field at a fluid–fluid
interface.20 While the resulting functional form of the interfacial
active torque is different (it is bilinear in the density gradients), it
has a qualitatively similar effect.

In this work, we explore the patterns that can form in an
inhomogeneous compressible active system in the presence of
the liquid crystalline anchoring term. Our system is ‘‘dry’’,
meaning that we do not include the solvent flow field in our
equations of motion. Previously, we denoted the system in the
absence of anchoring as ‘‘active model C’’,12 following analogy
with the existing active field theory models,21,22 and showed
that activity leads to non-equilibrium phase separation into MT
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dense stripes, and, when the activity is sufficiently large, to
chaotic dynamics. Here we show that the interplay between
anchoring and elasticity leads to a wider range of patterns than
what was found previously. Thus, for sufficiently strong normal
or tangential anchoring, we find aster-like networks or active
foams that are associated with multiple topological defects.
Many of the patterns we find here are remarkably similar to
those which self-assemble in the microtubule-motor mixtures
meant as biomimetic in vitro models of microtubule cytoskeleton.

2 Model

Similarly to the case of passive Model C in Hohenberg–Halperin
classification23 (HHC), we formulate our theory using the set of
evolution equations for two slow variables: a conserved scalar
variable r(r,t) describing the number density of MTs, and a
tensor order parameter Qij(r,t) characterising the average
nematic alignment of filaments.

In this active Model C, activity drives the system out of
equilibrium and the underlying free energy is no longer determined.
Nevertheless, the analogy with the passive limit is still of some use
and in the following we will employ it where appropriate.

The nematic Q-tensor that we use to describe the coarse-
grained nematic order in 2D is a traceless symmetric matrix.
We can define a nematic director field, n = (nx, ny), as the eigenvector
corresponding to the larger (positive) eigenvalue of the Q-tensor.
This field denotes the average orientation of individual MT
filaments. For the sake of brevity we suppress the space- and
time-dependence of variables in the following text. The indices i
and j take the values of Cartesian components x, y.

2.1 Continuum theory

Our equations of motion have the following general form:

qtr = r2r2 + wqiqj (rQij), (1)

@tQij ¼ ðr� 1Þ � aQklQkl½ �Qij þ kDQij

þ 2o @ir@jr�
1

2
dij@kr@kr

� �
;

(2)

where r2 denotes the Laplacian, and qi and qt denote the
spatial derivative in the i-th direction and the time derivative,
respectively. The last term in eqn (2) is the symmetrised and
traceless part of qirqjr.

The first term in eqn (1) for the density evolution plays the
role of a non-equilibrium chemical potential – similar to one
entering the conventional Cahn–Hilliard equation (or Model B in
HHC). It can be considered as an active contribution to the
isotropic diffusion, however it has a quadratic form since typi-
cally a MM interacts with two MTs at the same time. We assume
that pairwise MT interactions dominate over three-body interac-
tions and omit cubic (or higher order) term. Thermal diffusion is
not explicitly included. This is a difference with the continuum
theories for self-propelled particles proposed elsewhere.24

The second term in eqn (1) is an extensile flux of MTs
coming from the motor-induced MT sliding; its strength is

parametrised by w. This contribution enhances MT diffusion
along the direction of nematic order and accumulates filaments
in the perpendicular direction. This term was derived in12 by
rigorously coarse-graning a microscopic model for a MM-MT
mixture.

The terms of eqn (2) enclosed in the square brackets provide
an active analogue of the Landau terms describing concentration-
induced ordering, which governs the isotropic-nematic phase
transition in passive liquid crystals. The linear term defines the
critical density of the isotropic–nematic transition, rIN, whereas
the saturating cubic term determines the equilibrium value of Qij

in a homogeneous nematic state.
The term proportional to the Laplacian of Q plays the role of

elasticity in a one-elastic-constant approximation. In general,
this effective elastic constant depends on the motor activity.12

Finally, the last term of eqn (2) describes the non-equilibrium
anchoring to the density interface in our active systems. Negative
and positive values of o correspond to parallel (tangential) and
perpendicular (normal) anchoring respectively.

Hereafter, we fix the magnitude of the saturating term in
eqn (2) to a = 0.05 and independently vary the values of the free
parameters w, k, and o. Whilst the first two are always positive,
the last parameter can change sign. Note that the density is
normalised by the critical density of the isotropic–nematic
transition. Additionally, the effective translational and rotational
diffusion coefficients in eqn (1) and (2) are both equal to unity as
we have scaled space and time in our equations to make them
dimensionless.

2.2 Linear stability analysis

Before investigating the non-linear dynamics of eqn (1) and (2),
we consider their linear stability, as this provides a useful
reference.

An isotropic initial state with homogeneous initial density r0

becomes unstable to small spatial perturbations when r0 4 1
(Fig. 1a). The maximal eigenvalue corresponds to growth of
nematic alignment and of Qij. The dispersion curve depicted in
Fig. 1b selects no wavelength (as the maximum is at k = 0), so
that the system spontaneously breaks the rotational symmetry
and tends to form a homogeneous nematic state.

In turn, the homogeneous nematic initial state with the

largest eigenvalue of the Q-tensor given by Q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 � 1ð Þ=2a

p
is unstable to small perturbations when 1 o r0 o rN. In the
long wavelength approximation, rN is a function of w and a.

The boundary of linear instability is defined by the following
relation (Fig. 1, see Appendix for details):

wcr ¼
4
ffiffiffiffiffi
2a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rN � 1
p

rN
3rN � 2

: (3)

From Fig. 1a it is clear that for any nonzero w, there is always
a density range where the nematic phase is unstable. Within the
unstable region, the dispersion relation shows that the fastest
growing mode has now a well-defined wave-vector perpendicular
to the orientation of filaments (Fig. 1c). At early stages of the
instability, the corresponding lengthscale can be identified with a
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typical domain size. However, numerical simulations discussed
below demonstrate that the domain size changes slowly in time
and the system is prone to coarsening.

3 Numeric results

To explore the nonlinear dynamics of eqn (1) and (2) we solve
them numerically. All numerical solutions are obtained for
periodic boundary conditions. We use second-order finite
differences for spatial derivatives and a second-order predictor-
corrector method for time integration.25,26 Similar methods have
been used to solve the order parameter equations in hybrid
lattice Boltzmann simulations.27 The initial configuration in
our simulations is either an isotropic or nematic uniform states
perturbed by a small-amplitude white noise. All initial densities
reported below satisfy 1 o r0 o rN, i.e. we only consider the
parameter range where the globally homogeneous nematic state
is linearly unstable.

First, we consider a system without anchoring (o = 0). In this
case, the behaviour is determined by the microtubule density
and the activity parameter w. For all 1 o r0 o rN, filaments
form dense nematically ordered bands, which are surrounded
by isotropic low density regions. The spatial profiles of r and of
the positive eigenvalue of Qij are approximately proportional to
each other. Even in the absence of anchoring (o = 0), the
anisotropic nature of the active flux is sufficient to provide an
effective tangential alignment of the director field at the inter-
face. This ‘‘active anchoring’’ has been reported previously.12

The kinetic and steady state patterns, which we observe in
the presence of the anchoring term, depend on the value of the
elastic constant. Therefore, we now separately discuss the
strong and the weak elasticity regimes that correspond to large
and small values of k, respectively.

3.1 Strong elasticity limit

At large k, the system initially forms a defect-free nematically ordered
band that subsequently breaks down. Such bands become unstable
via different scenarios that correspond to tangential (o o 0) or
normal (o 4 0) anchoring. The former leads to bending instability
(Fig. 2a, S. Movie 1, ESI†), while the latter can result in rotational or
splaying instabilities (Fig. 2c and d, S. Movies 2a and b, ESI†).

If o = 0, straight bands are always stable (see Fig. 2b) and
coarsening from a state with multiple bands is very slow in our
simulations. Unlike the activity term in classic incompressible
active gels,1 the w term is not, by itself (i.e., if o = 0), sufficient to
yield chaotic behaviour. Instead, it creates an effective tangential
alignment, as discussed above. This term also controls the extent
of phase separation: the stronger the anisotropic flux, the larger
is the difference between minimal and maximal densities.

When anchoring is normal (o 4 0), bands undergo rotational
or splaying instabilities depending on the strength of anchoring.

Rotational instability corresponds to moderate values of o
and arises because the normal anchoring conflicts with the
tangential ordering generated by the w term. More specifically,
the imposed anchoring rotates the nematic orientation close to
the interface, which in turn rotates the director in the bulk
of the band due to the high elasticity that prevents gradients in
Qij. Activity then stretches the band along the nematic director
and shrinks it in the perpendicular direction, so that the band
eventually breaks into several smaller ones (Fig. 2c, S. Movie 2a,
ESI†). These bands continue rotating, expanding, elongating
and breaking up creating a cycle which never settles into a

Fig. 1 Linear stability analysis of eqn (1) and (2) (a = 0.05). (a) Within the
white region the isotropic homogeneous state is stable. Above the red line
(rIN = 1) the system loses stability and becomes nematic. The homo-
geneous nematic state is stable in the orange region for r0 4 rN (above
the blue line), and is unstable to phase separation within purple region.
(b and c) Dispersion relations for homogeneous isotropic (b) and homo-
geneous nematic (c) initial states (w = 0.5, k = 0.5). l is maximal temporal
eigenvalue, k denotes the magnitude of the wave-vector. The red and blue
lines correspond to r0 = 1 and r0 = 1.1, respectively.

Fig. 2 Numeric simulations in the strong elasticity limit: (a) bending
instability of the band for tangential anchoring (o = �1.8); (b) stable band
(o = 0), (c) rotational instability of the band for moderate normal anchoring
(o = 0.45), and (d) splaying instability for strong normal anchoring (o = 1.8).
In all snapshots k = 0.36, r0 = 1.1, w = 0.55; colour represents r, while grey
lines give the principle eigenvector of the Q-tensor.
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steady state. Bands can also merge when they meet, or occasionally
disappear. In a statistically averaged steady state, there exists more
than one band. This rotational instability has been previously
demonstrated for MT-MM mixtures12 and for self-propelled
particles with nematic ordering.28,29

Stronger normal anchoring (large positive o) can lead to an
additional instability, with the emergence of splay deformations
in the nematic order (Fig. 2d, S. Movie 2b, ESI†). In this case, the
effective anchoring coming from the activity is not dominating
over normal anchoring, and the nematic director is not parallel
to the interfaces. We also observe splay in the interior of the
bands despite the high magnitude of the elastic constant k. Due
to activity, one band again can split in in several smaller
fragments splaying out in different directions. New fragments
can detach from the original band and further rotate or dis-
appear. One should note that large magnitudes of parameter o
are associated with a very chaotic dynamics of the bands. In this
regime, splay and rotation of bands can coexist.

In the case of tangential anchoring (o o 0), the active and
imposed anchoring are no longer in conflict. Nevertheless,
there is another instability that destabilises nematic bands,
which we refer to as the ‘‘bending mode’’. To illustrate its
mechanism, we consider a straight band that is deformed into
a weakly undulating one. The sufficiently strong anchoring
term favours a bend deformation, where the MT orientation
within the band aligns with that at the undulating interface.
Since the anchoring term does not come from a free energy,
there is no thermodynamic restoring force straightening up the
band, and the undulation is instead increased by the activity w,
which creates an extensile flux along the MT direction. The
interplay of (non-equilibrium) anchoring and activity then acts
effectively as a negative surface tension favouring an increase in
the length of the interface. This means that straight bands are
no longer stable and our system constantly tends to increase
the curvature of interfaces, eventually resulting again in chaotic
behaviour (Fig. 2a). In line with this interpretation, we find that
a straight band is linearly unstable to undulations as the
strength of tangential anchoring increases (see S. Movie 3, ESI†).
We note that a similar instability was found in other models for
dry active matter in,30,31 although the mechanism underlying
their formation was not discussed in detail in those works.

Additionally, we find that simulations replacing the active
term wqiqj (rQij) in eqn (1) with a term proportional to qi((qjr)Qij),
which could be written in terms of the effective free energy, yield
no patterns. This shows that the key ingredient to generate
instability in eqn (1) is the ‘advective’ term wqi(rqj (Qij)).

In summary, the activity parameter w drives phase separation
and creates the active particle flux, whereas the anchoring is
necessary to create instabilities. However, setting w = 0 eliminates
patterns completely as this eliminates the route to phase separation.
Thus, within our model, we need both w and o to obtain either of
the two instabilities.

3.2 Weak elasticity limit

If k is small, then the model behaviour is different. In this case,
non-equilibrium anchoring and activity can prevail over elasticity.

As a result, we observe formation of topological defects, which are
accompanied by density inhomogeneities.

In the case of normal anchoring (o 4 0), the decrease of
elasticity favours the splay and eventually leads to the formation
of topological defects coincident with peaks in MT density. In
this scenario, defects have a positive topological charge of +1
and in the following we refer to them as asters. High-density
asters arise because the active flux pushes material towards the
defect, further increasing the density. In turn, density gradients
create radial ordering of microtubules. An individual aster is
associated with multiple active bundles (Fig. 3a, S. Movie 4,
ESI†). Asters interact elastically via the MT bundles that connect
them to form an active network (Fig. 3b and c, S. Movie 5, ESI†).

For high density and small w, the network becomes much
less dynamic. In this regime, we observe a tendency of asters to
form a hexagonal lattice (Fig. 4a), but in the investigated region
of parameters, the system never reaches equilibrium. The weak
activity of the system prevents the formation of a regular stable
configuration, and defects can appear and disappear or move,
which disrupts the global lattice structure.

Nematic bands emanating from asters can meet and form
�1/2 defects, but such defects, unlike asters, are associated
with a low density of active material and a more diffuse minimum
in the local topological charge (Fig. 3a, b and 4a, c). Due to the
conservation of topological charge, an admissible configuration is
one where there are two�1/2 topological defects for each +1 defect.
This fact, together with the triangular symmetry of �1/2 defects,
favors the formation of a hexagonal lattice, as shown in Fig. 4c.

In the case of tangential anchoring (o o 0), the decrease in
elasticity of undulating bands creates defects with topological
charge �1/2. These coincide with dense trefoil-shaped patterns
of r. As the magnitude of anchoring is increased, trefoils first
form the repelling pairs having the shape of ‘‘doggy bones’’
(Fig. 3d, S. Movie 6, ESI†) and then percolating foam-like
networks (Fig. 3e and f, S. Movie 7, ESI†). For high density
and small w, we observe the formation of a much more stable
but still out-of-equilibrium network of �1/2 defects (Fig. 4b).
The observed networks arise as tangential anchoring favours
the creation of nematic MT vortices that constitute the building
blocks of our active foams. Due to the intrinsic symmetry of
defects, such vortices preferably have the form of hexagons
(Fig. 4d), especially in dense and more stable foams.

To quantitatively estimate the topological charge in the
system, we use the following equation for its density19

q = @xQxk@yQyk � @xQyk@yQxk. (4)

Since the average of q over the whole system is zero, in Fig. 5 we
use hq2i as a measure of the average topological defects number,
where h�i denotes spatial average over the whole system. We also
average hq2i over time, after removing the initial transient behaviour.

We observe that hq2i increases with the decrease of the
elastic constant k for both positive and negative o (Fig. 5a).
This is physically intuitive, as decreasing k reduces the thermo-
dynamic penalty incurred by the forming defects. This can lead
to the increase in their number.
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In the case of negative o (tangential anchoring), the transition
between states with and without defects is very smooth. In
particular, for intermediate k, we first observe formation of
meta-stable trefoil defects, which later on disappear. This leads
to a small value of hq2i in this regime. However, for small k,

defects become more stable and their number quickly grows
(blue line in Fig. 5b).

For positive o (normal anchoring), the transition is much
sharper, and we observe no long-lived metastable structures, so
that the self-assembled asters are more stable than the trefoil
structures (orange line in Fig. 5b).

To demonstrate the absence of coarsening in the patterns
found at low elasticity, we explore the time evolution of the defects
number. The results are shown in Fig. 5, where it can be seen that
the number of defects decreases over time but remains at a finite
value once a statistical steady state is reached. In Fig. 5 we also show
that for o 4 0 the number of positive (aster-like) defects increases
with the rise in activity (Fig. 5c) and decreases with the increase in
elasticity (Fig. 5d). The same is true for the negative o (not shown).

4 Discussion and conclusions

In summary, here we introduced a simple phenomenological
model for pattern formation in an active filament-molecular
motor mixture. Our equations of motion are minimal, but,
nonetheless, they give rise to a surprising wealth of patterns,
which entail nonequilibrium phase separation and nontrivial
spatiotemporal dynamics. The range of patterns we find includes
chaotic dynamics of active bands that continuously rotate, splay
or undulate. These patterns were found previously in several
models of dry active matter.12,24,28,29,31,32 Importantly, we also
observe previously not documented patterns with topological
defects, such as networks of asters and active foams.

The key parameters of our active model C are the active
extensile flux, w 4 0, the strength of anchoring, o, and the elastic

Fig. 3 Numeric results for the weak elasticity regime. Subplots (a–c) demonstrate structures with normal anchoring: (a) formation of an aster with
multiple discrete arms (o = 1.5, k = 0.05); (b) active network of asters; (c) density of the topological charge dominated by +1 defects (o = 1.5, k = 0.025).
Subplots (d–f) represent patterns with tangential anchoring: (d) trefoils forming a ‘‘doggy bone’’ pair (o = �1.75, k = 0.1); (e) active network of trefoils
resembling ‘‘active foam’’ (o = �1.75, k = 0.005); (f) density of the topological charge dominated by �1/2 defects (o = �1.75, k = 0.005).
(c) and (f) correspond to (b) and (e) respectively. In all snapshots r0 = 1.1, w = 0.4.

Fig. 4 In the regime of weak elasticity, high density and small activity lead
to more stable networks of topological charges for both normal (a and c)
and tangential (b and d) anchoring. Top panels represent numeric results:
(a) network of asters (+1 defects) separated by small �1/2 defects (o = 1.8,
k = 0.03); (b) �1/2 defects form nematic rings, which in turn constitute the
building blocks of ‘‘active foams’’ (o = �1.25, k = 0.01). Bottom panels
(c) and (d) schematically represent hexagonal lattice the defects tend to
form but never reach. The blue and red dots represent defects with
topological charges +1 and �1/2, respectively.
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constant k. The sign of o determines whether the anchoring at
the interface between the high and low density regions is normal
(o4 0) or tangential (oo 0). The anchoring created by o is a non-
equilibrium contribution: indeed a thermodynamic anchoring,
which could be derived from an effective free energy, would
require o to appear in the r equation as well. The magnitude of
k determines the nature of the resulting patterns. For large k, we

obtain defect-free patterns with active bands, whereas for low k we
obtain patterns with topological defects.

As our model describes extensile activity, it is applicable to
mixtures of microtubules and molecular motors, such as those
constituting the ‘‘hierarchically assembled active matter’’ studied
experimentally in.9,18 It is intriguing that those systems exhibit
density inhomogeneities, which are reminiscent of our phase-
separated microtubule bands. Bands studied in the experiments
undergo a bending instability, which is qualitatively akin to the
one we find with large k and o o 0. However, as yet there is no
report of observing rotational instability similar to that we find at
large k and o 4 0. On the other hand, other microtubule-motor
mixtures spontaneously self-organise into a network of asters
in vitro.6,15 These structures are qualitatively similar to the aster
patterns we observe at low k and o4 0. Again, these studies have
not yet reported formation of active foams, such as those we find at
low k and oo 0. However, dense patterns with topological charge
�1/2 were obtained in motility assays.33 These results indicate that
not all possible combinations of k and o can be realised in a real
physical systems. Our results suggest that it might be possible to
switch from undulating patterns to asters in the same experi-
mental system, if one can find a way to decrease k and increase o
simultaneously.

The mechanism underlying aster formation in our model is
different from the one traditionally discussed in the literature.13,34,35

In those works, asters arise as a Landau transition occurs in the
polar order of filaments, while the nematic Q-tensor is an enslaved
variable which plays a secondary role. In our case, instead, the
Q-tensor plays the leading role. For example, when the elasticity
is low, a density inhomogeneity can create an aster via the
anchoring term in the equation for Q, and the associate active
extensile flux creates filament bundles and increases the density
at the aster core, stabilising the network. Although one still can
define an effective polarisation pi, which is determined by the
instantaneous values qir and qjQij, as discussed in,12 this field is
enslaved to the density and the Q-tensor, and plays no role in
the dynamics of the system.

Importantly, asters and foams found in the active model C
with anchoring presented here have not yet been reported in
similar systems of equations that describe dry nematic active
matter but lack the non-equilibrium anchoring contribution
which we have proposed in this work. This suggests that the
anchoring term might be necessary to stabilise states with non-
trivial topological defects. We cannot exclude the possibility that
aster networks and active foams may exist also in other versions
of the active model C such as,12 but in a substantially smaller
parameter range. Finally, we note that, while we have focused
here on the case of extensile active flux (w 4 0), considering
w o 0 would lead to qualitatively similar patterns. Indeed, our
simulations suggest that switching the signs of both w and o
leads to the same types of patterns.

Conflicts of interest

There are no conflicts to declare.

Fig. 5 (a and b) Time and space averaged net topological charge (hq2i)
shown as a function of o and k for the fixed parameter w = 0.4. Plot (a)
depicts a heatmap of hq2i; dotted line represents a nominal threshold
(hq2i = 1), below which we observe formation of defects. Plot (b) shows the
cross-sections corresponding to o = �1.5. Plots (c and d) illustrate the
evolution of the defect number n. They demonstrate the absence of
coarsening, the decrease of n with the growth of k, and the increase
of n with the growth of w. (c) Dependence of n on the elastic constant k
(w = 0.4, o = 1.5). (d) Dependence of n on the activity w (k = 0.05, o = 1.5).
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Appendix

Here, we discuss the linear stability analysis of the homo-
geneous nematic state with r(r,t) = r0, Qxx(r,t) = �Qyy(r,t) = Q0,

and Qxy(r,t) = 0, where Q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 � 1ð Þ=2a

p
: The stability of

this state is determined by the eigenvalues of the following
matrix

�2r0k2 � w�k2Q0 w�k2r0 �2wkxkyr0

Q0 �kk2 � 2ðr0 � 1Þ 0

0 0 �kk2

0
BBB@

1
CCCA;

obtained by linearising eqn (1) and (2) around the homo-
geneous nematic state; perturbations are expanded in Fourier
waves, where k is the corresponding wave vector, and we have
also introduced %k2 = kx

2 � ky
2.

We analyse the spectrum of this matrix and observe that the
largest eigenvalue corresponds to a perturbation perpendicular to
the direction of the nematic order (kx = 0, ky = k). In this case, the
system can be decomposed into two uncoupled problems, and the
unstable mode is given by the eigenvalues of the following matrix

k2 �2r0 þ wQ0ð Þ wk2r0

Q0 �kk2 � 2ðr0 � 1Þ

 !
:

In the long-wave limit, the largest eigenvalue is given by

lmax = k2(�2r0 + wQ0 + wr0Q0/(2(r0 � 1))) + O(k4).

Thus, the system becomes unstable when:

w4 4
ffiffiffiffiffi
2a
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

r0 � 1
p

r0
.

3r0 � 2ð Þ:
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Spec. Top., 2014, 223, 1315–1344.

31 E. Putzig and A. Baskaran, Phys. Rev. E: Stat., Nonlinear, Soft
Matter Phys., 2014, 90, 042304.

32 E. Putzig, G. S. Redner, A. Baskaran and A. Baskaran, Soft
Matter, 2016, 12, 3854–3859.

33 L. Huber, R. Suzuki, T. Krüger, E. Frey and A. Bausch,
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