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A data-driven computational scheme for the
nonlinear mechanical properties of cellular
mechanical metamaterials under large
deformation†
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Cellular mechanical metamaterials are a special class of materials whose mechanical properties are

primarily determined by their geometry. However, capturing the nonlinear mechanical behavior of these

materials, especially those with complex geometries and under large deformation, can be challenging

due to inherent computational complexity. In this work, we propose a data-driven multiscale compu-

tational scheme as a possible route to resolve this challenge. We use a neural network to approximate

the effective strain energy density as a function of cellular geometry and overall deformation. The

network is constructed by ‘‘learning’’ from the data generated by finite element calculation of a set of

representative volume elements at cellular scales. This effective strain energy density is then used to

predict the mechanical responses of cellular materials at larger scales. Compared with direct finite

element simulation, the proposed scheme can reduce the computational time up to two orders of

magnitude. Potentially, this scheme can facilitate new optimization algorithms for designing cellular

materials of highly specific mechanical properties.

1 Introduction

Cellular mechanical metamaterials (CMMs) with repeating cells
are commonly observed in both nature and industry, from
biological materials such as honeycombs to synthetic structures
such as metallic microlattices. These materials can exhibit unique
mechanical properties, such as high stiffness- and/or strength-to-
density ratio,1 that are primarily determined by geometries.
Traditionally, the study of this field is limited to several simple
structures and under relatively small deformation.2 Yet in the past
decade, the advent of fabrication technologies such as additive
manufacturing3,4 has enabled precise but fast realization of
sophisticated cellular architectures made of soft materials,

such as elastomers. These materials not only can bear large
deformation, but also exhibit novel mechanical properties
under that condition, including negative Poisson’s ratio
(auxeticity),5–7 shape morphing,8 tunable bandstructures9 and
energy absorption.10 These novel properties have created an
avenue for many exciting engineering applications, e.g., soft
actuators, materials with in situ tunable functionalities, reusable
energy-absorbing materials, etc.11–16

The rapid development on the fabrication side demands a fast
and predictive computational method to predict the mechanical
behaviors of CMMs. For materials with a relatively small number
of cells, one can conduct a direct numerical simulation (DNS) on
the whole specimen using the finite element method (FEM).17

However, the mechanical behaviors of soft CMMs are often highly
nonlinear and may involve mechanical instability, thus requiring
a fine spatiotemporal resolution for DNS calculations. DNS can
easily become computationally intractable as CMMs usually
consist of a large number of cells. Alternatively, one can conduct
a fine-mesh FEM calculation on a representative volume element
(RVE), often composed of one or several repeating cells,6 by
prescribing appropriate boundary conditions. Such a method
can efficiently predict the mechanical response of CMMs under
homogeneous deformation. When CMMs are subject to complex
loads, such predictions will fail.
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When the size of the CMM is much larger than that of the
repeating cells, multiscale analysis such as homogenization
can be a useful tool. Homogenization, often called ‘‘coarse-
graining’’ in the physics community, is often used to predict
the macroscopic behavior of composites from their micro-
structures.18,19 The early development of homogenization primarily
focuses on the analytical approach. Following the pioneering
work of Eshelby,20 various analytical homogenization methods
have been developed for linear materials21–26 and later extended
to nonlinear materials.27–30 While these analytical approaches
provide useful bounds, they are less accurate when microstruc-
tures become sophisticated.31 Computational homogenization is
more suitable in this scenario. Reviews of the recent progress in
this field can be found in ref. 32–34. Among various methods
of computational homogenization, two main categories can
be distinguished: concurrent and off-line methods. Concurrent
methods integrate the macro- and micro-scale problems
through proper mathematical formulations and solve both
problems concurrently. For example, the FE2 method is a
widely adopted concurrent scheme, and uses FEM to solve
problems at both scales.35–40 Another example is given by the
spectral method based on Fast Fourier Transform (FFT).41–44

Concurrent methods are powerful and accurate, yet can still be
computationally expensive, mainly due to the nested numerical
solvers needed to balance calculations at both scales. On the
other hand, for off-line methods, the macro- and micro-scale
problems are solved separately. Effective constitutive laws are
first constructed based on a set of numerical calculations at
microscales, and then used to solve problems at macro-
scales.45,46 Thus, offline methods can avoid the huge cost of
nested numerical solvers and in some cases be orders of
magnitude faster than the concurrent methods.46,47 Essentially,
the constitutive relation can be seen as a multi-dimensional
mapping from the microstructural features to the macroscopic
response of the material, and the core of offline methods is to
efficiently and accurately construct such a mapping. To this
end, several techniques46–52 have been developed, including
recent efforts using neural networks.53,54

Neural networks (NNs) are massively parametric function
approximators inspired by biological neural networks.55 Given
a large number of input/output examples, neural networks can
often successfully learn functions on high-dimensional spaces.
This process of ‘‘learning’’ the function corresponds to identi-
fying an optimal set of parameters, i.e., neural network
‘‘weights’’, to capture the relationship between inputs and
outputs reflected in the training data. Neural networks have
been demonstrated to be powerful function approximators
for solving challenging engineering tasks, such as language
modeling,56 image classification,57 and machine translation.58

More recently, there has been a growing interest in applying
neural networks to complex problems in natural sciences, e.g.,
physics,59–61 chemistry,62 astronomy,63 biomedicine,64 and
materials science.65–69

In the present work, we extend previous works on NN-based
computational homogenization methods53,54 to model the non-
linear mechanical behavior of cellular mechanical metamaterials

under large deformation. For that purpose, we first generate
training data by conducting a large number of RVE calculations
at the cellular scale. We then train a neural network on those
data to approximate the effective strain energy density at the
macro-scale, which is a function of the macroscopic strain and
microscopic structural parameters. Through this NN-based surro-
gate model for effective strain energy density, the coarse-grained
constitutive relations can be easily obtained, which greatly
reduces the computational cost of determining the mechanical
behavior of cellular materials at the macro-scale.

This paper is organized as follows. In Section 2, the finite
deformation theory of hyperelastic cellular mechanical meta-
materials and the specific geometries of this study are
described. In Section 3, we propose a neural network-based
multiscale computational scheme to determine the mechanical
responses of CMMs and describe the procedures to carry out
the scheme in Section 4. Numerical examples are presented in
Section 5, where our NN-based method is compared with DNS
in terms of accuracy and efficiency. In Section 6, we discuss the
applicability and the limitations of our NN-based method.
Finally we conclude in Section 7.

2 Problem formulation
2.1 Finite deformation elasticity

Consider a homogeneous elastic body in a 3D Euclidean space
R3, where we introduce a fixed Cartesian coordinate system
with orthonormal basis {e1,e2,e3}. In an unstressed state, the
body occupies a region B C R3 (reference configuration) with a
boundary qB whose outward normal is N. Upon mechanical
loading, the body deforms and occupies a different region
Bt C R3 (deformed configuration). Deformation can therefore
be described as a mapping: u: B - Bt, which maps any
material point X A B to its counterpart x A Bt, i.e. x = u(X).
The corresponding displacement field is defined as u = x � X

and the deformation gradient F ¼ @x

@X
. We denote vectors and

tensors with a bold font in contrast to scalars with a normal font.
The constitutive model of a hyperelastic material can be

defined by a strain energy density function (per volume) W,
which depends on F, through the right Cauchy–Green tensor
C = FTF. The displacement field u can be determined by solving
for the stationary point dC = 0 of the following functional
(in the absence of body force):

CðuÞ ¼
ð

B

WðFÞdX �
ð
@BN

u � t dS; (1)

with u = ub and du = 0 on qBD, where ub is the prescribed
displacement field, t is the prescribed traction (force per unit
reference area), qBN , qBD = qB and qBN - qBD = +. The
measures dX and dS are the infinitesimal volume and surface
elements in the reference configuration respectively. Alterna-
tively, the above variational problem can be formulated as a
boundary value problem:

Div P = 0 in B,
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u = ub on qBD,

P�N = t on qBN, (2)

where Div is the divergence operator in the reference configu-

ration and P ¼ @W
@F

is the first Piola–Kirchoff stress. These

problems can be numerically solved by FEM.
The formulation described above is applicable to any hyper-

elastic material, but in this work we focus on CMMs made of
soft elastomers and therefore adopt the following form of W:

W ¼ m
2
ðJ�2=3I1 � 3Þ þ k

2
ðJ � 1Þ2; (3)

where J = det(F) and I1 = tr(C); m ¼ E

2ð1þ nÞ and k ¼ E

3ð1� 2nÞ
denote the initial shear and bulk moduli, respectively, with
E and n being the material’s Young’s modulus and Poisson’s
ratio. The above W is commonly used to model isotropic
elastomers that are almost incompressible and we assume
n = 0.3 throughout this work.

2.2 Problem geometry

In this work, we focus on a special but widely used class of
CMMs: 2D porous cellular solids with a repeating unit cell.
We adopt a plane strain setting here, i.e., ui = ui(X1, X2), i = 1,2
and u3 = 0. Previous works6,7 have shown that the mechanical
properties of these CMMs highly depend on the shape of the
pore. Following previous treatments, our study focuses on
pores with four-fold symmetry whose contour can be described
by the following parametrization:

r(y) = r0(1 + x1 cos(4y) +x2 cos(8y)), (4)

where r and y are the polar radius and polar angle respectively.
By changing the parameters n = (x1,x2), we get a family of
different pore shapes as illustrated in Fig. 1. Specifically in this
work, we focus on square arrays of these unit cells and there-
fore, for a material with a unit cell length of L0, its porosity f0

is uniquely determined by r0 and n via the relation

f0 ¼
p
2
ðr0=L0Þ2ðx12 þ x22 þ 2Þ. In this work, we fix L0 = 0.5 and

porosity f0 = 0.5.
Among all the possible pore shapes, we focus on two types

(A and B in Fig. 1): pore A is circular, with nA = (0, 0), and pore B
breaks the angular symmetry, with nB = (�0.2, 0.2). We choose
these two shapes as our representative examples for two rea-
sons. First, mechanical instability can be triggered in CMMs
made of both unit cells under compression, which leads to an
asymmetric mechanical response of the CMMs under tension
and compression. Second, even though mechanical instability
can be triggered in these two CMMs, they still exhibit very
distinct mechanical responses under the same mechanical
loading.6,7

3 NN-based multiscale approach

Direct numerical simulation of cellular mechanical metamaterials
made of large numbers of unit cells is challenging, especially for

CMMs with complicated cellular geometries or that undergo large
deformation, mainly due to the large computational cost. The
computational expense arises from two factors. First, to resolve
detailed cellular geometries, the finite element mesh size must
be no larger than microstructural features. Second, since the
mechanical responses can be highly nonlinear under large deforma-
tion, small time steps are required for DNS to converge. To address
these issues, we adopt a multiscale approach called (offline)
computational homogenization,53,54 which performs fine-mesh
FEM calculations at the RVE level to obtain the coarse-grained
constitutive relations, and then uses these relations to predict the
mechanical behavior of the material at larger scale.

Our computational homogenization approach starts with a
study of the representative volume element of the CMM. The
choice of RVE is not unique, but it has to be simultaneously
large enough to capture the influence of cellular geometries on
the overall mechanical behavior and small enough to be
considered as a material point for the CMM. For example, as
shown in Fig. 2, for a CMM composed of many unit cells with
pore A, we have chosen ABCD, a 2 � 2 array of unit cells, as our
RVE. This choice of RVE ensures that we capture the mechan-
ical instability that leads to reorganization of the neighboring
unit cells.6,7 We emphasize that the above statement relies on
the critical assumption of separation of length scales, i.e. the size
of the CMM is much larger than that of the unit cell and RVE,
without which the homogenization approach is invalid.

Fig. 1 Left: A map from the parameters to the pore shapes indicated by
eqn (4). For each (x1,x2), we get a corresponding pore shape. Right: The
two representative pore shapes studied in this work.

Fig. 2 A 2 � 2 RVE taken from a cellular porous structure with repeating
units. Followed by the arrow is an example showing the periodic boundary
conditions applied to the RVE. Here we specify a macroscopic displace-

ment gradient �H ¼ 0 0:2
0 �0:2

� �
. The deformed configuration (rightmost)

shows the resulted displacement field of this RVE: u = �H�X + u* with u*
being the periodic fluctuation. The dashed profile shows the deformation
corresponding to the applied overall displacement �u = �H�X.
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To construct the effective strain energy density of this RVE,
we conduct a fine-mesh FEM calculation on the RVE under
macroscopic deformations �F by prescribing the following
periodic boundary conditions:

u(X) = (�F � I)�X + u*(X) = �H�X + u*(X), (5)

where I is the identity tensor and �H denotes the macroscopic
displacement gradient. �F and �H are uniform on the RVE
and periodic boundary conditions are applied to ensureÐ
@Vn� u� ¼ 0. For example, for the RVE ABCD in Fig. 2, we

have u*AD = u*BC and u*AB = u*DC. Essentially, eqn (5) decom-
poses the total displacement of the RVE into a macroscopic
(overall) part �u = �H�X and a microscopic (fluctuating) part u*.

The effective strain energy density�W can be obtained via the

average W over the RVE: W ¼ V�1
Ð
VWdV with V being the

total volume of the RVE (for plane strain, dV = dX1dX2). Other
macroscopic quantities can be obtained in the same fashion.
This effective strain energy density �W is the bridge that con-
nects the microscopic features to macroscopic mechanical
responses. In essence, �W should be a function of �F as well as
the microstructural features n:�W =�W(�F ,n). Once that relation is
established, we then treat the RVE as a material point in the
CMM and use FEM to find the approximate solution to the
stationary point of the following functional:

CðuÞ ¼
ð

B

WðF; nÞdX �
ð
@BN

u � t dS; (6)

with �u = �ub and d�u = 0 on qBD. Making use of the celebrated Hill–

Mandel condition70 P ¼ @W
@F

, the above minimization formulation

can be shown to be equivalent to the following macroscopic BVP:

Div �P = 0 in B,

�u = �ub on qBD,

�P�N = �t on qBN. (7)

Therefore, the key to this computational homogenization
scheme is to construct �W as a function of �F (more strictly
speaking �C) and n. In this work, we adopt a data-driven
approach based on neural networks.

Neural networks (NNs) are powerful computational struc-
tures for constructing massively parametric mappings.55 The
classic general form of a neural network is the multi-layer
perceptron (MLP), made up of fully connected layers.71 The
input vector x is processed through several hidden layers and
finally to an output vector y. Suppose that the ith layer has m
nodes and the i + 1 layer has n of them, the computation
between these two layers is given by yi = fi(xi): = s(wi�xi + bi),
where wi A Rn�m and bi A Rm are the weight matrix and bias
vector of the ith layer, and s is an element-wise nonlinear
function, such as a logistic function s(y) = 1/(1 +e�y) or tanh.
We can ‘‘stack’’ these transformations as y = f k(xk ) =
f kJf k�1(xk�1) = . . . = f kJ. . .Jf1(x) for a MLP with k � 1
hidden layers. We hereby denote this mapping as y = fh(x)
to emphasize that this mapping is under the parameter

h = (w1,w2,. . .,wk;b1,b2,. . .,bk). A typical MLP with only one
hidden layer is shown in Fig. 3.

The weight matrices and bias vectors h are called the para-
meters of the neural network and they are optimized through a
training procedure that minimizes a loss function reflecting
the quality of the fit to data. This training is typically performed
via a stochastic optimization procedure such as stochastic gradient
descent.72 At each step, one randomly selects a subset of the
training examples x each with the corresponding target value
y* and computes a loss function L(y*,y) (for example, the
squared Euclidean distance between targets and predictions
8y* � y82

2). Gradients of this loss function with respect to the
parameters are then computed using reverse-mode automatic
differentiation and the parameters are updated accordingly.73

This proceeds until a convergence criterion is achieved. After
training and other validation and calibration processes, we
can then deploy the neural network to make predictions for
new inputs.

In this work, we use an MLP to approximate the effective
strain energy density, namely �WNN(�C,n) E �W(�C,n). The input
vector is a 5-dimensional vector: x = (�C11,�C12,�C22,x1,x2) and the
output is a scalar y =�WNN. For any given input, the target output
is generated by RVE calculations. The goal is to train an MLP
which can reproduce the results of these calculations for out-of-
sample vectors. After training the MLP, we replace the �W in
eqn (6) with �WNN and solve the macroscopic problem.

We use scikit-learn,74 an open source machine learning
framework, to build, train and later test our neural network.
All finite element calculations are carried out using an open-
source FEM package FEniCS.75

4 Construction of the NN-based
computational homogenization scheme

In the previous section, we have outlined an NN-based multi-
scale computational homogenization scheme, with the goal of
obtaining a mapping from macroscopic deformation %C and

Fig. 3 An MLP with one hidden layer. The neural network function takes
an input vector and performs an affine transformation followed by a non-
linear activation function on the input vector, producing an intermediate
vector at the hidden layer. A similar transformation on the intermediate
vector then yields the output of the neural network function.
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microstructural parameters n to the effective strain energy
density�W. This scheme, as illustrated in Fig. 4, mainly consists
of three steps: (1) offline construction of training data, (2) opti-
mization of neural network parameters, and (3) deployment of
the NN-based surrogate model for FEM at the macro-scale.
In this section, we will describe these steps in detail.

4.1 Offline generation of training data

As mentioned above, the first step of constructing the NN-based
multiscale computational scheme is to construct a proper training
database composed of labeled data, each in the form of an input
vector and its target output: {(�C11,�C12,�C22,x1,x2;�W)(i)}. The target
output�W (i) is obtained via finite element calculation of the RVE
with the corresponding geometric parameters n(i) and subject to
the corresponding macroscopic field of �C (i).

In this work, we focus on CMMs composed of two types of
unit cells: those with pore A and pore B, so the choice of n(i) is
limited: n(i) A {nA,nB}. However, the choice of the macroscopic
field �C (i) is in principle infinite since it varies continuously.
Therefore some care is necessary in constructing an effective
sampling method for �C (i).

First we must identify a domain over which %C(i) is to be
sampled. Such a region should cover the nonlinear mechanical
behaviors of primary interest. For example, for CMMs
composed of unit cells with pore A, beyond certain compres-
sion the CMM undergoes mechanical instability which leads to
auxetic behavior. This behavior can be observed for �H22 = �0.125,
�H12 = �H21 = 0 and �H11 A [�0.08, 0.08], as shown in Fig. 5a.

The effective Poisson’s ratio is calculated to be �n = �0.26

(defined as �H11

H22

at the star point, where
@W

@F11

¼ P11 ¼ 0). As

for CMMs made of unit cells with pore B, when subject to both
shear and compression, mechanical instability can lead to
the bifurcation of microstructures.7 This is observed when
�H22 = �0.125, �H11 = �H21 = 0 and �H12 A [�0.7, 0.7]. As shown
in Fig. 5b, a double well shape of %W is observed as a function of
�H12 with two energy minima. Therefore, when the CMM is
subject to an overall compression �H22 = �0.125, the CMM will
bifurcate into two different microstructures that correspond to
these two minima.

The inspections above offer insight into a reasonable range
of �H for sampling data. The range should be sufficiently wide so
that important mechanics are reflected in the database, while it
should also be limited so that undesired behaviors like self-
contact are avoided with the current FEM simulation. The
sampling region chosen for pore A is

{�0.2 r �H11 r 0.2, �0.2 r �H12 r 0.2,

�0.2 r �H21 r 0.2, �0.2 r �H22 r 0.2}, (8)

and that for pore B:

{�0.2 r �H11 r 0.2, �0.8 r �H12 r 0.8,

�0.8 r �H21 r 0.8, �0.2 r �H22 r 0.2}. (9)

We adopted Sobol sequences76 to generate 5000 different
samples from each of the above regions. Such a sequence is

Fig. 4 The data-driven computational homogenization procedure consists of three steps: (1) building the offline training database by performing RVE
calculations at the cellular level; (2) training the neural network to obtain a surrogate model for effective strain energy density; and (3) deploying the NN-
based surrogate model for macroscopic problems.
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often used to generate sparse yet representative samples that
are evenly distributed over the given region. To maximize the
speed of data collection, we conducted a mesh refinement
study to obtain the optimal mesh size under a reasonable
tolerance (see ESI†). On a personal computer with a 3.2 GHz
Intel Core i7 CPU and 16GB memory, it took about 20 hours to
complete the process of data collection.

4.2 Neural network training

Once the database is constructed, the next step is to train a
neural network to establish a mapping from input vector
x = (�C11,�C12,�C22,x1,x2) to its target scalar output y = �W.
We randomly split our database into a training set (90% of
the data) and a test set (the rest 10%). Our neural networks will
be trained on the training set and the test set is used to ensure
good generalizability and avoid overfitting.

The neural network used here is an MLP with one hidden
layer, which as we will show later is able to provide sufficient
accuracy for our problem. The logistic function s(y) = 1/(1 + e�y)
is chosen as our activation function, and mean squared error

(MSE) is chosen as our loss function: MSE ¼
Pn
i¼1
ðŷðiÞ � yðiÞÞ2=n,

where n is the number of data points evaluated and ŷ(i) denotes
the output of the MLP given input x(i). The neural network
is trained using mini-batch stochastic gradient descent
with Adam optimizer.77 Hyperparameters such as number of

neurons in the hidden layer are first optimized via k-fold cross-
validation78 (see ESI†). We obtained the following optimal
hyperparameters: learning rate 10�2, batch size 64, and
128 neurons in the hidden layer. We then train our neural
networks using these hyperparameters. The training time for
the NN is typically within 1 minute on a personal computer.
After training of 1000 epochs, our NN model reports a training
MSE of 6.11 � 10�5 and a test MSE of 7.67 � 10�5.

We performed polynomial regression on the same data set
as a baseline comparison. As shown in Fig. 7, when the

Fig. 5 Effective strain energy density�W (normalized by E) under different
�H obtained from RVE calculations for unit cells with pore A and pore B:
(a)�W/E versus %H11 for pore A and (b)�W/E versus �H12 for pore B.

Fig. 6 Comparisons of the normalized effective strain energy densities
obtained via RVE calculation (solid line) and trained NN model (dashed line)
for both pore A (blue) and pore B (red) on the two benchmarks: (a) uniaxial
strain and (b) simple shear strain.

Fig. 7 Training and test MSE for polynomial regression.
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maximum degree of polynomial is increased, the MSE tends to
decrease. But when the maximum degree exceeds 10, the
regression problem starts to become ill-conditioned and thus
results in large MSE.79 The best of polynomial regression
reports a test error of 1.05 � 10�3, which is more than an order
of magnitude larger than the neural network model.

We further validate our NN model in two test cases to serve
as our benchmarks by prescribing the following �H:

(1) Uniaxial strain: �H11, �H12, �H21 = 0, �H22 a 0
(2) Simple shear strain: �H11, �H21, �H22 = 0, �H12 a 0
We conducted the above two test cases on both unit cells

with pore A and pore B and ensured that the �H’s tested here are
different from those in the database. The results are shown in
Fig. 6, where the effective strain energy obtained via RVE
calculation and that from the NN model are compared. It is
observed that the NN model agrees with the RVE calculation
reasonably well. The errors between NN model and RVE calcu-
lation are also small among both benchmarks: the respective
MSEs are 2.42 � 10�5 and 4.28 � 10�5.

4.3 Deployment of the NN-based surrogate model

Now that we have obtained an optimized NN model of the
effective strain energy density�WNN, we replace the�W in eqn (6)
with the obtained �WNN. Then, for any given n, the solution to
the macroscopic problem boils down to finding the stationary

point dCNN ¼ 0 of the following functional:

CNNðuÞ ¼
ð

B

WNN CðuÞ; n
� �

dX �
ð
@BN

u � �t dS; (10)

with �u = �ub and d�u = 0 on qBD.
By extracting out the optimal parameters of the NN model,

the explicit functional form of �WNN(�C,n) is readily available,
which can be computed iteratively as described in Section 3.
However, to find the stationary point of the above functional

CNN, one needs to efficiently evaluate the derivatives of CNN to

compute quantities like the first Piola–Kirchhoff stress PNN ¼

@WNN

@F
as well as the tangent stiffness tensor K ¼ @PNN

@F
. In this

work, we made use of the automatic symbolic differentiation
feature provided by the open-source package FEniCS (specifi-
cally the UFL component80 of the package) to compute those
derivatives. The standard Newton–Raphson method is used to
find the root of the nonlinear equations. We use automatic
differentiation and other features of FEniCS, so that the code
can be written in a concise and near-math fashion, which
provides an easier access to broader audiences. Equivalently,
the exact same derivatives could be computed analytically53 or
via finite differences.54

5 Numerical examples

In this section, we employed the aforementioned NN-based
multiscale approach to study the mechanical behavior of CMMs
composed of 2D arrays of cells with different pore shapes and

compare that with direct numerical simulation. As shown in
Fig. 8, a square-shaped CMM with a length L = 16L0 is studied.
The CMM is subject to a uniaxial testing with displacement
control. Specifically, a displacement DL along the e2 direction is
applied at the top with the bottom kept fixed, while the left and
right sides of the CMM remain traction free. This uniaxial testing is
a standard practice to obtain the stress–strain curve of materials.
Here, the engineering strain e and engineering stress s of the CMM

are defined as follows: e ¼ DL
L

and s ¼ F

L
, where F ¼

Ð
topP22dX1 is

the total resultant force (per thickness) on the top surface.
We perform this uniaxial test on a CMM with spatially

uniform pore shapes of either pore A or pore B. Previous
studies76 suggested that compression can lead to distinct
mechanical behaviors of these two CMMs. This phenomenon
is indeed observed in Fig. 9, where the deformed shapes of the

Fig. 8 Boundary conditions for uniaxial tests. The upper and lower sides
of the plate have fixed displacement conditions while the left and right
sides are traction free.

Fig. 9 Deformed configurations of CMMs with pore A (left column) and
pore B (right column) under a 10% uniaxial compressive strain. Panels (a)
and (b) are the results obtained from DNS, panels (c and d) are the RVE-
averaged field of DNS, and panels (e and f) are obtained via the NN-based
model. Color contours indicate the value of u1 (displacement component
along the e1 direction).
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CMMs under an engineering strain of �10% are shown. Both
DNS (Fig. 9a and b) and the NN-based model (Fig. 9e and f)
have shown that even under the same compressive loads, the
two CMMs develop very different shapes. We also computed the
average displacement field over each RVE element of the CMMs
using data from DNS. The results are shown in Fig. 9c and d.

Specifically for CMMs with pore A, as mentioned in Section 4.2,
a negative Poisson’s ratio is expected, i.e., the compression in
the e2 direction will lead to a contraction also in the e1

direction. This can be easily observed for the DNS results
shown in Fig. 9a, where the CMM starts to contract in the
middle region. The NN-based model also produces that result,
as shown in Fig. 9e where displacement component u1 is plotted.
We can observe that it is positive on the left and negative on the
right, which is a clear sign of contraction. As for CMMs with pore B,
compression can lead to a bifurcation of the local microstructure,
as mentioned in Section 4.2, which again can be observed from the
DNS result in Fig. 9b. For the NN-based model, since the micro-
structural information has been averaged out, such bifurcation can
only be inferred indirectly. Recall that in Fig. 5b, the two minima of
�W correspond to nonzero shear deformation with equal and
opposite shear components. In Fig. 9f, we observe that under pure
compression, the CMM develops a large local shear in the upper
and lower part of the material, with opposite shear directions.
The results in Fig. 9, whether obtained via DNS or the NN-based
approach, are all in qualitative agreement with previous experi-
mental work.6

Beyond visual qualitative comparisons, we obtained a
stress–strain (s–e) curve for both CMMs to quantitatively assess
the accuracy of our NN-based approach. The curves are
obtained by varying the applied engineering strain e from
�10% to 10% and the results are shown in Fig. 10. The curves
obtained from DNS and the NN-based model are almost
identical for both pore A and pore B when under tension, even
at large strain up to 10%. The NN-based model can reproduce
the results of DNS for pore B for compression, but it starts to
deviate from DNS results for pore A when the compression
becomes large. This deviation is observed even with a much
finer mesh for our NN-based approach.

One possible reason for such behavior is the boundary
effect. For CMMs with pore B we can observe some variation
of microstructures near the boundary, but the variation is quite
smooth and the main effect – the bifurcation into two shear
states – is captured by the NN-based model. However for CMMs
with pore A, on the left and right boundaries there are strong
pore–boundary interactions, resulting in a drastic change in the
pore shapes (see ESI†). This boundary effect persists even
with the increasing number of composing unit cells. Another
possible reason is that there is strong microstructure localiza-
tion in the case of pore A. We can see that the rotation of the
holes is drastic, and the distances between holes are small, thus
leading to strong local interactions between the RVEs (Fig. 9a
and ESI†). This is in contrast to the case of pore B, where pore
rotations vary more smoothly yielding no strong localization
(Fig. 9b and ESI†). Moreover, the strongly localized deforma-
tions in the case of pore A can lead to contacts between the
interior boundaries of the pore, at which point our finite
element model becomes invalid (without extension to handle
contacts). In conclusion, the strong local variations in the
microstructural features may impede the predictive power of
our computational scheme. Possible ways of resolving this
issue include using a separate model to account for the
boundary effects,81 or utilizing more advanced homogenization
techniques to deal with the aforementioned localization
effects.32,33

Aside from accuracy, we also compared the efficiency of the
NN-based approach with DNS. Recall that one of our main
motivations to construct such a surrogate-based approach is to
reduce the computational complexity of DNS. This computa-
tional expense is mainly due to the fact that a small mesh size
is needed to resolve the detailed cellular geometries, which
results in a large number of degrees of freedom (DoF). Our
NN-based model can use a much coarser mesh since the
detailed microstructural features have already been averaged
out and factored into the effective strain energy density. This
significantly reduces the degrees of freedom when solving for
the macroscopic behavior of the CMM – of course at the cost of
losing the detailed local information of relevant fields. Table 1
summarizes the computational performance of DNS and the
NN-based approach when they are used to generate the stress–
strain curve in Fig. 10. The NN-based approach needs much
fewer DoF to accurately capture the overall mechanics of the
CMMs and hence can reduce the computational time by up to
two orders of magnitude for both CMM with pore A and that
with pore B. Note that for our problem, we used the same
increment in e to obtain the stress–strain curve. For a time-
dependent problem, it is also important to examine the numerical
stability of both approaches when different time steps are used.

6 Discussion

In the previous section, our NN-based approach is shown to
efficiently predict the mechanical behavior of CMMs with
homogeneous n but an inhomogeneous deformation field.

Fig. 10 Stress–strain curve for CMMs under uniaxial test with pore A (red)
and pore B (blue) obtained via DNS (solid line) and the NN-based model
(dashed line).
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Here we further consider a CMM whose n is macroscopically

inhomogeneous: n Xð Þ ¼ X2

L
nB þ 1� X2

L

� �
nA, a linearly varying

n along the e2 direction. The shape of the CMM is still a square,
with size L = 16L0 and under the same uniaxial loading as
described in Fig. 8. A maximum strain of 20% is applied to this
CMM. Its deformed shape is shown in Fig. 11 when under a
tensile strain of 20%. The macroscopic responses for both DNS
and the NN-homogenized model agree with each other qualita-
tively by visual observation. When the applied e4 0, i.e., tensile
loading, we have found that the NN-based approach can
reproduce the DNS results very well – as in the case of a
CMM with homogeneous n. On the other hand, when under
compression, the NN-based approach starts to diverge and fails
to find a solution even at small compression.

We suggest two explanations for this phenomenon. First,
since �W is a strongly nonlinear function of n, especially when
under compression, the ability of our neural network to capture
that functional dependence remains uncertain, given that only
two different n’s (nA and nB) are included in the training data.
Second, since the local mechanical properties of the CMM
depend on n in a strongly nonlinear fashion, the n used in
this study can still create a strong local variation. When the
characteristic length of that variation is comparable to the RVE
size, the assumption of separation of scales can break and in
that case our multiscale framework will fail. Particularly in the
above example, when the CMM is under uniaxial tension,
as shown in Fig. 10, the mechanical properties of CMMs
vary smoothly between different n’s. Therefore, the NN-based

approach gives us good agreement with the DNS results in
tension. However, when under compression, as the properties
vary drastically between different n’s, our NN-based approach
starts to fail.

To enhance the fidelity of our NN-based approach for CMMs
with complex pore shapes, it is useful to include a larger number
of sampled n’s in the database. This way, our neural networks can
better capture the nonlinear dependence of �W on the geometric
parameters n. We can validate our results by conducting similar
uniaxial tests on CMMs with a homogeneous n that are different
from those in the training data and compare with DNS results.
Once that dependence is established with good accuracy, we can
use the NN-based approach to predict the mechanical behavior of
CMMs with an arbitrary uniform n or those with a non-uniform n,
which varies ‘‘smoothly enough’’.

However, for those n’s that lead to large local variations and
with characteristic lengths comparable to the size of RVE, our
NN-based approach will fail since it breaks the basic assump-
tion of our multiscale framework. For those CMMs, we have to
rely on other approaches like DNS. We must be cautious about
the spatial inhomogeneity of the problem that we are solving:
be it either in the geometric features or in the deformation
field. For the multiscale approach to work, we must ensure that
those variations have a negligible influence on the macroscopic
problems of interest. In principle, our NN-based multiscale
approach only works when the size of the CMM is much larger
than that of the RVE and when there is no strong localization
effect.

In Section 5 we have demonstrated that our NN-based
scheme can capture the mechanics of moderately sized CMMs
with reasonable accuracy, but with significant computational
savings over DNS. We anticipate further reduction for even
larger CMM size. Nevertheless, it is worth noting that the most
time-consuming step of our NN-based scheme is not solving
the macroscopic problem using the NN-based model, but the
generation of the training data. As reported in Section 4.1, it
takes about 20 hours to construct the database, although it is
trivially parallelizable. Even though it is time-consuming,
this generation step is only required once, and the resulting
NN-based model can be used to solve multiple problems.
Therefore, significant time can still be saved compared to other
multiscale methods like FE2 where micro- and macroscopic
problems have to be solved at the same time, as pointed out
in ref. 53 and 54.

Owing to its great computational efficiency, the NN-based
approach proposed in this work can be particularly useful for
solving design problems – the reverse engineering of CMMs to
achieve specific mechanical properties. Compared with typical
multiscale approaches, our approach provides a straight-
forward way of evaluating the necessary derivatives needed
for the sensitivity analysis,82,83 once the functional dependence
of�W on n is well established. Therefore we envision that those
powerful tools used for structural topological optimization of
composite materials can now be used for the design of CMMs
under the NN-based framework. However, since our NN-based
multiscale approach only works for CMMs with smoothly

Table 1 Comparison of DoF (degrees of freedom) and computation time
(in seconds) for DNS and NN with different pore shapes and loading
conditions

DoF Computation time [s]

DNS – pore A – compression 158 310 5.15 � 102

DNS – pore A – tension 7.42 � 102

NN – pore A – compression 290 6.18
NN – pore A – tension 6.41
DNS – pore B – compression 139 520 5.33 � 102

DNS – pore B – tension 5.19 � 102

NN – pore B – compression 290 8.20
NN – pore B – tension 6.94

Fig. 11 Deformed configuration of a CMM with non-uniform pore shapes
under a uniaxial tension of 20% obtained via (a) DNS and (b) the NN-based
approach. Color contours indicate the value of u2.
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varying n, proper regularization has to be imposed to ensure
that the optimal solution that we obtained does not violate that
condition. Other structural parameters can also be included for
the design of CMM, for example, the porosity of the CMM, the
arrangement of the pores (other than the square arrays used in
this work), etc.

Differentiability and fast deployment are two important
motivators for choosing neural networks for this work. Other than
neural networks and polynomial regression in Section 4.2, there
are many machine learning techniques available, each suitable for
different types of problems. For example, decision trees84 are a
popular machine learning technique which offers great interpret-
ability; however they are not typically differentiable. Gaussian
process regression can be an alternative to neural networks for
small datasets, and can sometimes outperform neural networks in
terms of accuracy. Yet, there can be great computational cost
for deployment once the dataset becomes large.85 The choice of
machine learning techniques largely depends on the types of
problems and applications considered. Sometimes multiple
machine learning techniques can be combined together for
optimal performance. In this work, our aim is to demonstrate that
neural networks are a promising tool for the design of CMMs.
There are limitations – the need to generate a large dataset, the
need for smoothly varying n – but we expect that future work may
be able to compose the model we present with other machine
learning techniques to relax these restrictions.

7 Conclusion

In this work, we proposed a neural network based multiscale
computational scheme which can be used to predict the overall
mechanical behavior of cellular mechanical metamaterials
under large deformation. Our scheme adopts a data-driven approach
to estimate the functional dependence of the effective strain
energy density on complex cellular geometries and finite overall
deformation. We first identify a proper RVE of the cellular solid
and build an offline training database by varying overall deforma-
tion as well as cellular geometries. The database is then used to
train and validate a neural network model that can best represent
the effective strain energy density as a function of cellular geo-
metries and overall deformation. This neural network model is
then treated as a coarse-grained constitutive model of the meta-
material and used to predict its overall mechanical behavior.
Under certain conditions, our proposed scheme can significantly
reduce the computational time compared with direct numerical
simulation while achieving reasonable accuracy, especially when
the metamaterial consists of a large number of unit cells. We
discussed the limitations of the current scheme and emphasized
the types of problems for which it is appropriate. Finally, we
discussed the potential of using this to enable efficient rational
design of metamaterials.
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