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Soft materials often exhibit a distinctive power-law viscoelastic response arising from broad distribution
of time-scales present in their complex internal structure. A promising tool to accurately describe the
rheological behaviour of soft materials is fractional calculus. However, its use in the scientific community
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remains limited due to the unusual notation and non-trivial properties of fractional operators. This review
aims to provide a clear and accessible description of fractional viscoelastic models for a broad audience
and to demonstrate the ability of these models to deliver a unified approach for the characterisation of

power-law materials. The use of a consistent framework for the analysis of rheological data would help
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1 Introduction

Characterising and understanding how a material deforms
when subjected to external forces is critical for many branches
of industry, from food and material processing to product
design. For example, in additive manufacturing, solid polymer
filaments are melted and then extruded through a nozzle. The
material flow behaviour during extrusion affects both the
processing time required, and the strength of the final printed
object.™” In the food industry, the texture and mouthfeel of
bread is largely dependent on its mechanical properties, which
themselves are largely determined by the manufacturing
process.>* Furthermore, the mechanical response of polymers
is often used to infer their composition or microstructure.>® The
scientific study of material deformation is known as rheology. To
further its inquiry, rheology uses mathematical modelling to
capture an approximate representation of the behaviour of
materials. This facilitates the classification and comparison of
materials, and enables predictions that can then inform engi-
neering design choices and improve manufacturing processes.
Studying how living systems respond to mechanical stimuli
is fundamental to gaining a comprehensive understanding of
their functions and underlying cellular processes. It is increasingly
recognized that the mechanical properties of cells have a great
impact on human development and disease progression.'*™®
Alterations in the mechanical behaviour of soft tissues when
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classify the empirical behaviours of soft and biological materials, and better understand their response.

subjected to external stimuli are often associated with diseases.'” !

Being able to measure and quantify such changes can provide
insights into disease evolution, which in turn guide advancements
in diagnostic tools and treatments.”>>* In tissue engineering,
knowing the response of human tissue to external forces is key to
developing replacements that restore the structure and functionality
of damaged tissue by matching the properties of the surrounding
environment, which promotes cell in-growth and reduces the risk of
implant failure.>>2®

There are two common limits in the behaviour of materials.
Elastic materials are solids whose mechanical stress is related
to their deformation state with respect to a reference, stress
free, geometry; the work done to deform them is entirely stored
as recoverable elastic energy. Newtonian fluids are viscous
materials whose rate of deformation is a function of their
mechanical stress; the mechanical work required to deform
the material is fully dissipated. Most materials however exist on
a spectrum between the elastic and Newtonian limit behaviours;
they are referred to as viscoelastic materials. A defining char-
acteristic of viscoelastic materials is their time-dependent
behaviour. When a constant deformation is applied to visco-
elastic materials, their internal stress decreases with time - this
process is known as relaxation. When viscoelastic materials are
subjected to a constant load (stress), their deformation (strain)
increases with time - this process is known as creep. In
applications where long-term durability and shape stability
are required, creep may not be a desirable material property.
In contrast, creep may be a desired property in manufacturing
processes where a material is extruded or flows across cavities -
e.g. in additive manufacturing. Various empirical methods are
available to quantify the response of viscoelastic materials.
Relaxation tests (in which a constant strain is applied and
stress is recorded) and creep tests (in which a constant stress is
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applied whilst strain is recorded) constitute two testing para-
digms for viscoelastic materials. Another common testing
methodology requires the application of an oscillatory load
to the material. Typical instruments to collect such data are
dynamic mechanical analysers (DMA) for materials with solid-
like behaviours at long time-scales and rheometers for liquid-
like materials that need to be studied in shear deformations
only. Relaxation, creep and oscillatory tests are the three
canonical viscoelastic testing paradigms; the most appropriate
test can depend on several factors including the experimental
hardware available, and the most relevant physical modes of
deformation for the application or research question.

Mathematical models are commonly used to describe the creep,
relaxation and oscillatory behaviour of viscoelastic materials. One of
the primary aims of modelling is to extract model parameters and
relate them to the underlying molecular or microstructural defor-
mation mechanisms. In other contexts, such as the food industry,
the parameters can be related to sensory perception. Nevertheless,
the identification of a suitable model facilitates comparison
between the behaviour of different materials, states of organisation
or environmental conditions. The theory of linear viscoelasticity is
a widely used approach to analyse experimental data that yield to a
well-defined mathematical representation of the stress-strain-
time relation - often referred to as a constitutive relationship. By
employing those mathematical methods it is possible to extract
parameters that uniquely describe a given material - often
referred to as material properties — and allow the prediction of
the evolution of stress and strain within the material under
arbitrary loading scenarios.

Advances in mechanical testing hardware have revealed that
many materials possessing a complex microstructure exhibit a
characteristic power-law signature in their creep, relaxation and
spectral behaviours. A selection of data from the literature is
shown in Fig. 1. Further examples include biological materials —
e.g. tissues,”! single cells,*****2¢ intra and extra cellular com-
ponents; %3738 gels 3% polymers,”*! concrete,">** asphalt,** ¢
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ice,” and food - e.g. cheese,"*” dough.®*® This behaviour represents
a challenge to the commonly used viscoelastic models in obtaining
a unique mathematical description of the constitutive relation with
a limited number of parameters. The power-law behaviour can
be approximated with traditional viscoelastic models via a large
number of model parameters, which greatly hinders physical
interpretation. To circumvent this limitation, traditional models
are often discarded in favor of empirical fitting functions:
mathematical ansatzes derived from qualitative inspection of
the data rather than a governing constitutive equation. This
approach precludes comparison of parameters across research
studies, which can lead to a multitude of different interpretations
of similar phenomena.*’

A promising solution relies on the use of fractional calculus,
a branch of mathematics that extends integration and differentiation
operators to non-integer order,’®! to enrich the classical linear
viscoelastic framework.”>>* This led to the development of a new
formalism for the modelling of viscoelastic materials known as
fractional viscoelasticity. Fractional viscoelasticity has been applied
to complex geological and construction materials such as bitumen
(asphalt),**** concrete,”*"* rock mass,>*° 1,561
as well as polymers and gels,*"%*7®
examples can also be found of fractional viscoelasticity applied
to biological materials such as epithelial cells,*® breast tissue
cells,””®® lung parenchyma,®® blood flow,”*”" as well as red blood
cell membranes.”” Considering the microscale, some observations
of anomalous diffusion in complex fluids have been interpreted
based on fractional viscoelastic behaviours,””>””> with applications
to, for instance, transport movements in cell cytosol.”®”” Acoustic
waves are also commonly used to probe or image materials.
Fractional calculus appears to be a powerful tool to characterise
wave propagation in complex materials exhibiting power law
behaviours.”®”® In spite of the examples reported above, when
we consider the number of power-law responses observed in the
literature (some of which are modelled empirically), fractional
viscoelasticity remains significantly underused. By using a consistent
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Fig. 1 Stress relaxation response of several materials follows a power-law behaviour. Examples of power-law materials include: (@) common
polysaccharide (xanthan gum) used as food additive,” bread dough,® synthetic polymers such as nylon of diameter 1.125 mm,® single collagen fibrils;*°
(b) semi-hard zero-fat cheese,™ pure ice at —35 °C,° asphalt sealants'® and single MDCK epithelial cell.™® For clarity the data has been separated into two
subplots and the stresses have been normalized by the initial value for each data set.
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formalism for the analysis of power-law materials, a direct com-
parison of parameters across studies can be achieved,*® which
greatly extends the use of available data.

The main aims of this review are to demonstrate the applic-
ability of fractional viscoelasticity to a wide range of real problems,
and to carefully illustrate its advantages over commonly used
modelling approaches. Furthermore, we aim to present fractional
viscoelasticity in a way that is accessible to researchers without
specialised knowledge of fractional calculus. To achieve this, we
first illustrate the limitations of spring-dashpot models in captur-
ing power-law viscoelasticity. Following this, the mathematical
foundations of fractional viscoelasticity are introduced. We will
describe the behaviour of networks of fractional viscoelastic
elements with a focus on their limit behaviours at short and long
time-scales. A number of studies which originally used empirical
or spring-dashpot based traditional models are then revisited in
order to demonstrate the benefits of fractional viscoelastic
models. A physical interpretation of the phenomena is dis-
cussed where possible.

2 Introduction to linear viscoelasticity

The linear theory of viscoelasticity provides a powerful mathematical
framework to link stress, strain and time and provide predictions of
stress and strain distribution during arbitrary loading conditions.
A material is assumed linear viscoelastic if the stress function o(f)
and strain function ¢(f) are linearly connected: (i) if the strain
function ¢(f) is multiplied by a constant factor, the resulting stress
would be scaled by the same constant, and vice versa. (i) The
response to a strain (or stress) that is a linear combination of two
arbitrary strain (or stress) functions is given by the same linear
combination of their two individual responses.

Most materials exhibit linear, or quasi linear, behaviour for
small deformations while their response becomes nonlinear at
large deformations. The linear theory of viscoelasticity is a
commonly used approximation for the study of materials’ behaviour
as it leads to an accessible and manageable mathematical
formulation of the stress, strain and time relationship. Further-
more, the theory of linear viscoelasticity represents a good
starting point for the study of more complex nonlinear
responses that often gives rise to more complex models.®**?

A common test performed to characterise a viscoelastic
material is to analyse the stress response of the material when
subjected to a constant strain (relaxation test). The implication
of the linearity assumption is that the resultant stress function
scales linearly with the magnitude of the step in strain.®* Thus,
for a step in strain of amplitude ¢, at time ¢ = 0, the resulting
stress () can be written

a(t) = G()zo, (1)

where G(¢) is the relaxation modulus, a monotonically decreas-
ing function. Similarly, in the case of a creep test, the strain
response ¢(t) is proportional to the stress step amplitude o, that
is imposed at ¢ = 0:

&(t) = J(M)oo, (2)
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where J(¢) is the creep compliance, a monotonically increasing
function of time.

A key consequence of the linearity assumption is that the
response of the material at time ¢ is given by the sum of the
responses to the perturbations imposed at all previous times.
Therefore, given an arbitrary stress or strain history, we can
compute either the strain response or stress response respectively by
integrating the entire history of infinitesimal ‘step’ excitations.®>*®
Assuming that the material does not age, i.e. that its mechanical
behaviour does not change with time during the course of a
measurement, the strain (or stress) response at time ¢ of a step in
stress (or strain) at time 7 would be given by the relaxation function
G(t — 1) (or creep function J{t — t)). This results in the following
convolution integrals:

de(z)

a(t) = J;G(l - I)Tdn (3)
e(1) = J;J(z - r)d(:i(;)dr, (@)

Another consequence of linearity is that, when a viscoelastic
material is subjected to a sinusoidal stress, the recorded strain
has the same frequency, but with a phase difference that may
depend on frequency. For purely elastic materials the phase
difference is 0° and for purely viscous materials the phase
difference is 90°. For viscoelastic materials, the phase differ-
ence lies between these two values. If we assume a linear
material, by considering an oscillatory excitation (f) = ", we
obtain a stress response®® o(f) = G*e’* from which we can
define the so-called complex modulus, or dynamic modulus:

() = G'() + i6"(w), (5)

where o is the frequency. The real part of this complex stress
response, G'(w), is defined as the storage modulus (as the
energy is stored in an ideal elastic material). The imaginary
part of the response, G”, is defined as the loss modulus (as
energy is dissipated in a purely viscous material).

For a linear material, the three moduli, relaxation, creep and
dynamic modulus, are directly related. Their relationship can
be expressed in the Laplace domain. For instance, by combining
the Laplace transforms of eqn (3) and (4), one obtains G(s)f(s) =52,
where G(s) and jf(s) are the Laplace transforms of the relaxation
modulus and creep compliance respectively.®® Therefore, we can
predict one type of behavioural mode (e.g. creep) from observing a
different behavioural mode (e.g relaxation), although such a
relationship is difficult to exploit in practice due to the necessarily
limited experimental time/frequency domain and the presence of
noise on the data.

3 Characteristics of traditional linear
viscoelastic models

The expressions above are generic and applicable to any
material that behaves in a linear manner, being solid and
liquid like. Specific expressions for the moduli - i.e. relaxation,

This journal is © The Royal Society of Chemistry 2020
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creep and dynamic moduli - can be deduced in several ways.
A common approach relies on the use of fundamental visco-
elastic units that can be combined in series or parallel - this
element-by-element model building process is analogous to
electrical circuit models. The most commonly used viscoelastic
units are the Hookean spring and the Newtonian dashpot, with
governing equations of g(¢) = ke(¢) and o(z) = né(¢) respectively.
The simplest models that can be formed from these two
viscoelastic units are their series (Maxwell model) and parallel
(Kelvin-Voigt model) combinations, both of which are shown
in Fig. 2. The creep compliance and relaxation modulus can be
derived from the corresponding differential equation by: (a)
assuming that the stress is constant and solving for the
differential equation in strain, leading to the creep compliance,
and (b) assuming that the strain is constant and solving for the
differential equation in stress, leading to the relaxation modulus.
The complex modulus is derived from the constitutive differential
equation, either by considering oscillatory forms of the stress and
strain functions, or by taking the Fourier transform of the
differential equation, leading to an algebraic equation which

Maxwell

Model

Kelvin-Voigt
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can be rearranged for G* = (w)/é(w), where the hat (") symbol
denotes a Fourier transformed function.

The differential equations relating stress and strain of
traditional spring-dashpot models take the form of a linear ordinary
differential equation with constant coefficients, and both relaxation
modulus and creep compliance involve exponential functions (see
Fig. 2). As an example of this, consider the stress response of a
Maxwell model to a step in strain:

o(f) = ke_/_’;so = G(1)ey, (6)
where G(t) is the relaxation modulus. The ratio 7 = 5/k has the
units of time and can be considered as the characteristic relaxa-
tion time of the material. This time-scale is a useful quantity; it
represents the time required for the stress to fall to 1/e of its
initial value. More importantly, the time-scale may describe a
physical relaxation process more effectively than the values of 7
and k separately, such as rates of binding or unbinding of molecular
structures. To capture more complex material behaviours,
additional elastic springs and viscous dashpot elements may
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Fig. 2 Properties of three common viscoelastic material models.
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be used. These additional elements give rise to multiple time-
scales. Some models, for example the generalised Maxwell
model shown in Fig. 3(a), give rise to an arbitrarily large number
of time-scales (see ref. 80, 87 and 88 for more details about
spring-dashpot based linear viscoelastic models).

Power-law viscoelastic materials correspond to systems with
a broad range of relaxation/creep time-scales arising from
dissipation/deformation modes occurring at different time
and length scales. Mathematically, power-law behaviour con-
sists not of a discrete number of time-scales, but a continuous
distribution of time-scales. For this reason, power-law rheology
can only be approximated by the spring-dashpot models that
yield exponential terms with discrete time-scales.**°" The larger the
number of exponential terms, the closer the approximation.®® We
demonstrate this in Fig. 3 by incrementally increasing the number
of Maxwell arms in a generalised Maxwell model, each of which
contributes a material time-scale. With four Maxwell arms, a good
approximation of a power-law is obtained over the time domain of
the data (Fig. 3(b)). Another informative perspective on the
approximation process can be gained via a relaxation spectrum,
which represents the relative behavioural dominance at different
times. The relaxation spectrum found here for the power-law
relaxation modulus was approximated as®**®”

_dG(1)
din¢

=1

H(t) = (7)

where G(¢) is the relaxation modulus. Fig. 3(c) shows the
relaxation spectrum of the power-law material in logarithmic
scale, which is a power-law distribution of time-scales with the
same exponent as the original relaxation data. The optimal fit
of the various tested Maxwell models can be seen to yield
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time-scales that are equally spaced in logarithmic scale. As
more Maxwell arms are added, a broader coverage of the true
power-law distribution is attained. Hence, the quality of the
approximation of power-law responses with a generalized
Maxwell model depends on both (i) the number of Maxwell
components and (ii) the time-window over which the power-law
function is fitted.

This qualitative assessment of the above relaxation responses
and their corresponding spectra shows that spring-dashpot
models might be sufficient to approximate power-law behaviour.
However, the approach has a number of disadvantages. A large
number of model parameters make the computational analysis
far more expensive, and interpretation of their physical
meaning becomes significantly more difficult. The characteristic
times extracted from the fitting process mostly capture the time
window of the data and do not represent intrinsic material
properties. Moreover, the fitting would optimise the match
with data in the region fitted, but provide poor predictions at
time-scales shorter or longer than those provided in the
original data.

To circumvent the above disadvantages inherent to spring-
dashpot based approximations, empirical power-law expres-
sions have been used as a simple way to capture experimental
measurements.”>*>?*9%9 Thege expressions are essentially a
mathematical ansatz, formulated to capture the main qualitative
features of the experimental data. The end result of this
formulation is usually a single modulus of interest that may
or may not be analytically converted into the other moduli,
necessitating numerical analysis for the prediction of the
material response to other external loading patterns. Further,
the use of such ad hoc models limits the scope of the
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Fig. 3 Use of traditional viscoelastic models to analyze power-law responses. (a) Sketch of the Maxwell model and its generalised form with the
correspondent relaxation modulus showing an exponential form. (b) Approximation of a power-law response a(t) = 5:t7°° (grey line) using the
generalised Maxwell model with n = 1 (blue), 2 (green), 4 (dashed purple), where for n = 1 it corresponds to the Maxwell model. Fitted model parameters
in Table 2 in Appendix A. (c) Relaxation spectra of the power-law response and the generalised Maxwell model with n = 1, 2, and 4.
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measurements since the model parameters may not be easily
comparable across studies.

4 Fractional viscoelastic models

With regards to the modelling of power-law viscoelastic materials,
we have now outlined the advantages and disadvantages of the
phenomenological spring-dashpot approach and the empirical
ad hoc approach. In this section we introduce an additional visco-
elastic element, the springpot, which is able to capture a power-
law behaviour with a minimum number of parameters. We then
demonstrate how the springpot can be combined with other
elements in series and parallel configurations to capture complex
power-law signatures in various contexts.

4.1 The springpot captures power-law behaviour

By inspecting the power-law relaxation data (Fig. 1), it can be
seen that the relaxation modulus takes the form G(f) = At™",
where A is a constant and f§ the power exponent. Substituting
this into eqn (3), the relationship between stress and strain for
a power-law material becomes:

! _pde(n)
H=A| (t—1)—=—dr 8
o) = 4] (1= 7% ar ®
A branch of mathematics called fractional calculus provides the
definition of the generalization of the differentiation operation
to non-integer order valid for a function f(¢) = 0 for t < 0 as'®
& (1) L df(v)
— -5
=—| (1 — d 9
aF (- [f)L( Rt ©)

where I'(-) is the gamma function. Redefining the coefficient

A =cp/I'(1 — P) in eqn (8) yields the following result:

dPe(r)

de(7)
B d "
de’

a(t) = I"(lifiﬁ)Jo(l —-1)" —q; dr=c

which provides a simple constitutive equation for power-law
materials. A more detailed derivation of this relationship is
presented in the next section.

The springpot’s schematic symbol and relationships to the
spring and dashpot elements are shown in Fig. 4. For dimen-
sional consistency, the unit of the constant c; must be Pa s~”.
Due to its unusual physical unit, the parameter c¢; lacks a
tangible physical meaning, but is often interpreted as the
‘firmness’ of a material.’®" It should be noted that in the
limiting cases where ff = 0 or f§ = 1, the springpot reduces to a

(10)

—1

-

= ke(t (t) = cp e o(t) = nat)

Fig. 4 Sketch of the fractional element-springpot. It behaves as a spring
when f# = 0 and as a dashpot when f = 1.
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spring or dashpot respectively, and the constant cs represents
the elastic spring constant, k (Pa), or the dashpot viscosity,
1 (Pa s), respectively.

To overcome the use of a constant ¢z whose physical meaning
may be unclear, the constitutive equation may be written as g(¢) =
/lorgdﬁs(t)/dtﬁ , where 4, has units of Pa and 1, is a characteristic
time that has units of s.'°>'® However, it is not possible to
design experiments to separately measure 4, and 7,. Therefore, in
practical problems, it is more relevant to define the fractional
element with two parameters c; and f,'** and this is what we use
in the current review.

4.1.1 Derivation of the springpot’s governing equation.
Although not essential for springpot practitioners, it is illumi-
nating to derive the springpot’s governing equation. Whilst the
correspondence between power-law viscoelasticity and the frac-
tional derivative has been presented before,'*>'%® here we
attempt to summarize the main steps of the derivation in a
pedagogically accessible way.

Fractional derivatives can be understood as generalised
integrals. Integrating a function (here ¢(¢)) an integer n number
of times, we get:

avmﬁ{1~m1fﬂmmgwjmmw

- =T ! I)J()(z — o (2)d

(11)

where the final simplification on the RHS made use of Cauchy’s
repeated integral formula. Eqn (11) can in fact be generalised
to any positive real number o by recalling the extension
of factorial numbers to non-integer values via the Gamma

function I'(«) = (o — 1)!
(P10 = 5], (= 07 e (12)
If we substitute « =1 — f into eqn (12) and f(¢) = dZ—(TT), we can

then re-write the expression for the total stress reported in
eqn (8) as follows

o(t) = ﬁ‘;(r — r)’ﬂdz(:) dr = ¢ (Ilfﬁ%> (). (13)

Since the fundamental relation (I°°f)(¢) = I°(I°f)(t) holds,'*
eqn (13) can be expressed as

o0 =t (1) (0 = a1 7o)

where (I'” ﬁe)(t) is the definition of fractional derivative (Dﬁs)(t).
Equivalent to the above, we can write

d’e(1)

ART

(14)

a(t) =

(15)

which is the governing equation of the springpot.>?

It should be noted that in the literature, different definitions
of the fractional derivative have been put forward. Here we use
the Caputo derivative definition since it naturally arises from
experimental observations and it has shown to have a better
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applicability to real problems, where initial conditions are
known in terms of derivatives of integer index."®” If we assume
that the system is at rest for time ¢ < 0, the fractional derivative
is given by'%®

QN W (DR Vi
Cpbe(sy — _ -B
Dif(t)=——F—=———| (-1 ——2df
10 = S = g - g

where 0 < f# < 1 and C denotes a Caputo fractional derivative.
So to obtain the value of the Caputo fractional derivative at time
t, we must integrate from the initial time ¢ = 0. In other words
the fractional derivative is a non-local operator. This is in
contrast to integer order derivatives, whose value is determined
by the limiting behaviour of the function at the evaluated point.
Although hysteresis is also present in the generic hereditary
integral shown in eqn (3), it is a fundamental feature of the
fractional derivative and consequently the springpot. Lastly,
it is important to note that the fractional operator is a linear
operator. Therefore, the springpot element lies within the
framework of linear viscoelasticity.

4.1.2 Rheological behaviour of the springpot. Despite
the simple constitutive equation of the fractional springpot
element, it possesses rich behavioural diversity. It is a general-
ization of the classical viscoelastic elements, the spring and the
dashpot, and exhibits a behaviour that is intermediate between
the two (see Fig. 5). By substituting a step of deformation
&(t) = €0O(¢) (Where O(¢) is the Heaviside step function) into
eqn (15) and making use of the definition of the fractional
derivative in eqn (16), we can extract the relaxation modulus
G(¢) of the springpot:'%”

(16)

__Y b
r{-p)
The relaxation modulus is as expected a power-law function of

the time whose exponent matches the order of the fractional
derivative. As a result, the corresponding relaxation spectrum

a(t) = G(t)eg where G(1) = (17)

€0
3_ f
2_
®
2
e
51_ \
O_

T T
0.0 0.2 0.4 0.6 0.8 1:0
Time, t (s)
(a)
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of the springpot is also a simple power-law of exponent —f,
and therefore captures very well, by design, the behaviour of
power-law materials, with only two parameters. The creep
compliance j(¢) can be deduced from the expression of G(t).
Both are related in the Laplace domain by G(s)j(s) = s~>. The
Laplace transform of G(¢) in eqn (17) is given by G(s) = c;s” .
Therefore, J(s) = 1/(cys**"), whose inverse Laplace gives the creep
compliance*?”

1

=raip (18)

(1)

Qualitatively, the linear elastic solid and the Newtonian fluid
behaviours are the two limit behaviours of the springpot for
f =0 and 1 respectively. To understand the interpolation of the
springpot between elastic and viscous behaviour, we plot the
springpot response to a step in strain for different values of f
(Fig. 5(a)). When a dashpot (ff = 1) is subjected to a step in
strain, the stress is initially infinite but immediately dissipated
afterwards (Fig. 5(a), blue curve). By gradually decreasing the
exponent f the time taken by the springpot to dissipate the
stress increases until the limit of the linear elastic solid is
reached. When a spring (f = 0) is subjected to a constant
deformation, the stress reached is proportional to the spring
constant k (Fig. 5(a), red curve).

To illustrate the creep behaviour of the springpot, we con-
sider its response to a step in stress o, imposed for a limited
time ¢* - loading phase - and then returned to 0 - unloading
phase. Fig. 5(b) shows plots of the system’s response for
different values of f during the loading and unloading phases.
A spring generates a strain directly proportional to the stress, as
expected, and it immediately returns to its original length upon
unloading. A dashpot linearly deforms while the stress is
imposed, and does not return to its initial state after unloading.
The response of the springpot is more complex. By applying the

go

=
o
1
-+

i o
o o
1 1

Strain, (t)

[=)
iN
1

0.0

T T
0.0 0.2 0.4 0.6 0.8 1.0
Time, t (s)
(b)

Fig. 5 Responses of a springpot when subjected to (a) constant strain and (b) a step in stress. The red curves are the responses for a spring (f = 0), the
blue curves for a dashpot (f = 1) and the grey curves are for increasing values of  from 0.1 to 0.9 (orange, yellow and green curves are respectively

p=03,05and0.7).
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superposition principle, we can write an expression for the
springpot response (0 < f < 1) after the load is removed at
time ¢ = ¢* that is given by

00 (B
8([) - c,;F(/)’) (Z (l [) >7

noting that when ¢ tends to infinity, the strain tends to zero.
Therefore, when the stress is removed, the strain in a springpot
is always completely recovered; the springpot has shape memory,
although energy would be dissipated during deformation. From
eqn (19) one can notice that the recovery time scale during creep
experiments depends on both the power-law exponent ff and the
time for which the load has been imposed ¢*. The greater the
power-law exponent of the springpot f, the larger the time
required for total strain recovery, as shown in Fig. 5(b). For
example, by looking at the response of a springpot with f = 0.7
(green curve in Fig. 5(b)) over a finite time interval, one might
qualitatively interpret the slow recovery process as evidence for
plastic behaviour - although this is erroneous because strain
eventually converges to zero. This shows that long experiments
are needed to fully capture the rheology of power-law materials.
It might be useful to re-write eqn (19) as a function of the non-
dimensional time t = ¢/t*

(19)

()

&(1) oot («f (20)

—(r=1)F).

It can be observed that the greater the time for which the load is
applied to the material, the longer is the time taken for the
strain to be completely recovered. This dependency should be
taken into account during the design of experiments to fully
capture the rheological response of power-law materials.

It is also illuminating to consider the response of the
springpot in the frequency domain. However, the Caputo
definition for the fractional derivative is not appropriate here
since the assumption that () = 0 for ¢ < 0 does not hold
anymore if we excite the springpot with a periodic deformation.
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g Iy
=] R4
(_') F
& £
o 10 3 //
— ] a?
3 ! ’
<] /
E 10 3 £ 4
PR J
S ] 3
e |
§ 104 /,
& 3 /
Q F
h ’
10 T
10 10 10 10 10

Frequency, w (Hz)
(a)

View Article Online

Soft Matter

To overcome this problem, we use the Generalised Liouville-
Caputo formulation

_ _L_)—ﬂdf(r)

Bris) =
LDf(Z)i df

1 t
M=p 'B)Lm(t dr, (21)
where L denotes the generalised Liouville-Caputo fractional
derivative. Note that this definition is equivalent to the Caputo
fractional derivative for functions fsuch that f(t < 0) = 0.'°° By
now considering the oscillatory load &(t) = €™’ with eqn (21)
(where “DPf(£) = o(¢) and f(¢) = &(t)) the complex modulus of a
springpot can be found

G'(0) = cploi) = cpole, (22)

where o is the frequency. Separating the real and imaginary
parts, we find the storage and loss moduli respectively

G (0) = R(G") = ey cos(gﬁ),
(23)

G () = S(G*) = cpo sin(gﬁ),
They follow a power-law behaviour with the same exponent f.
When f = 0 the loss modulus is zero as in the case of the spring,
whilst when f = 1 the storage modulus is zero as in the case of a
dashpot (Fig. 6(a)). The storage and loss modulus exactly match
when f = 0.5 (Fig. 6(a)). For f < 0.5 the storage modulus is
always greater than the loss modulus, whilst the opposite is true
for f > 0.5 (Fig. 6(b)). The phase angle ¢ between the excitation
and the response is related to the storage and loss moduli by
tan(d) = G"/G’, from which we can derive the retardation phase

. T .
for a springpot as 6 = Eﬂ’ constant for all frequencies.

4.1.3 Examples of the use of the springpot in practical
cases. The first material investigated using fractional calculus
was bitumen in 1944, in a study conducted by Scott-Blair and
Veinoglou.” Since then, use of the springpot has been some-
what erratic, possibly because of its non-trivial mathematical
foundations. However, the springpot has found use in a diverse

=
o
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o
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—
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5

Storage and Loss moduli, G' & G” (Pa)
=
{ o §

10 © “rr——rrrm— Bk PR
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Frequency, w (Hz)
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Fig. 6 Storage (solid line) and loss (dash line) moduli for: (a) spring (red curve), dashpot (blue curve) and the special case of = 0.5 (yellow curves) for
which storage and loss moduli are exactly the same; (b) for # < 0.5 the storage modulus is always greater than the loss modulus ( = 0.3, orange curves),

whilst the opposite is true for f > 0.5 (f = 0.7, green curves).
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array of materials outside of the geological and construction-
materials contexts; for example, in gels. An early example is the
work of Winter and Chambon®' who derived a springpot-like
modulus for crosslinking polymers at their gelation point,
which was used for analysis of polydimethylsiloxane gel data.
More recently, a springpot has been used in modelling asphalt
mixtures*®> and to capture the oscillatory rheological response
of agarose, a polysaccharide extracted from red algae.®*

More examples of springpot usage can be found in the
context of biological materials more generally. One of the first
applications of the springpot in tissue biomechanics was for
the study of the viscoelastic properties of lung.''® More
recently, it has been used to capture the relaxation behaviour
of human arteries'"! and the dynamic (oscillatory) response of
brain tissue for the understanding of neurological disorders."*?
There are also several biomechanical studies which make use of
a power-law empirical function that corresponds to one of the three
springpot moduli discussed above. For example, the empirical
function used to analyze the creep response of single cells can be
easily related to the springpot’s creep compliance.*>"'*'!* Similarly,
an empirical function used to analyze the relaxation response of
smooth muscle cells is equivalent to that of a single springpot.'*®

4.2 Generalised fractional viscoelastic models

Many materials exhibit power-law viscoelastic behaviour. However,
the power-law regime is often limited in time; some materials
show a power-law response at short time-scale that converges to a
well-defined plateau (solid like behaviour),>”> whilst others may
exhibit a power-law response followed by a continuous flow of
the material (fluid like behaviour)."'*'"” In order to capture the
diversity of behaviours, ad hoc empirical moduli and large

Table 1 Examples of practical uses of generalized models
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networks of springs and dashpots (i.e. exponential terms) have
been often used. However, as previously discussed, these
approaches each have disadvantages.

A third useful approach is to combine springpots with
themselves and with traditional spring and dashpot elements.
In this way, the many advantages of the spring-dashpot network
approach can be extended to concisely capture power-law
viscoelastic regimes. Such models are often referred to as
generalised viscoelastic models and they have been mathematically
characterized in the past.'®>'%'812° It is worth highlighting that
the research field of fractional calculus is currently very active,
with recent progress and ongoing work to fully characterise the
viscoelastic response of fractional models in terms of novel
fractional operators.”®*?"'*> The two simplest configurations
are two springpots in series or in parallel, which are the
fractional analogues of the Maxwell and Kelvin-Voigt models
respectively. Examples of the use of the generalized models in
practical cases are reported in Table 1 (see ref. 123 for a further
review of fractional viscoelasticity in geotechnical engineering).
For a comprehensive introduction to fractional calculus and
fractional viscoelastic models refer to ref. 78. In the following
section, we demonstrate the behavioural diversity that these
generalised models are capable of.

4.2.1 The fractional Maxwell and Kelvin-Voigt models:
heuristic overview. The choice of which viscoelastic model to
use is largely informed by the qualitative behaviour of the
experimental data. A key advantage of schematically representing
viscoelastic models as networks of elements is that it facilitates
visual intuition for a model’s behaviour. Despite the mathematical
complexity of the springpot, limit behaviours can be obtained as
commonly done for springs and dashpots models. To address this,

Model Applications

Fractional Kelvin-Voigt

Modelling of human prostate tissue to develop novel criteria for cancer detection.*

Modelling of the oscillatory response of canine liver.'*®

Modelling of the relaxation response of beast cells and tissue samples.*
Modelling of the tissue mimicking materials CF-11 and gelatin.*®
Modelling of the viscoelastic response of potato starch gel.*’

Modelling of a three-dimensional particulate gel.*®

Studying of the applicability of the model to wellbore creep'*®

Fractional Maxwell

Modelling of the creep behaviour of rocks.>

Modelling of the viscoelastic response of tight sandstone.>®

Modelling of both colloidal®* and carbopo

Modelling of arterial tissue."*

Modelling the properties of food gels.'*

Modelling the mechanical properties of collagen ge

Fractional standard linear
solid model

Study of single red blood cells.”

Modelling of breast cancer cells to develop new diagnostic too
Modelling of artery walls for the study of aneurysms.

1129

gel rheology.

1 131

1.68
70,71

Quantification of changes in viscoelastic response of lung parenchyma due to trauma.®
Modelling of the oscillatory response of cancerous cells; the information was then used to selectively attack

malignant cells during treatments."*

Modelling of the viscoelastic response of brain tissue.'*?
Modelling of the viscoelastic properties of the glassy amorphous polymer poly-methyl-methacrylate.**
Modelling of the mechanical properties of polymer networks with addition of fillers."**

135

Fractional burgers
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Modelling of stress relaxation of filled and unfilled polymeric materials.
Viscoelastic analysis of waxy crude o0il.®***
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we provide below insight on the qualitative behaviour of the two
simplest generalised fractional viscoelastic models, which can be
extrapolated to more complex models.

When two springpots of exponents o and f (with & > f) are
placed in series, the element with the lower exponent (more
“springy”’) dominates the short time-scale response, while the
springpot with the higher exponent determines the long time-
scale behaviour (see Fig. 7 first column). This is true for both
the relaxation and creep responses, thus for f < o < 1:

P
G(1) ~ {

™ t— o0

t—0 # =0

(24)

and J(1) ~ {

* t— o

When two springpots are combined in parallel the opposite is
true: both relaxation and creep responses are dominated by the
springpot with higher exponent at short time scale, while the

View Article Online

Soft Matter

springpot with the lower exponent dominates at long time-scale
(see Fig. 7 second column), thus for f < o < 1:

* t—0

and J(1) ~ { (25)

# ot

Indeed, traditional viscoelastic models can be seen as special
cases of the generalised fractional models obtained by specialising
the springpots to either springs or dashpots. The qualitative
behaviours reported above are consistent with those observed in
conventional viscoelastic models, where the Maxwell model
shows a liquid-like behaviour at long time scale (dominated
by the dashpot, o = 1), while the Kelvin—Voigt model shows a
solid-like behaviour at long time-scale (dominated by the

spring, f = 0).
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Fig. 7 Qualitative behaviour of two springpots in series and parallel. When two springpots are placed in series, the short time scale response is
dominated by the springpot with lower exponent, while the long time-scale response is controlled by the springpot with higher exponent (top figures).
The contrary is true for two springpots in parallel (bottom figures). In the graphs at the bottom row, the storage modulus is the solid line, while the loss
modulus is the dashed line. The parameters of the models arec, =1, =08, ¢cs=1 = 0.2.

This journal is © The Royal Society of Chemistry 2020

Soft Matter, 2020, 16, 6002-6020 | 6011


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sm00354a

Open Access Article. Published on 08 June 2020. Downloaded on 1/20/2026 6:24:48 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

Although the above heuristics directly apply to the two-springpot
models, the insights can be extrapolated to more complex models in
a straightforward manner. For example, consider the standard
linear solid model (Fig. 2) but with the spring k; replaced by a
springpot. If we look at the global network, the &, spring in parallel
dominates the long-time scale response given its lower power.
However, if we focus only on the upper arm, the model will
follow the series configuration behaviour. Thus, the short time-
scale response is dominated by the springpot and the inter-
mediate response by the dashpot. A more graphical description
of this heuristic process has been recently presented by Bonfanti
et al.®® To build further intuition, readers may also refer to the
Annex (ESIt attached to this document), where the relaxation
and creep behaviours of more complicated models are briefly
reported.

In the following sections we demonstrate the benefits of
using fractional models in a wide range of practical applications. We
first show that a number of empirical functions previously intro-
duced in the literature actually possess an equivalent fractional
model. We then demonstrate that fractional models often
capture the rich mechanical behaviour of power-law materials
more accurately than spring-dashpot viscoelastic models while
using less parameters.

4.2.2 Examples of empirical functions equivalent to fractional
viscoelastic models. In this section we show how fractional
viscoelastic models can be related to a selection of widely used
empirical functions. We limit the study below to functions
involving time-invariant parameters. Fractional calculus also
provides a solid alternative to a number of empirical models
based on non-constant parameters, such as time-dependent
viscosity, to account for the complex behaviour of power-law
materials.'?®

4.2.2.1 Structural damping model. A number of dynamic
(oscillatory) viscoelastic tests on biological tissue were fitted
with an empirically derived model known as the structural
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damping (or hysteretic damping) model**'*7~'*>

modulus is given by:

whose complex

I

G*(w) = u(io) + Gy ( w) (1 +7i) cos(ﬁg), (26)

(@]

where 7] :tan<[)’g> is commonly called the hysteresivity or

structural damping coefficient, f is the power-law exponent,
Go and o, are two scaling factors for stiffness and frequency
respectively, and p the Newtonian viscosity. This modulus can
be shown to be exactly equivalent to that of a semi-fractional
Kelvin-Voigt model consisting of a springpot in parallel with a
dashpot. In fact, eqn (26) can be re-written as:

G (@) = u(io) + 2 (o), (27)

)
which is equivalent to the complex modulus of a dashpot in
parallel to a springpot G*(w) = ¢,(iw)* + c5(iw)’, when 2 =1, ¢, = u
and ¢g = Goloh.

4.2.2.2 Two power-law regime. The frequency response of
single cells often exhibits two power-law regimes.*®*'>* A lower-
power exponent at low frequencies, followed by a higher power-law
exponent at high frequencies. Such behaviour has been frequently
been analyzed by the empirically derived superposition of two
power-laws

G*(w) = A(iw)* + B(in)”, (28)

where one exponent is often fixed to f = 3/4. The expression
above is exactly equivalent to the complex modulus of the
fractional Kelvin-Voigt model shown in the inset of Fig. 8
and consisting of two springpots in parallel. Examples of fitting
the storage and loss moduli of single cells to the fractional
Kelvin-Voigt model are shown in Fig. 8.

4.2.2.3 Power-law cut-off Recently, Khalilgharibi et al>®
studied the relaxation response of epithelial monolayers, a
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Fig. 8 Fitting of storage modulus and loss modulus showing two power-law regimes using fractional Kelvin—Voigt model. Dynamic response of (a)
smooth muscle cells cytoskeleton®® and (b) kidney epithelial cells ATP-depleted.'?* Fitted model parameter values in Table 3.
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sheet of cells devoid of substrate, to uncover the subcellular
components responsible for stress dissipation. The relaxation
response consists of an initial power-law phase in the first 5 s,
followed by an exponential phase that reaches a plateau
at ~60 s. This biphasic relaxation response was captured by
extending the power-law empirical function to include an
exponential regime

G(t) = At " + B. (29)

More recently however, traditional viscoelastic elements have
been combined with a springpot to characterize the viscoelastic
response of epithelial monolayers at both short and long time-
scale.®® The novel configuration features a springpot that sustains
all the load at short time-scale, after which the load is then slowly
transferred to a dashpot placed in series which gives rise to the
exponential behaviour. This dissipative branch is placed in parallel
with a spring to obtain the final plateau (inset in Fig. 9(a)). The
mathematical expression for the relaxation modulus of the frac-
tional model introduced by Bonfanti et al.® is
G(t) = CﬁliﬂEl,/;‘l,ﬁ (—i]—ﬁlliﬁ) + k, [30)

where ¢; and f are the springpot parameters, 5 the dashpot
viscosity, k the spring stiffness, and E,(z) is the Mittag-Leffler
function, a special function that often arises from the solution of
fractional differential equations***'** (see Appendix B). By fitting
the fractional model to the empirical functions we can demon-
strate that they are approximately equivalent (Fig. 9(a)) and there-
fore the empirical function can be mapped into the fractional
viscoelastic framework.

Interestingly, the same empirical model was independently
developed to capture the relaxation response of one of the
most widely used elastomers, polydimethylsiloxane (PDMS),"**
and the rheological behaviour of alginate-based gels.'*®'"
The study of the liquid-solid transition during gelation has
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attracted significant attention in the past.”® Friedrich et a
reported the rheological response of stoichiometrically balanced
polydimethylsiloxane (PDMS) in which the cross-linking reaction
was interrupted at different times, before and after the critical
point (referred to as the gel point). As shown in Fig. 10, the four-
parameter fractional solid model can also be applied here to
accurately captures the behaviour of the time-evolving cross-
linking reaction pre- and post-gelation.

Physically, during gelation a polymer network forms. The
critical gel point is associated with an abrupt change in viscosity,"*
which is defined as the creation of the first percolation cluster that
spans the sample. By observing the values of the fitted parameters
reported in Table 7 in Appendix A, the fluid-like behaviour of the
PDMS pre-gel is confirmed by the zero value of the stiffness of
the spring in parallel. As expected from physical considerations, at
the gel point we observe a rapid increase of the viscosity (Fig. 12 in
Appendix A). Post-gel the PDMS behaves as a solid, which is
confirmed by the rapid increase of the stiffness k. As discussed
above, the storage and loss moduli of the springpot are exactly equal
when f = 0.5, or physically, when the springpot is exactly inter-
mediate between a liquid and a solid. The physical relevance of this
parameter is confirmed from the fitted springpot coefficient shown
in Table 7, where f at time ¢ — ¢. = 0 (gel point) is ~0.5.

4.2.2.4 Modified power-law models. Another empirical
model, recently used for the analysis of the relaxation response
of various benign and malignant cell lines, is the modified
power-law (MPL) model®® which can be written as

Ey— Ey
NG
(1)
T
where E, is the instantaneous or ‘glassy’ modulus, E., is the
plateau or ‘rubbery’ modulus, 7 is a time scaling, and o determines

the power-law gradient of relaxation. In contrast to a regular
power-law model, the MPL model has the convenient property of

E(t) = En + (31)

Modified power-law
G(t) = B + Bo=Ex

(+h)
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Fig. 9 Fitting of empirical functions with fractional models. (a) Biphasic empirical function describing the relaxation response of epithelial monolayers
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time of gelation). The x-axis is shifted by A decades to facilitate reading. The dots are the experimental data (from ref. 143), while the dashed lines
represent the fitted fractional viscoelastic model shown in the inset. Fitted parameters reported in Table 7 in Appendix A.

being well defined at short time scales. Its behaviour is notably
similar to a fractional standard linear solid model (a springpot in
series with a spring, all in parallel to a spring), as shown in
Fig. 9(b). The relaxation modulus of the fractional standard linear
solid model is defined as
ki
G(l) =k Ey; (—c—m/lm ) + ko (32)

where kg and k, are the two spring constants, ¢, and o' are the
springpot parameters (with a prime added to o to avoid confusion
with the MPL o parameter), and E is the Mittag-Leffler
function.'**'*> The similarity between the two models was also
discussed by Bagley,'>® who made comparisons between their
relaxation spectra. Here we show their similarity by directly
matching their boundary condition parameters at ¢ = 0 and
t - oo and fitting the fractional standard linear solid para-
meters ¢,y and o’ to the MPL (Fig. 9(b)). The fractional model fits
the MPL well, especially at longer time scales where both the
Mittag-Leffler function and the MPL asymptotically approach a
simple power-law.”* Interestingly, the MPL model has also been
used in several asphalt and asphalt-concrete studies®®'>*'%3
indicating that the fractional standard linear solid may have
utility in this field.

4.2.3 Fractional models capture complex power-law behaviours
with less parameters. As discussed, spring-dashpot viscoelastic
models can be used to capture power-law viscoelasticity but this
results in an abundance of model parameters. We have shown
that the springpot provides an efficient way to describe the
rheology of power-law materials with only two parameters. This
ability relies on the fact that while spring-dashpot models define
specific time scales, the fractional viscoelastic element directly
parameterises the relaxation spectrum, and thus the distribution
of characteristic time scales. To further illustrate the ability of
fractional models to accurately capture complex power-law
responses with a minimum number of model parameters,
we now re-analyse the time-response of different power-law

6014 | Soft Matter, 2020, 16, 6002-6020

materials, originally modelled using spring-dashpot networks,
by using fractional viscoelastic models.

We first analyse the rheological behaviour of single cells
presented by Darling et al.** They investigated the relaxation
response of zonal articular chondrocytes by the use of AFM
(Atomic Force Microscopy). The standard linear solid model
originally used in the paper struggles to capture the short-time
scale response (see Fig. 11(a)). We propose the use of the
fractional Kelvin-Voigt model (springpot in parallel to a spring)
that involves the same number of parameters (see inset in
Fig. 11(a)). A cursory look at the comparison between the fits of
traditional and fractional viscoelastic models to the relaxation
response of zonal articular chondrocytes shown in Fig. 11(a)
reveals the ability of the fractional model to significantly improve
the quality of the fitting by accurately capturing the fast relaxation
response while using the same number of parameters as the
spring-dashpot model used in the original paper.

Recently, Zhang et al.®® tested tomato mesocarp cells under
high speed microcompression to understand how industrial
handling may affect the integrity of fresh fruits. To successfully
capture the distribution of time-scales that gives rise to the
power-law regime at short time-scale, a 2 time-scale standard
linear solid that requires five parameters was originally used.
By using a fractional Maxwell model (springpot in series to a
dashpot) we achieve the same excellent fit to the data whilst
reducing the number of parameters to three (Fig. 11(b)).

The 2 time-scale standard linear solid model has recently
been applied to the analysis of the rheological behaviour of
other materials, such as polycaprolactone bioactive glass tested
under compression'> and single collagen fibrils from the extra-
cellular matrix under tensile testing.’® Given that they present
the same qualitative behaviour as the epithelial monolayers
(power-law followed by exponential behaviour until a final
steady-state value is reached), we have successfully applied the
fractional model recently developed by Bonfanti et al.°® to data
from these other materials. The model accurately fits both short

This journal is © The Royal Society of Chemistry 2020
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Fig. 11 (a) Relaxation data from zonal articular chondrocytes® fitted with a standard linear solid and fractional Kelvin—Voigt specialized by one spring. (b) Relaxation
data from tomato mesocarp cells™* fitted with a 2 time-scale generalised Maxwell model and a fractional Maxwell model specialized by one dash-pot. (c) Relaxation
data from PCL/bio-active glass™ fitted with a 2 time-scale generalised Maxwell model and a fractional special model. (d) Relaxation data from collagen fibrils® fitted
with a 2 time-scale generalised Maxwell model and a fractional special model. All fitted parameters are reported in Table 6.

and long time-scale responses while using one less parameter
(Fig. 11(c and d)).

5 Conclusions

This review has demonstrated the ability of fractional visco-
elastic models to accurately capture the rheological responses
of a broad range of materials while using less parameters than
traditional viscoelastic models, identifying material parameters
that account for the wide distribution of time-scales involved
in power-law behaviour. Despite the limitation to the linear
response, fractional models exhibit rich behaviours consistent
with empirical data in both relaxation and creep experiments.
Looking at large deformations and failure of complex materials
remains however a challenge that cannot be tackled by linear
rheological models and we anticipate significant efforts to
tackle these questions in future.

The main impediments to the use and dissemination of
fractional viscoelastic models appears to be their relatively

This journal is © The Royal Society of Chemistry 2020

intricate mathematical formalism and the difficulty of their
numerical implementation. This document illustrated the
qualitative response of the springpot element and its composition
into simple networks in series and in parallel configurations,
helping the reader to build intuition. An Annex to the review
(ESIT) provides an exhaustive list of rheological models including
up to three elements, alongside the analytical expression of their
moduli and graphs illustrating their behaviour. We also developed
a software library, RHEOS, to facilitate the fitting of experimental
data and prediction of power-law behaviours.’>® The software
package allows non-experts to fit their own data using a wide
selection of viscoelastic models, accounting for complex loading
patterns (all figures of this work have been created using
RHEOS). Altogether, these elements significantly lower the
barriers to using fractional models to analyse the rheology of
power-law materials.

Although fractional models extend the range of behaviours
that can be modelled with rheological elements, they do not
provide on their own explanations for the underlying mechanisms

Soft Matter, 2020, 16, 6002-6020 | 6015
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giving rise to the observed macroscopic power-law behaviour.
A deeper understanding of soft material mechanics would require
a more systematic theoretical analysis of experimental data
that would provide a physical underpinning for the emergence
of power-law behaviours. However, fractional models provide
systematic approaches to capture material parameters that can
be compared across studies, and such comparison is likely to
provide a better handle on the underlying physical significance of
power-law behaviours.

Conflicts of interest
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Appendix A: fitted parameters

Table 2 Fitted parameters generalised Maxwell models from Fig. 3(b)

Parameters 1 time-scales 2 time-scales 4 time-scales
k; (Pa) 3.25 11.50 7.50
i (Pas) 86.57 10.12 1.23
k, (Pa) — 1.88 4.71
12 (Pas) — 103.64 5.55
k; (Pa) — — 1.96
ns (Pas) — — 17.14
ky (Pa) — _— 1.06
4 (Pas) — — 132.97

Table 3 Fitted parameters fractional Kelvin-Voigt model from Fig. 8.
Note that the fitted storage and loss moduli of TC7 kidney epithelial cells
are normalized with respect to their values at = 10 Hz

Data Cy o cp p
Bovine trachea smooth  0.01 0.78 0.9

muscle cells®® (Panm™'s7% (Panm~' s7#)

TC7 kidney epithelial ~ 0.02 (s%) 0.6 0.7 (s") 0.07

cells ATP-depleted***

Table 4 Parameters of empirical function and three-element fractional
model from Fig. 9(a)

Empirical model Fractional model

Curve 1 (bottom) A (Pa s”) 960 ¢ (Pa s 1125
o 0.15 B 0.1
7 (s) 8.0 n (Pas) 6650
B (Pa) 800 k (Pas) 800
Curve 2 A (Pa s¥) 960 ¢ (Pa sP) 1400
o 0.3 0.21
7 (s) 8.0 n (Pas) 6100
B (Pa) 1300 k (Pa) 1300
Curve 3 A (Pa s”) 960 ¢ (Pa sP) 6000
o 0.5 B 0.4
7 (s) 8.0 n (Pas) 2080
B (Pa) 1800 k (Pa) 1800
Curve 4 (top) A (Pa s¥) 960 ¢ (Pa s”) 6700
o 0.7 0.54
7 (s) 8.0 1 (Pas) 3040
B (Pa) 2300 k (Pa) 2300
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Table 5 Parameters of empirical function and three-element fractional
model from Fig. 9(b)

Empirical model Fractional model

Curve 1 (bottom) E, (Pa) 0.5 ¢, (Pas%) 0.007
E, (Pa) 1.0 o 0.72
7 (s) 1x107° k, (Pa) 0.5
o 0.8 k, (Pa) 0.5
Curve 2 E (Pa) 0.5 ¢, (Pas%) 0.017
E, (Pa) 1.0 o 0.59
7 (s) 1x107° k, (Pa) 0.5
o 0.6 ko (Pa) 0.5
Curve 3 E, (Pa) 0.5 ¢ (Pas%) 0.051
E, (Pa) 1.0 o 0.42
7 (s) 1x10°° ki (Pa) 0.5
« 0.4 ko (Pa) 0.5
Curve 4 (top) E., (Pa) 0.5 ¢, (Pas”) 0.096
E, (Pa) 1.0 o 0.33
7 (s) 1x10°° ky (Pa) 0.5
o 0.3 ko (Pa) 0.5

Table 6 Fitted parameters of the traditional viscoelastic models and the
fractional model from Fig. 11. Note that the fitted stress relaxation
responses of PCL/bio-active glass are normalised with respect to the
maximum stress

Material Traditional model  Fractional model

Zonal articular ko (nN) 260 cp (N s%) 420

chondrocytes®* n (nN's) 172 B 0.82
ki (nN) 260 k (nN) 253

Tomato mesocarp cells'** &, (Pa) 8 x 10° 7 (Pas) 6 x 10°
n(Pas) 1x10° ¢g(Pasf) 1.5 x10°
k, (Pa) 6 x 10° B 0.16
n (Pas) 1 x 10°
k, (Pa) 4 x 10*

PCL/bio-active ko 0.8 1 (s) 1.6

glass'®® bottom sample &, 0.1 cp (sP) 0.15
1 () 0.01 0.02
k, 0.15 k 0.76
12 (8) 1.46

PCL/bio-active ko 0.8 1 (s) 1.5

glass'®® top sample k 0.1 cp (sP) 0.13
i (s) 004 B 0.13
, 0.1 k 0.8
12 (8) 1.02

Collagen fibrils"’ ko (MPa) 473 n (MPas) 4700

top sample k, (MPa) 93 cs (MPa s”) 165
n; (MPa s) 3800 0.12
k, (MPa) 80 k(MPa) 470
1, (MPa s) 300

Collagen fibrils"’ ko (MPa) 414 n (MPas) 5100

middle sample k; (MPa) 78 cp (MPa sP) 162
ni (MPa's) 331 i 0.21
k, (MPa) 62 k(MPa) 408
1, (MPa s) 2700

Collagen fibrils’ ko (MPa) 395 n (MPas) 4400

bottom sample k; (MPa) 75 cp (MPa sP) 120
. (MPa's) 3080 0.12
k, (MPa) 41 k(MPa) 390
7, (MPa s) 163

This journal is © The Royal Society of Chemistry 2020


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sm00354a

Open Access Article. Published on 08 June 2020. Downloaded on 1/20/2026 6:24:48 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

Table 7 Fitted parameters of the fractional model from Fig. 10

t—te 1 (Pa) ¢ (Pa s”) p k (Pa)
—6 3.9 9.4 0.71 0.0
—2 52.3 50.5 0.61 0.0
0 336.3 121.0 0.54 20.2
2 1122.7 225.2 0.46 101.3
6 2963.5 920.6 0.36 1923.0

= 0.9

& 30001 - 7 »

il -~ C3 /

., 2500 1 =@~ /

£ /!

& ° L

= 20001 Y AR 0.7

- ~ / /

s S / /

& 15001 A r ) (06

< » // II

4 1000 - \y / L 0.5

2 / ¥ 4

g // .'31 -~

7/

< i N

5 500 " SN0

.-qg) 0- ...--.-u-_—_f— - 0.3

= -50 -25 0.0 25 5.0

t_tc

Fig. 12 Fitted parameters of the fractional model from Fig. 10.

Appendix B: Mittag—Leffler function

The Mittag-Leffler function arises frequently in the study of frac-
tional viscoelasticity (and fractional calculus more generally). This
appendix aims to provide an overview of the function’s behavior.
There are one, two and three parameter versions of the Mittag-
Leffler function;"*” only the first two are introduced here as they are
most relevant. The function has a series definition and an integral
definition.”® The series definition is more amenable to intuition
and will be used here. The one parameter series representation is:

k
E,(z) = ;m,

0>0,zeC. (33)
The first special case of note is Eyz) = 1/(1 — z), which can be
confirmed by Taylor expanding the fraction about z = 0 and
comparing with the series definition in eqn (33), noting that I'(1) =
1. The second special case of note is Ey(z) = €°, which can be seen by
comparing eqn (33) to the series definition of the exponential
function and noting that I'(k + 1) = k! for k € N°. These two special
cases illuminate the fact that the Mittag-Leffler function is capable
of interpolating between power law and exponential behaviour. The
two asymptotic representations are’>"

EX(2) ~ exp _FL , t—0
(1+a)
Ea(z) = Eot(_la) = |t:“ ]
ExX(z) ~ i —a) !t — 00
(34)
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Fig. 13 Qualitative behaviour of the Mittag—Leffler function for different
values of « = 0.25, 0.50, 0.75.

For values of 0 < « < 1 the behaviour as ¢ — 0 approaches a
stretched exponential, while for ¢t — co the Mittag-Leffler function is
asymptotically equivalent to a power-law (Fig. 13).

The one parameter Mittag-Leffler function is in fact a
special case of the two parameter function, E, ; = E,. The series
representation of the two parameter Mittag-Leffler function is

K

S
Evp(z) = Zm7

k=0

a>0,peR,zeC. (35)

As might be expected, the two parameter Mittag-Leffler
function is capable of even greater behavioural diversity than
the one parameter version. Although the manifold behaviours
are not summarised here as they lie beyond the scope of this
review, the asymptotic behaviour of the two parameter Mittag—
Leffler function can be found in a recent paper.'*®
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