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High antisite defect concentrations in hard-sphere
colloidal Laves phasesf
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Binary mixtures of hard spheres can spontaneously self-assemble into binary crystals. Computer
simulations have been especially useful in mapping out the phase behaviour of these mixtures, under
the assumption that the stoichiometry of the binary crystal is ideal. Here we show that for a size ratio of
g = 0.82 this assumption is not valid near the coexistence region between the fluid and the stable binary
crystal, the MgZn, Laves phase. Instead we find a surprisingly high number of antisite defects: up to 2%
of the large spheres are replaced by small spheres in equilibrium. We demonstrate that the defect
concentration can be estimated using simple approximations, providing an easy way to identify systems
where antisite defects play an important role. Our results shed new light on the self-assembly of
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1 Introduction

In equilibrium, all crystals are marred by a small concentration
of point defects, such as vacancies and interstitials. These
defects strongly affect the optical and mechanical properties
of crystalline materials, and are the main agents for transport
in crystals. In systems of more than one component, in addition
to vacancies and interstitials, new forms of point defects arise: a
lattice site of one species can be filled by a particle of another
species, creating a so-called “antisite” defect.! Such defects are
most likely to occur when two species of particle in the crystal
have very similar interactions, such that one easily “fits” on a
mismatched lattice site. On the atomic scale, antisite defects
often occur in alloys, and play an important role in e.g. the
electronic properties of semiconductors such as GaAs.”> How-
ever, when predicting colloidal phase behavior, antisite defects
have, until now, been ignored.> ® This is particularly surprising
since colloidal interactions, which are typically short-ranged
and weak in comparison to the thermal energy scale, are ideal
for the formation of antisite defects.

Here, we explore the effect of antisite defects on the phase
diagram of a binary hard-sphere mixture. Binary hard-sphere
mixtures are perhaps the simplest possible model for studying
binary crystal structures, and have been instrumental in
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colloidal Laves phases, and demonstrate the importance of antisite defects in binary crystals.

understanding the phase behavior of colloidal systems.*
The equilibrium phase diagrams of binary hard-sphere mixtures
for various size ratios have been extensively explored using
simulations,® ®'1???1 revealing a number of stable binary crystal
structures. However, even for this classical colloidal system,
antisite defects have not been considered. Here, we focus

our attention on binary hard spheres with a size ratio of
q= Z—i = 0.82, where g is the diameter of the small (large)
particles. For this size ratio, previous studies have concluded
that the phase diagram contains a binary fluid phase, single-
component face-centered-cubic (FCC) crystals of both the large
and small particles, and a binary crystal phase. The stable
binary crystal is the MgZn, Laves phase, with two other Laves
phases, MgCu, and MgNi, closely competing.® Note that these
phases are very similar and differ by the stacking of the large
particles. As the MgZn, phase has been shown to be the most stable
one, we will focus on it in this paper, and in the following use the
terms MgZn, Laves phase and Laves phase interchangeably.

Of all stable binary hard-sphere crystal structures, MgZn,
occurs for size ratios closest to 1, suggesting that switching out
a particle in the crystal with one of the opposite species carries
a relatively low free-energy cost. Hence, this structure is a prime
candidate for exploring the effect of antisite defects on equilibrium
phase behavior. Moreover, colloidal Laves phases have drawn
considerable attention, due to the interesting photonic properties
of the sublattices of the MgCu, phase.””* Such properties could be
affected by the presence of defects.

In this study, we use Monte Carlo simulations and thermo-
dynamic integration to calculate the free energy of FCC and
MgZn, hard-sphere crystals as a function of the antisite defect
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concentration. Combining this free energy with that of the fluid, we
predict the equilibrium phase behavior. The new phase diagram
differs significantly from the phase diagram calculated without
taking defects into account:® while in the defect-free phase diagram,
the Laves phase was only stable at the ideal composition, in the new
phase diagram, the Laves phase covers a range of compositions, all
of which correspond to a higher fraction of small particles than in
the perfect crystal. This correction arises from a significant concen-
tration of antisite defects, with up to 2% of the large-particle lattice
sites occupied by a small particle. This defect concentration is
orders of magnitude higher than the vacancy and interstitial defect
concentrations found in monodisperse hard-sphere crystals.***
Finally, we demonstrate that the defect concentration can be
estimated using simple approximations, providing a fast and
easy way to identify systems where antisite defects play an
important role.

2 Free energy of antisite defects

We begin by considering the impact of antisite defects on the free
energy of the MgZn, hard-sphere crystal. In the ideal MgZn, crystal
(see Fig. 1(a)), there is one large particle (denoted L) for every two
small particles (S), and each particle is on a lattice site corres-
ponding to its own species. In principle, however, the free energy of
the crystal will be minimized when there are a finite number of local
mistakes, including vacancies, interstitials and antisite defects.
Previous studies of hard-sphere systems have found (at least in
the case of single-component crystals), that the equilibrium concen-
tration of vacancies and interstitials is very small. Specifically, for
hard spheres near melting, the concentration of vacancies and
interstitials is predicted to be 10~* and 10~ %, respectively.** > Here,
we focus on the possibility of antisite defects. Using Kroger-Vink
notation, we denote a small particle occupying a large-particle lattice
site as Sy, and a large particle occupying a small-particle lattice site as
Ls. Fig. 1(b) and (c) shows illustrations of both types of defects.

We now consider the Helmholtz free energy of a binary crystal
with M lattice sites, N particles, volume V, and temperature 7.
Assuming the defects do not interact, the total free energy Fi, of a
crystal containing Ns and Ny antisite defects of type Sy, and Lg,
respectively, can be written as

FtOI(M7 V7 NSL7 NLs) = MfO(pM) + NS]_.fSL (pM) + NLs.fLs(pM)

+FC(M7NSL7NLS)7 [1)

Fig.1 (a) Ideal MgZn, structure. (b) S_ antisite defect where a small
particle occupies a large-particle lattice site. (c) Ls antisite defect where
a large particle occupies a small-particle lattice site.
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with py = MJV, fo(pm) the free energy per particle of the defect-free
crystal, and fs (/i) the change in free energy upon creating a single
Sy (Ls) defect at a specific lattice site. Additionally, F. is the
combinatorial free energy resulting from the entropy of distributing
the defects over all possible locations in the lattice, and is given by

My! M) >
(My — Ns, )!Ns, | (Ms — Nig)!Ni!
(2)

BF.(M,Ns, ,Ni,) = fln(

1 2
with M| = §M and Mg = §M the number of large-particle and

small-particle lattice sites, respectively, and f = 1/kgT with kg
Boltzmann’s constant. Note that we ignore the possibility of
defects other than antisite defects (such as vacancies or inter-
stitials), as these are known to be extremely rare in hard-sphere
crystals.?*?*

The free energy per particle of the defect-free crystal can be
obtained for any given density py; using
oM !

—Po(p/M z)dpM/a (3)
M (pM )
where Py(py) is the pressure, which we measure in standard
event-driven molecular dynamics (EDMD) simulations.*®?’
Additionally, fy(py) is the Helmholtz free energy per particle
at a given reference density of lattice sites py,. For the Laves and
FCC phases, reference free energies can be found in ref. 8 and
38 respectively.

We calculate fs and fi using Monte Carlo simulations in the
canonical ensemble. In addition to standard Monte Carlo
moves, we allow a single particle to fluctuate in size. We start
off by initializing an ideal MgZn, crystal, and assign all particles
to their corresponding lattice site. In order to prevent the
spontaneous creation of additional defects, we confine the
particles to their Wigner-Seitz cell by rejecting any particle move
that will cause the center-of-mass of the particle to be closer to
any other lattice point than its own.*>*° This allows us to
measure the free energy of a single antisite defect at a specific
lattice site in a defect-free environment. Importantly, restricting
the particles to their Wigner-Seitz cells has a minimal effect on
the accessible phase space, mainly preventing the formation of
additional interstitial-vacancy pairs. As shown in the ESL this
has no measurable effect on the equation of state, and hence
negligible effect on the free energy.

Focusing first on the S;-defect, we allow a single large
particle in the crystal to fluctuate in size during the simulation.
This allows us to measure the change in free energy associated
with changing the size of this specific particle. The free-energy
difference AF(0,,01) between a crystal with a particle of actual
size o, and its nominal size gy, at a specific lattice site is directly
related to the probability P(c,) of observing that size in the
simulation:*?

Jolow) = fo (o) +j

AF(,,01) = F(0,) — Flor) = kpT'n [”"L)] )

P(0,)

as plotted in Fig. 2(a). The free-energy cost of creating a single
Si-defect is then fs = AF(gs,01). Note that in order to ensure

This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Defect free energies associated with creating an antisite defect at
(@ and b) a large-particle lattice site and (c and d) a small-particle lattice
site. (a) The free-energy difference associated with shrinking a single large
particle to a size a,, at a density of pma® = 1.62. (b) The defect free energy
fsL as a function of the density pm. (c) The free-energy difference asso-
ciated with growing a single small particle to a size o, at a density of
pmo° = 1.62. (d) The defect free energy fi, as a function of the density pw.

proper sampling of all possible sizes of the particle we make
use of the Wang-Landau biasing method.*"

We can extract fs_for a range of densities, as summarized in
Fig. 2(b). For the Ls-defect, we repeat the same process but
allow a small particle to fluctuate in size, with the results plotted
in Fig. 2(c) and (d). It should be noted that the small particles in
the MgZn, lattice appear in two different local environments,
which in principle correspond to different free-energy costs fi, .
However, since our calculations show that f;,_ is nearly identical
for the two local environments, we ignore this distinction here.

As one might expect, the free-energy cost of shrinking a large
particle is negative, while the cost of growing a small particle is
positive: the pressure of the surrounding particles favors the
shrinking of any particle in the crystal. Moreover, the cost of
creating an Lg-defect is much higher than the gain of creating
an S;-defect, suggesting that simply swapping two particles in
the crystal is not a favorable way to create defects. However,
introducing excess S;-defects has the potential to significantly
lower the crystal free energy.

This journal is © The Royal Society of Chemistry 2020
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Fig. 3 Comparison of the pressure P as measured in EDMD simulations
(markers) and as obtained from the free energy (lines). Different colors
correspond to different concentrations of S -defects, which change
the composition of the Laves phase x. Note that the volume fraction on the

N
x-axis is given by ¢ = ﬁaﬁ[(l — X) + x¢’], with g = 0.82 the size ratio, N the

number of particles, V the volume, and o, the diameter of the large spheres.

Using eqn (1), we can now calculate the full free energy of a
crystal at a given density and composition, containing an
arbitrary number of S;- and Lg-defects. Moreover, we can
calculate the pressure P = —(0F;,/OV)n,r (at constant defect
concentration) at each state point, giving us access to the Gibbs
free energy G = F + PV as well. In Fig. 3, we compare the pressure
of defected MgZn, crystals, as derived from our expression for
the free energy of the binary crystal phase, to the pressure as
measured directly using event-driven molecular dynamics
(EDMD) simulations,*” for different concentrations of S anti-
site defects. Recall that in the expression for the free energy, we
made the assumption that the defects do not interact. Clearly,
we observe excellent agreement between the two approaches,
justifying our assumption of non-interacting defects.

In addition to the antisite defects in the MgZn, crystal, it is
also possible that “substitutional” defects are present in the FCC
crystals. Specifically, as the system is by definition a mixture of
large and small particles, it is possible for the FCC crystal of the
large particles to include substitutional defects where a small
particle replaces a large particle. Similar defects occur in the FCC
crystal of small particles. The method we use to determine the
free energy of the FCC crystals with these substitutional defects is
analogous to the method used for MgZn, Laves phase (see the
ESIt for more details).

3 Phase behavior with antisite defects

We now turn our attention to the effects of antisite defects on
the phase diagram of hard-sphere mixtures. To predict the
phase transitions in the system, we combine the free energies
calculated for the defected crystals with the free energy of the
fluid (taken from ref. 43). Phase coexistences are determined

Soft Matter, 2020, 16, 4155-4161 | 4157
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using common-tangent constructions in the (x, g) plane, where
X = Ng/N is the composition and g = SG/N is the Gibbs free
energy per particle. Interestingly, we find that including antisite
defects in our calculations significantly shifts the composition
of the Laves phase coexisting with the fluid. As an example, we
plot in Fig. 4 the common-tangent construction with and
without defects for a fixed pressure fPs.* = 23.3. In the absence
of defects, we find (black dotted line) a coexistence between a
perfect crystal x = 2/3 and a binary fluid. However, taking into
account the antisite defects (green dashed line), the fluid
coexists with a strongly defected Laves phase, at composition
x = 0.672. This shift in composition corresponds to a substantial
net concentration of S;-defects: around 1.6% of the large-particle
lattice sites are taken up by small particles. Note that our
calculations show that in all cases, the concentration of
Ls-defects is negligible (see ESIt), and hence we ignore these
defects when calculating the phase diagram.

Extending this approach to different pressures, and also
considering substitutional defects in the FCC phases, we map
out the revised phase diagram shown in Fig. 5(a), and provide a
zoom-in of the Laves phase region in Fig. 5(b). As expected,
allowing for defects expands the region of stability for the Laves
phase from a single line at composition x = 2/3”° to a narrow but
finite region. What was not expected, however, is that at all
pressures investigated this full region lies at composition greater
than x = 2/3. In other words, the pure Laves phase is not stable at
its “ideal” composition. While the shift in composition shown in
Fig. 5(b) may appear to be small, it should be noted that the
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Fig. 4 Effect of taking antisite defects into account on the common-
tangent construction between the fluid and Laves phase. Specifically, we
plot the Gibbs free energy per particle g = G/N as a function of the
composition x at fPa,® = 23.3. A linear shift has been subtracted here to aid
the visualization of the common-tangent construction. When only the
ideal Laves composition (x = 2/3) is taken into consideration the common
tangent between the fluid and Laves phase manifests itself as the hor-
izontal line, as was used in previous work.”® However, upon taking into
consideration the Laves phase for a range of compositions it becomes
clear that the common tangent is changed significantly. Note that in this
plot the free-energy differences between different compositions appear a
lot smaller than they are in reality due to the subtraction of a linear shift ax.
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maximum shift (to x & 0.6733) corresponds to a full 2.0% of the
large particles being substituted by small particles. This defect
concentration is orders of magnitude higher than typical vacancy
and interstitial concentrations in single-component hard-sphere
crystals.**** Aside from high S;-defect concentrations, our phase
diagram exhibits another interesting feature. For the fluid-Laves
region our updated phase diagram reveals that at low pressures
the S;-defect concentration increases with pressure (as indicated
by the increasing composition x). This is uncommon as usually the
free-energy cost associated with the formation of defects increases
strongly with pressure, resulting in lower defect concentrations.>*

4 Estimating the impact of antisite
defects

Lastly, we present a simple, approximate way to estimate the
importance of these defects on a system where the defect-free
phase diagram is known. In the following, we make the
approximation that introducing antisite defects has no effect
on the equation of state, and again assume that the defects do
not interact. Under these assumptions, it can be shown (see ESIt
for a full derivation) that the S;-defect concentration is given by

]]\\ilsi ~ exp(—fgs, ); (5)
where gs = fs, + Au is the Gibbs free-energy cost of creating a
defect at a specific lattice site, with Ap = p;, — us the chemical
potential difference between the two species. Applying this
expression to defect-free phase coexistences, where the Ay can
be directly obtained from the slope of the (defect-free) common
tangent, and fs, is taken from Monte Carlo simulations, we obtain
an approximate phase diagram as shown by the red dashed lines
in Fig. 5(c). Note that the common-tangent construction of the
binary crystal structure typically involves phase coexistence with
both a phase of lower composition (e.g. Laves + fccy) and with a
phase of higher composition (e.g. Laves + fluid or Laves + fccg),
each corresponding to their own value of Au. This leads to a lower
and upper bound for the equilibrium antisite defect concen-
tration at a given pressure, and hence marks out the stability
region of the defected crystal in the phase diagram.

As Fig. 5(c) shows, this first-order correction captures the
essential traits of our “revised” phase diagram. Specifically, it
predicts a similarly high concentration of defects, and captures
the atypical defect concentration increasing with pressure in the
fluid-Laves region. However, it still requires the measurement of fs
in simulations, and hence a significant additional effort when
calculating the phase diagram. To this end, we try an even simpler
approximation, where f;, is determined using cell theory. Specifi-
cally, we calculate for each particle the free volume that they can
access when they are restricted to their own Wigner-Seitz cell in an
otherwise perfect, static crystal. In this approximation, we can
write the partition function as a product of volumes

N
Vi
Z= Hﬁ (6)

This journal is © The Royal Society of Chemistry 2020
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(a) Revisited phase diagram for a binary hard-sphere mixture with a size ratio of g = 0.82 upon taking defects into account in both the Laves phase and

FCC phases. (b—d) Zoomed-in section on the Laves phase region, where we compare different approximations (colored lines) with the revisited phase
diagram (black lines). (b) The dashed blue lines correspond to the defect-free phase diagram as calculated in ref. 7 and 8. (c) The dashed red lines are obtained
by using the approximate method to take into account antisite defects, i.e. by using eqn (5), and by taking fs from Monte Carlo simulations. (d) The dashed
green lines are again obtained by using eqn (5), but now taking fSL from cell theory. Note that there is an extremely small Laves phase + fluid region at the tip of
the green arrow in (a) that is not visible on either of the pressure scales displayed here, as the pressure range of the region is fAPs° = 0.002.3*

with 4 the De Broglie wavelength and v; the free volume of a
particle i, which we determine numerically by using Monte Carlo
integration. Note that here, as in the rest of the paper, and without
loss of generality, we choose the de Broglie wavelength to be the
same for both species of particle. The defect free energy fs
associated with an S;-defect is given by

N vQ
Bfs, => In (F) : (7)
i=1 i

where viSL and 1 are the free volume of a particle 7 in a system with
and without a S;-defect, respectively. Using this mean-field defect
free energy in connection with the approximation made in eqn (5),
one can test the qualitative importance of antisite or substitutional
defects on a phase transition. As shown in Fig. 5(d), while
somewhat less accurate, this approach correctly captures the
order of magnitude of the defect concentration and the topology
of the phase diagram. Hence, this is a quick, computationally
inexpensive recipe to check whether antisite defects are impor-
tant in a known phase diagram.

This journal is © The Royal Society of Chemistry 2020

5 Discussion and conclusions

In conclusion, we have shown that the equilibrium Laves phase
in binary hard-sphere mixtures of size ratio g = 0.82 contains an
extraordinarily high concentration of antisite defects. In fact, we
find stable regions where up to 2% of the large-particle lattice
sites are occupied by a small particle. This defect concentration
is orders of magnitude higher than the vacancy and interstitial
defect concentrations found in single-component hard-sphere
crystals.**?* We expect these defects to play an important role
for all size ratios for which the Laves phase is stable.

Our results highlight the need to carefully consider possible
defects when predicting colloidal phase behavior, and in particular
stress the need to consider non-stoichiometric perturbations of
binary crystals. Clearly, the commonly made assumption in the
calculation of phase diagrams that the crystal composition is ideal
is not valid here. To date, these types of defects have not been
considered in any of the binary hard-sphere crystal studies,”*"
nor in any colloidal binary phase diagram studies that we are
aware of. While we have focused here only on the Laves phase and
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FCC crystals, we like to stress that the assumption of ideal crystal
composition has also been made for the calculation of phase
diagrams of binary hard spheres which show regions of stability of
e.g. NaZn,;, AlB,. As these crystals appear at more extreme size
ratios, it might even be necessary to consider defects in which
multiple small spheres take up the space of a single large sphere.

We presented a simple theoretical method to determine
whether such defects are important for any predicted phase
coexistence. This simple approach captured the essential traits
of the “updated” phase diagram with little computational
effort. This method is an excellent starting point for future
studies of antisite defects in binary crystals.

Furthermore, our results highlight some striking similarities
between colloids and atoms. Namely, we find the Laves phase to be
thermodynamically stable for quite a broad range of composition —
just like in atomic binary crystals, where the composition can be
tuned through the incorporation of stoichiometric defects.**™*
Hence, binary mixtures of colloids do not only provide an inter-
esting model system of “big atoms”*"*® to study interstitial and
substitutional solid solutions,'®>**°"! but also to study alloying in
binary crystals.

Intriguingly, we find that the hard-sphere Laves phase is never
thermodynamically stable at its ideal composition. This should be
an important consideration in both experimental and computational
attempts to study the nucleation of these crystals.>>> Lastly, much
of the research on the Laves phases in colloidal crystals has been
motivated by the possibility of a complete photonic band gap in the
visible part of the spectrum, associated with the sublattices in the
MgCu, crystal.”** The high concentration of antisite defects we have
found in the Laves phase with the MgZn, structure, is also very likely
to play an important role in the other, metastable Laves phases with
the MgCu, and MgNi, structures. Hence, high defect concentrations
may affect the photonic band gap of the metastable MgCu, Laves
phase, as it is well known that already low concentrations of defects
can deteriorate the performance of band-gap materials. As these
defects are an inherent part of the crystal phase behavior, removing
them may be a considerable challenge.
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