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Modeling atomic force microscopy and shell
mechanical properties estimation of
coated microbubbles

A. Lytra,a V. Sboros,b A. Giannakopoulosc and N. Pelekasis *a

We present an extensive comparison with experimental data of our theoretical/numerical model for the

static response of coated microbubbles (MBs) subject to compression from an atomic force microscope

(afm). The mechanics of the MB’s coating is described in the context of elastic thin shell theory. The

encapsulated fluid is treated as compressible/incompressible pertaining to a gas/liquid, while the

thinning of the liquid film between the MB and the afm cantilever is modeled via introduction of an

interaction potential and the resulting disjoining pressure. As the external force increases, the

experimental force–deformation (f–d) curves of MBs covered with polymer have an initial linear

response (Reissner regime), followed by a non-linear curved downwards response (Pogorelov regime)

where buckling takes place. On the other hand, the f–d curve for MBs covered with lipid monolayers

initially follows the Reissner regime, but buckling is bypassed to a curved upwards regime where internal

gas pressure dominates. The elastic properties, namely Young’s modulus and shell thickness, for MB’s

covered with polymer can be estimated by combining the buckling point and the slope of the Reissner

regime or the slopes of Reissner and Pogorelov regimes. Comparison of the present model with afm

f–d curves for polymer shows satisfactory agreement. The area dilatation and bending moduli are shown

to be the appropriate independent elastic parameters of MBs covered with phospholipid monolayers and

are estimated by combination of the transition from Reissner to pressure dominated regime. Simulations

and experiments in this case are in excellent agreement.

I. Introduction

Contrast agent microbubbles (MBs) have recently received
significant attention, as they have a very positive impact in
medical imaging via ultrasound1,2 and targeted drug delivery.3,4

Usually, they are coated with a biocompatible material, like
polymer or lipid monolayer, that provides mechanical strength
and reduces dissolution.3 Due to their small sub-capillary
size, they are able to cross the entire vascular bed including
abnormal vascular networks, such as the neovascularization of
solid tumours.5 In the presence of an ultrasound field coated
MBs oscillate, thus generating a strong back-scatter signal
which allows for visualization of vital organs like liver,6

kidney,7 etc., as well as blood flow8 to provide estimates of
perfusion. Furthermore, after several cycles of oscillations they

can be forced to collapse and release their payload in the
vicinity of an area that is targeted for local treatment, thus
significantly reducing side effects and increasing the efficacy of
drug delivery.9,10

The amount and the nature of the material that encapsu-
lates the shell define the mechanical behavior of the MB.
Considering the above fields of application, the mechanical
properties, namely area dilatation and bending moduli, are of
major importance since they determine the MB’s amplitude of
oscillation11 and dynamic response12,13 during acoustic inter-
rogation, their window of stability before break-up takes place
and their ability to travel across the vascular bed.14 Accurate
estimation of these mechanical properties is a key to design
their response in the presence of ultrasound. To this end,
atomic force microscopy (afm) measurements have been proven
to be a powerful and reliable tool to estimate the mechanical
properties, because they rule out unnecessary coupling with
dynamic effects and do not require consideration of the pertinent
physical properties, such as shell viscosity and the viscosity of the
surrounding liquid. In particular, MBs are compressed under
the cantilever of an afm and the response is registered in force–
deformation (f–d) curves.
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AFM measurements are typically employed for the study of
spherical capsules by employing the Hertz15 and Reissner16

theory, or appropriate combinations of them for varying shell
thickness to particle radius ratio,17 and it is shown that as the
ratio h/R decreases the Reissner theory becomes more appro-
priate with a correction factor depending on the cantilever and
substrate shape. For soft cell-like spherical shells a variation of
the Hertz theory, the Johnson–Kendall–Roberts model is
employed that accounts for the surface energy of the cantilever
and substrate,18 in order to obtain (f–d) curves and extract
reliable predictions of the cell stiffness. For hollow polyelec-
trolyte or liquid filled shells analyses of afm measurements
mainly focuses on the linear regime of the (f–d) curve17,19

where, for known shell thickness, the shell stiffness is recovered
upon introducing the Reissner theory. Numerical simulations of
the static response are then performed using commercial software
packages such as Abaqus20 or Comsol17 in order to verify the f–d
curve and shell deformation pattern. Simulations20 capture the
linear regime as well elastic buckling in the Pogorelov21 regime
however it was not always possible to capture the rich static
response pattern exhibited by measurements involving mechanical
indentation. In fact, theoretical and numerical studies that are
performed in order to support such experiments in extracting shell
properties are limited and usually omit crucial parameters such as
the resistance of the encapsulated gas or liquid to compression.

Lulevich et al.22 investigated the response of liquid filled
capsules with an afm and obtained a very different response
pattern, i.e. an almost non-linear curved upwards f–d curve was
identified right from the start of the experiment, without the
classic Reissner response at low values of deformation that is
usually observed in afm experiments. On the contrary, when
harder shells are statically investigated via afm the linear
regime becomes evident for small deformations,22–25 indicating
the relative importance of the resistances to elongation/bending
and volume compression. Furthermore, simulations using Abaqus
captured the above pattern as well as instabilities in the form of
horizontal plateaus, when transition from elastic to perfect plastic
behavior was considered.23

Glynos et al.26 performed afm measurements of MBs coated
with polymer (biSphere), where a rich f–d response was demon-
strated. Initially, the f–d curve is linear while, with further
increase of the applied force, the response becomes non-linear
and nearly horizontal. Classic shell theory suggests that in the
first regime the shape of the shell remains flattened and it
is known as Reissner regime,16 while the non-linear response
is associated with buckling in the contact area (Pogorelov
regime21). A preliminary study by Lytra et al.27 suggested that
proper coupling with the transition from Reissner to Pogorelov
regime can estimate both Young’s modulus and shell thickness
from the f–d curve for MBs covered with polymer. It will be
interesting to verify this prediction by resorting to simulations
in view of the experimental evidence via unloading tests26

that plasticity effects are also possible during compression,
which alters the response pattern via the onset of elasto-plastic
buckling. The mechanical properties of MBs covered with
phospholipid monolayers are the least studied and least

understood in the literature. Among the first who performed
afm measurements on Definity MBs was Buchner Santos et al.28

who found that these MBs are softer with a Young’s modulus
on the order of MPa. In addition, the f–d curve is almost linear
for the most part of it and it is curved upwards at relatively high
deformations. In the latter study the proposed model to estimate
the Young’s modulus is the one developed by Lulevich et al.,22

which however results in a radius dependent area dilatation
modulus, while it is reported that the Reissner’s model16 over-
estimates the Young’s modulus. More recently, Abou-Saleh et al.29

also calculated the Young’s modulus of lipid MBs using the afm,
based on Reissner’s model. In addition, they found that adding a
functional coating on the outside of the shell the overall stiffness
increases significantly. It is also interesting to note that when no
extra coating is added on the shell surface the response is initially
linear, followed by a non-linear curved upwards regime, while the
extra coating results in a strong linear response.

Moreover, in classic shell mechanics the in plane stresses
are proportional to area dilatation modulus, w, and similarly
the bending moments to the bending modulus, kb, via appro-
priate constitutive laws. In this context, the area dilatation
modulus and the bending modulus are related to the 3d
Young’s modulus, E, and shell thickness, h, as w = Eh and
kb = Eh3/[12(1 � n2)]. In the case of MBs covered with polymer,
the shell thickness is relatively big and its structure could be
characterized as more or less isotropic and homogeneous.
Therefore, for polymeric shells, apart from the shell radius the
independent shell parameters are the 3d Young’s modulus and the
shell thickness. On the other hand, MBs covered with lipid mono-
layers form a shell of very small thickness (1–5 nm) which is not
easy to define or measure and as a result the shell structure is not
entirely isotropic. Therefore, following studies on the mechanical
behavior of lipid bilayer shells such as the red blood-cells,30 we
propose that the independent parameters for MBs covered with
lipid monolayers are the area dilatation and bending moduli and
we want to investigate the validity of this discrepancy.

In order to capture the rich spectrum of static responses
reported in afm measurements, pertaining to coated micro-
bubbles and capsules, and provide reliable tools for accurate
parameter estimation of the shell elastic properties, it is
necessary to develop a flexible simulation technique that can
accurately predict the load distribution on the interrogated MB
as well as its deformed shape for a wide range of external
forcing. Resorting to commercial software does not provide
the degree of flexibility and robustness required to this end.
Consequently, we have developed a numerical/theoretical model31

to account for the hydrophilic nature of the involved substrates and
coated MBs, especially the ones coated with lipid monolayers, as a
means to obtain the load distribution exerted on their shell by the
slowly descending cantilever during an afm measurement. Such
indentation experiments take place in an aqueous environment in
which case, the thickness of the liquid film that surrounds the
microbubble decreases as the cantilever approaches the shell, and
as a result the disjoining pressure that keeps them apart increases
while gradually deforming the shell. The disjoining pressure is a
manifestation of the intermolecular forces32 between the shell and
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cantilever and depends on the nature of these two surfaces. Using
this model it was possible to simulate31 the static response of both
polymeric and lipid MBs. To this end, the previous model is
extended to account for non-symmetric deformations with respect
to the shell’s equator, e.g. when the resting surface of the MB and
the cantilever surface are of different geometry or possess very
different wetting properties. Moreover, we have also modified our
formulation in order to account for the case of an incompressible
fluid being encapsulated in the shell and we investigate the
possibility of a pure repulsive potential pertaining to afm measure-
ments with air as the surrounding medium.

It should be stressed that we proceeded in this direction
unaware of previous pioneer studies employing the interaction
potential between the cantilever and the interrogated particle in
order to obtain the distribution of the load that is exerted on the
latter during the afm measurement. Particularly so when indenta-
tion studies are performed on drops and bubbles in order to
obtain isothermal force–distance curves33 and through them the
disjoining pressure isotherms,34 by invoking the DLVO theory that
accounts for both van der Waals and double layer fources.32 In the
study be Bhatt et al. (2001)34 such a short range repulsive/long
range attractive potential is employed in order to solve the
augmented Young–Laplace equation for the force exerted on a
deformable drop/bubble as it interacts with two solid particles of
comparable curvature that are emerged in a liquid of varying
wetting properties. It was thus seen that in recovering the equili-
brium disjoining pressure isotherm the actual interfacial deforma-
tion must be accounted for, rather than assuming an effective
drop/bubble elasticity, and that in the linear force deformation
regime compressibility of the drop/bubble is negligible. Conse-
quently treating the inner fluid as a drop or bubble does not alter
the f–d curve. This approach has been extensively and successfully
used ever since for the analysis of forces on drops and bubbles, or
between drops and bubbles in complex fluid systems with varying
degrees of hydrophilicity, using afm.35–37 A similar type interaction
potential is used in the present study for the static interrogation of
coated microbubbles and liquid filled capsules and it was seen
that, as long as we remain in the linear regime of the static
response, the f–d curve is the same irrespective of the treatment of
the pressure variation of the inner fluid. However, interesting
variations arise as we enter the nonlinear regime of the shell static
response.

The rest of the paper is organized as follows: the theoretical/
numerical model is briefly discussed in Section II-A and the
available analytical models in Section II-B; details of the extension
of the methodology to account for non-planar cantilevers are
provided in the Appendix. Then, the results and comparison with
afm data are presented in Section III. Finally, Section IV contains
the main conclusions and findings of the present study.

II. Modeling
A. Theoretical formulation

We consider an axisymmetric MB that is encapsulated by an
elastic biomaterial (polymer or phospholipid monolayer), rests

on a plane substrate and can be compressed by a plane or
spherical cantilever, Fig. 1(a and b). In both cases the substrate
and cantilevers have much higher elastic rigidity, thus we
assume that after contact only the MB is deformed. In particular,
based also on experimental observations, axisymmetric deforma-
tions are assumed throughout this study. Depending on the nature
and geometry of the upper and lower surfaces the deformation
can be symmetric or asymmetric with respect to the equatorial
plane of the MB. During afm measurements the MB is sub-
merged in a liquid solution, with the cantilever being initially
positioned above the MB and gradually approaching it thereby
increasing the exerted force. Consequently, in the present study
we investigate the response as the distance between the canti-
lever and the solid substrate, zCS, decreases, rather than the
distance, z0, between the cantilever and center of mass of the
microbubble that was used in our previous modeling study.27

When a plane cantilever is considered the distance zCS is easily
defined as the axial position of the cantilever, Fig. 1(a), whereas
when a spherical one is employed zCS is defined as the axial
position of its center, Fig. 1(b); the origin of the axis of
symmetry z is located on the substrate in both cases. It will
be seen in the following that when the cantilever and substrate
are flat and similar in nature z0 = zCS/2.

Due to the hydrophilic nature of the involved surfaces, the
space between the cantilever and the north pole as well as
between the substrate and the south pole of the coated bubble
is occupied by an ultrathin liquid film with variable thickness,
d, which is squeezed by the action of the external force thus
resulting in variations of the local pressure. The latter is known
as disjoining pressure and is a measure of the intensity of the
intermolecular forces between the interacting pair of surfaces
whose strength is signified via an additional source of energy
per unit surface that is attributed to the shell interface, wint,
that reflects its interaction with the cantilever. In particular, a
long range attractive-short range repulsive interaction potential
is introduced herein in order to describe the above interaction,

Fig. 1 Schematic representation of a microbubble under a (a) plane
cantilever and (b) spherical cantilever with radius Rc. In both figures R0 is
the initial radius of the shell, whereas zCS denotes the position of the
cantilever and d the thickness of the liquid film. All geometrical quantities
are described in a global cylindrical coordinated system (z,s) with its origin
at the substrate; normal vector n- is pointing outwards with respect to the
MB’s core.
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which has the following form32,34,38,39

wIntðdÞ ¼ w0
dA
d

� �4

�2 dA
d

� �2
" #

: (1)

dA is the characteristic length for which the interaction
potential takes the minimum attractive value, �w0, and d is
the local thickness of the film that is defined as the minimum
distance between a specific point on the shell and the cantilever
or the substrate; a detailed description of the calculation of d is
given in Appendix A. As the distance between the shell and
cantilever or substrate decreases and crosses a critical length,
dA, the interaction potential is maximized while the interaction
force switches sign becoming repulsive as opposed to attractive,
Fig. 2, thus producing a gradual flattening of the shell, Fig. 1.
The above form of the interaction potential was not rigorously
obtained but it is used extensively,34,38,39 due to its flexibility as
it contains the essential elements of van der Waals attraction
and double layer repulsion.

On a different context, similar compression experiments are
conducted for conventional spherical shells like table tennis
balls.40 In this case, the shell is deformed as previously under a
flat and rigid surface, but instead of a liquid the surrounding
environment is air, which is a non-polar medium. Thus, a
typical interaction potential32,34 contains only the repulsive term:

wIntðdÞ ¼ �
A

12pd2
; (2)

where A is the Hamaker constant which takes negative values for
repulsion.32

For both types of interaction potential the total energy
content of the shell, provided by the sum of strain, bending,
intermolecular, gas compression and surface energy, reads as:

UT = Wstr + Wb + Wint + Wc + Ws, (3)

Minimization31 of the total energy gives the force balance in the
normal and tangential directions:

~n:PG � PA þP ¼ kstss þ kjtjj þ 2km gBW þ wintð Þ � 1

s
@ðsqÞ
@s

;

(4a)

~ts:�
@tss
@s
þ 1

s
@s
@s

tss � tff
� �

þ ksq

� �
¼ 0

with q ¼ 1

s
@s
@s

@ smssð Þ
@s

�mff

� �
;

(4b)

where, PG is the internal pressure of the encapsulated gas,
PA is the ambient/atmospheric pressure and gBW is the surface
tension of the bubble-water interface. Moreover, tss and tjj
are the in plane elastic tensions and they are calculated via
constitutive laws, e.g. neo-Hookean, Mooney–Rivlin and Skalak
for linear, strain softening and strain hardening behavior,
respectively.41,42 Similarly, mss and mjj are the bending moments
as a result of a finite bending resistance of the shell.43

The disjoining pressure P arises as part of the minimization
of the intermolecular energy with respect to the radial, s, and
axial, z, position of the shell and equals the derivative of the
interaction potential in the normal direction:31

P¼ @wint

@n

¼
�4w0

dA

dA
d

� �5

� dA
d

� �3" #
@d
@n
; for attractive�repulsive interaction

A

6pd3
@d
@n
; for pure repulsive interaction

8>>>><
>>>>:

;

(5)

whereas the total intermolecular force on the shell is:

~F ¼�dWInt

d~r
¼
ð
A

�@wint

@n
�2kmwint

� �
~ndA; (6)

In the context of eqn (5), distance d increases in the opposite
direction with respect to the normal vector n, hence the
disjoining pressure is negative (attractive), when d c dA,
positive (repulsive) when d { dA and zero when d = dA. In the
present model, for given distance zCS d is not constant, but
d = d(s,z), where (s,z) are the coordinates of an arbitrary point
on the shell surface. The total force changes from attractive to
repulsive as the distance between the cantilever and substrate
zCS is reduced below a certain value for which the overall force
is zero. In the latter case the shell around the two poles is in
contact with the neighbouring surfaces and feels a repulsive
force whereas the rest of the transition region is in attraction.
The translation of the cantilever below that threshold distance
is used as a measure of the shell deformation in order to
directly compare against measurements:

d̂ ¼DC=R0¼ ẑCSðF ¼ 0Þ� ẑCSðFÞ¼
zCSðF ¼ 0Þ� zCSðFÞ

R0
; (7)

where DC is the total dimensional translation of the cantilever.
In cases for which buckling has not yet taken place, Dc is

Fig. 2 Dimensionless potential, ŵint = wint(d)/w0, and dimensionless
disjoining pressure, P̂ = P(d)dA/w0, as a function of the relative distance
from the cantilever/substrate, d/dA.
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roughly equal to the sum of deformations of the MB at the two
poles. In fact, when both the cantilever and substrate are flat
with the same wetting properties the deformation D exhibited
in one of the two poles is D = DC/2; see also Berry et al.17 The
above equation is a practical way to measure the deformation,
when the interaction is relatively weak, w0/w { 1. In this
case, the corresponding shape is nearly spherical without
any deformation, e.g. the zero force corresponds to an unde-
formed shape. Otherwise, when a stronger interaction is
considered the corresponding shape at zero force is signifi-
cantly deformed, which does not allow for a clear demonstra-
tion of the elastic phenomena.31 In fact, the strength of the
interaction potential can be estimated by the maximum
attractive force of the experimental f–d curve.31 However,
during afm experiments no adhesion forces are registered,
therefore in our simulations we chose the strength of the
interaction potential to be relatively small in order to avoid
high adhesion forces and the corresponding hysteretic
behavior.

The above equilibrium between the elastic tensions at the
shell interface and the disjoining pressure is coupled with the
internal pressure, PG, of the encapsulated gas. In particular, as
the shell is compressed its volume is reduced and therefore the
volume and internal pressure are linked via an isothermal
equation:

PGVg = P0V0
g, (8a)

where V is the volume of the bubble for given zcs; subscript 0
denotes the pressure and the volume in the reference state,
i.e. P0 = PA + 2gBW/R0, V0 = 4pR0

3/3, and g = 1.07. However, when
the shell encapsulates an incompressible liquid, eqn (8a)
cannot be used with g = 1.07. Instead, we replace eqn (8a) with
a mass conversation equation for the liquid:

m = const. ) rV = const. or V = V0 (8b)

whereas when an isobaric process is considered we set g equal
to zero in eqn (8a).

The reference state is typically spherical and stress-free
unless otherwise stated. A parametric study on the effect of
pre-stress on the static response of coated microbubbles is not
presented in the present article and is relegated to a future
investigation. Nevertheless, it should be pointed out that in the
presence of pre-stress a coated microbubble is expected to
buckle as a result of static compression39–41 in which case
transient break up takes place subject to further static or
acoustic disturbance.27,44,45,47 This mechanism may explain
the onset of collapse obtained in afm measurements of coated
microbubbles at higher temperature levels,25 in which case
large levels of pre-stress are present due to gas escaping out
to the surrounding liquid as a result of increased diffusion
rates through the shell.

The above problem is made dimensionless with the bubble
radius at the reference state employed as characteristic length
scale, R0. Hence, the problem formulation is governed by the

following dimensionless numbers:

k̂b ¼
kb

wR0
2
; P̂A ¼

PAR0

w
; ĝBW ¼

gBW
w

; Ŵ0 ¼
w0

w
;

Â ¼ A

wR0
2
; x̂ ¼ x

R0
;

(9)

measuring the relative stiffens of bending, gas compressibility,
surface tension and interaction potential with respect to
the resistance to elongation. Moreover, x̂ denotes all the
dimensionless lengths entering the problem, i.e. the height of
the liquid film, d̂, the position of the cantilever, ẑCS, the initial
pre-stress, û and the cylindrical coordinates (ŝ,ẑ), which for
simplicity we keep in (s,z) form. For polymeric shells that
normally have thicker coatings, bending resistance is related
to the elastic modulus and the shell thickness:43

k̂b ¼
kb

wR0
2
¼

Eh3

12 1� n2ð Þ
EhR0

2
¼ 1

12 1� n2ð Þ
h

R0

� �2

; (10)

while for microbubbles coated with lipid, the bending resis-
tance is treated as an independent parameter, since their
thickness is very small and cannot be easily defined.

The above formulation is completed with the appropriate
boundary conditions at the edges of the generatrix:

sxx = 0 at x = 0 and 1, (11a)

zx = 0 at x = 0 and 1, (11b)

s(x = 0) = s(x = 1) = 0, (11c)

where xA [0,1] denotes a Lagrangian variable that identifies the
position of each node at the stress-free state; when it is used as
subscript it denotes differentiation. In addition, x = 0 and 1
indicate the north and south pole, respectively. Finally, in the
graphs shown in the following sections the disjoining pressure
P, the total energy UT and its components Wi are made
dimensionless as follows:

P̂ ¼ PdA
w0

; ÛT ¼
UT

wR0
2
; Ŵi ¼

Wi

wR0
2
; (12)

B. Numerical solution and asymptotic models

The Galerkin finite element methodology (FEM) is employed
for the numerical solution of the system of eqn (4), (8) and (11).
The B-cubic splines48 are used as basis functions in order to
accommodate the bending stresses. The unknown variables are
the position (s,z) of each node of the generatrix and the internal
pressure, PG. An in-house Fortran code has been developed in
this context,31,46 which was validated against analytical results
available from the literature,49 and was recently extended to
account for non-symmetric loading conditions. The validity of
the numerical solution was tested against asymptotic results
obtained using the theory of continuum mechanics,16,21 while
new regimes in the static response pattern were identified31 as
will also be illustrated in the next section that is dedicated to
the comparison with afm measurements. More details on the
model described in the previous section and the finite element
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methodology for its solution can be found in a previous
article.31

Microbubbles covered with polymeric biomaterial have rela-
tively stiff shells in terms of their Young’s modulus [2–20 GPa]
and a shell thickness on the order of 20–40 nm. Therefore, the
analytical solutions developed for convectional shells are more
applicable with polymeric coatings in comparison with MB’s
covered with lipid monolayers. In particular, the f–d curve from
afm measurements of polymeric shells is typically initially
linear corresponding to the Reissner regime. Simulations and
analysis suggest that in this regime the shell portion that lies
immediately under the cantilever is flattened, while force and
deformation are related via the Reissner equation:16

F ¼ 4Eh2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� n2ð Þ

p D
R0

or F ¼ 8
ffiffiffiffiffiffiffiffi
wkb

p sD
R0
; (13a)

In the latter equation parameter D signifies the deformation
of the pole that lies in the vicinity of the cantilever and is one
half of the cantilever displacement, DC, that is usually regis-
tered as shell deformation in afm measurements for which the
substrate and cantilever possess the same hydrophilic proper-
ties. The latter value, DC, incorporates the translation of the
microbubble center of mass due to the same amount of
deformation of the lower pole that is in contact with the
substrate, see also Fig. 3(a). Therefore, when f–d curves are
considered the horizontal axis should be marked with D in
order to get an appropriate fitting of Reissner’s equation, or an
equivalent form of the previous relation can be used, namely

F ¼ 4Eh2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� n2ð Þ

p DC

D0
or F ¼ 8

ffiffiffiffiffiffiffiffi
wkb

p DC

D0
; (13b)

where DC (=2D) is the cantilever translation and D0 (=2R0) is the
diameter of the undeformed shell. Berry et al.17 independently
arrived at this conclusion in their study of capsule mechanical
properties using indentation where they focused on the

Reissner/Hertz regimes of initially spherical capsules of varying
shell thickness.

Moreover, as the external force increases, the response
becomes non-linear and curved downwards. In this regime,
buckling takes place in the area around the pole that is in
contact with the cantilever and the analytical f–d relation has
been described by Pogorelov21 as:

F ¼ 3:56E2h5

1� n2ð Þ2
D
R0

2

" #0:5
¼ 12

ffiffiffiffiffiffiffiffiffi
3:56
p D

h

� �1=2
kb

R0
� 22:6

D
h

� �1=2
kb

R0

(14)

Thus, combination of the linear regime of the static response
curve with the Pogorelov regime can provide the Young’s
modulus and shell thickness.27,31 In addition, when buckling
is observed, simulations31 suggest that the buckling point is
encountered when

D
R0
¼ DC

D0
¼ 2:5

h

R0
! Pogorelov regime starts when

D
h
� D

h

				
Critical

� 2:5;

(15)

in agreement with analytical results of the literature.49 Thus,
upon careful examination of the f–d curve we can estimate the
shell thickness from the buckling point. In particular, it is
defined by identifying the point of transition from the linear
(Reissner) to the curved down (Pogorelov) nonlinear part of the
force deformation curve. Subsequently, the Young’s modulus
can be recovered from the slope of the linear regime upon
employing Reissner’s equation.31 Fig. 3(b) depicts the three
major shell regions where the above force balances take place
and determine the shape of the force deformation curve.
In particular, the internal pressure balances the disjoining
pressure in the contact region, while bending stresses and
disjoining pressure balance each other in the transition region.

Fig. 3 (a) Schematic representation of the MB in deformed configuration. Black and grey lines indicate the initial stress free (0) and the deformed (1)
position, respectively. The cantilever is translated towards the MB by Dc, while the position of the substrate is fixed. The center of mass of the MB is
translated by MC0–MC1 = Dc/2, which is the deformation (D) of each pole, DC = 2D, when the cantilever and substrate are of the same geometry and
material. (b) Diagram of a symmetrically deformed MB, where the different regions (contact, transition and outer) are illustrated.
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The Reissner and Pogorelov force balances take place in the
latter two regions.

When subjected to the same type of static load, MBs covered
with lipids have a significantly different response pattern in
experimentally obtained f–d curves, i.e. they initially exhibit a
linear regime followed by a non-linear curved upwards28,29

regime. In this case, numerical simulations indicate27 that
buckling is bypassed as the internal gas pressure is an equally
important stiffness on the shell equilibrium, thus defining the
new curved upwards regime. The first regime can be described
by the Reissner relation eqn (15), while for the second regime
we have developed an analytical expression31 to describe this
type of response when the resistance to internal pressure
change becomes important:

F ¼ 3D3

R0
pP0 1� 1

4w
3R0P0

þ 1

0
BB@

1
CCA 





!w= R0P0ð Þ�1

F ¼ 4pwR0
D
R0

� �3

;

(16a,b)

eqn (16b) was also derived by Lulevich et al.22 when gas
compressibility in negligible. Therefore, for a MB covered with
lipid we estimate the area dilatation from eqn (16) and the
bending modulus from Reissner’s model eqn (13a) and (13b).
Alternatively the total force is provided by the sum

F � 8
ffiffiffiffiffiffiffiffi
wkb

p D
R0
þ 3p

D
R0

� �3

R0
2P0 1� 1

4w
3R0P0

þ 1

0
BB@

1
CCA

) F � 8
ffiffiffiffiffiffiffiffi
wkb

p D
R0
þ 4pwR0

D
R0

� �3

(17a,b)

where the first term on the right hand side is the linear
Reissner term that arises in the transition region which con-
nects the contact region with the bulk of the shell whereas the
second nonlinear term arises in the contact region where the
internal gas overpressure with respect to the surrounding
liquid balances the disjoining pressure, see also Fig. 3(b).
Eqn (17) applies to shells for which resistance to compression
precludes buckling from taking place and is different from the
model proposed by Lulevich et al.22 in that the latter does not
account for the Reissner regime. As will be seen in the following
section, it can describe the static response of liquid filled
capsules, whose incompressibility also does not allow for
buckling to take place. Furthermore, in cases for which shell
bending resistance is negligible, k̂b � kb/(wR0

2) { 1, it captures
the curved up response pattern in f–d curves. Conversely, when
bending is important it captures the linear part of the static
response, Reissner regime, in which case the nature of the
enclosed fluid, i.e. whether it is a gas or a liquid, does not affect
the f–d curve. This was first pointed out by Bhatt et al.34 in their
study of drop/bubble interaction with a solid particle for
various geometric configurations and interaction potentials.
In the following section the above response patterns will be
identified in a number of experimental investigations of coated

microbubbles via afm and will be recovered numerically with
the proposed methodology, aiming at characterizing shell
elastic properties.

III. Results
A. MB covered with polymer (P̂A { 1)

In the first part of this section we compare results obtained
with the present methodology and experimental curves for MBs
covered with polymers.17,19,20,26 This group of coated MBs is
characterized by a relatively large Young’s modulus, usually in
the order of GPa, and relatively thick shells. Most characteriza-
tion studies focus on the linear regime of the f–d curve.17,19

After the pioneering earlier studies by Updike and Kalnins,49

Elsner et al.20 were among the first to use the afm for char-
acterization of the shell elastic properties, considering the
nonlinear part as well. In particular, Elsner et al.20 performed
compression tests in hollow polyeloctrolyte multilayer capsules
(PMC). In both studies20,49 the response in the f–d curves is
initially linear followed by a non-linear curved downwards
regime indicating buckling of the shell near the contact area.
Then, the curve is slightly curved upwards, which is attributed
to the increase of the internal pressure as a result of volume
reduction. Jumps and instabilities are observed at higher values
of deformation where secondary effects govern the response,
i.e. 3d deformations, plasticity, geometrical imperfections or
even viscoelastic creep effects, which the present model does
not account for. Nevertheless, we can compare our numerical
model with the experimental curve of Elsner et al.,20 which
involve hard polymeric microbubbles, at relatively lower defor-
mations where elastic forces and gas compressibility dominate.

The shell thickness of a PAH/PSS capsule is h = 25 nm and
the radius R0 = 7.9 mm. These values conform well with eqn (15),
when it is considered for the estimation of the buckling point.
In particular, eqn (15) implies that buckling takes place at
D E 63 nm, based on the above shell properties, which is in
accordance with the buckling point obtained by the experi-
mental curve, i.e. D E 50–60 nm. Then employing the Reissner
model on the experimental f–d curve, see also Fig. 4(a), we
estimate the Young’s modulus E E 252 MPa, while Elsner et al.
estimated it at E = 294 � 32 MPa. This combined procedure for
obtaining shell elastic properties was proposed in our earlier
studies27,31 and is seen here to provide reliable estimates of
available afm measurements. To illustrate this, we perform
simulations of the measurements reported in ref. 20 using the
model proposed in ref. 31 and described in Section II of the
present article, assuming a weak interaction potential based on
the nature of the symmetrically compressed shell, and employing
the shell parameters obtained in the manner described above.
As can be gleaned from Fig. 4(b) the f–d curve obtained by the
FEM simulations predicts very well the buckling point, while
slightly overestimating the slope. In addition, at higher deforma-
tions, i.e. DZ 100 nm, the FEM curve follows the curved upwards
regime indicating an increase on the required force, with respect
to the predictions of the Pogorelov theory, as a result of the

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
A

pr
il 

20
20

. D
ow

nl
oa

de
d 

on
 7

/4
/2

02
5 

12
:0

0:
25

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sm00300j


4668 | Soft Matter, 2020, 16, 4661--4681 This journal is©The Royal Society of Chemistry 2020

increase of the internal pressure due to gas compressibility. The
shape of the MB for selected values of deformation is presented in
Fig. 4(c) for flat and buckled shapes. In addition, the disjoining
pressure profiles along the radial coordinate s for a range of
values of deformation D, indicate that in the Reissner regime of
small deformation the pressure is concentrated in the pole region
and nearly assumes the form of a point load. As the deformation
increases the pressure peak is translated towards the end of
the contact area, while at the buckling regime the pressure
distribution is that of a ring load concentrated at the edge of
the dimpled region of the shell, Fig. 4(d). Finally, the compo-
nents of the energy that constitute the equilibrium are
presented in Fig. 4(e). Initially, the elastic energies due to
stretching and bending dominate the response with stretch-
ing being the dominant energy before buckling. In the post
buckling regime an exchange in the order takes place, with
energy due to bending becoming dominant. Furthermore,
after D Z 100 nm the energy due to gas compression starts
increasing and becomes of the same order as elastic energies,
which is manifested in the numerical f–d curve by the curved
upwards regime. The above response pattern conforms
with the findings of our earlier study31 on the static response

of microbubbles coated by stiff polymeric shells that are
characterized by very small bending resistance, i.e. very small
k̂b value, and non-vanishing resistance to compression, O(1) P̂A

value, in comparison with stretching resistance, as is the case
with the shell that is interrogated in Fig. 4.

In the same context, Glynos et al.26 employed the afm and
demonstrated the mechanical response of MBs covered with
biSphere (a polymer polylactide). In this case also the thickness
of the coating is relatively large, i.e. h = O(20–40 nm).
In particular, it was suggested50 that it varies linearly with the
shell radius, i.e. h = 1.5 � 10�2R0. Thus, the Young’s modulus,
E, was estimated26 via the slope of the linear part of the f–d
curve by employing Reissner’s model, and it was found to be on
the order of 2–20 GPa. However, it should be noted that in the
latter study Reissner’s model was applied to f–d curves that
employ the cantilever translation in the abscissa, which contains
deformations from both poles. Therefore, in order to properly use
Reissner’s model, the horizontal axis of the experimental curve is
divided by two and then we use the slope of the linear part of the
f–d curve coupled with the nonlinear model pertaining to
the Pogorelov regime, eqn (14), in order to obtain estimates
of both shell thickness and Young’s modulus, see also Fig. 5(a).

Fig. 4 (a) Experimental curve f–d for a PAH/PSS MB with R0 = 7.9 mm and h = 25 nm by Elsner et al.20 (b) Comparison of numerical and experimental f–d
curves. (c) Shape of deformed MBs for selected values of deformation. (d) Evolution of dimensionless disjoining pressure profiles P̂ as function of the
radial coordinate s for selected values of deformation. (e) Evolution of dimensionless energy components Ŵi as function of deformation; simulation
parameter for FEM: R0 = 7.9 mm, h = 25 nm, E = 252 MPa, n = 0.33, gBW = 0 N m�1 W0 = 10�5 N m�1, dA = 20 nm, neo-Hookean law with the
corresponding dimensionless numbers, k̂b = 9.4 � 10�7, P̂A = 1.3 � 10�1, Ŵ0 = 1.6 � 10�6 and ĝBW = 0.
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The resulting values are E = 6 GPa and h = 36 nm, which we use as
input in our numerical model, see also dashed curve in Fig. 5(b)
and Table 1a. It should be stressed that in Fig. 5(b) the cantilever
deflection, DC, is used in the abscissa in order to compare against
the afm measurements reported in ref. 26. As can be gleaned from
the dashed curve obtained by the simulations, the estimated
values from the Reissner–Pogorelov transition overestimate the
deformation corresponding to shell buckling, which is seen to
take place at DC E 180 nm instead of 65–70 nm indicated by the
experiments.

In order to resolve this discrepancy, upon noting that the
buckling point in the experimental curve occurs at D = 33 nm or
DC E 66 nm based on the cantilever translation used in
Fig. 5(b), eqn (15) provides the shell thickness, h = 13 nm.

Fig. 5 (a) Fitting in experimental force–deformation curve. (b) Comparison of experimental and numerical results in force–deformation curves.
The mechanical properties are obtained by defining the buckling point (solid curve) or using the properties of the buckling point in combination
with the pre-stress assumption (dashed dot curve) and the transition for Reissner to Pogorelov regime (dashed curve). The extracted parameters, which
have been used for every case, are shown in Table 1a and b. For every simulation, W0 = 10�3 N m�1, dA = 40 nm, n = 0.42 and neo-Hookean law is
assumed. (c–e) Shape of the MB for selected values of deformation. (f) Evolution of the dimensionless disjoining pressure profiles P̂ along the radial
coordinate s for the cantilever-MB contact area. Figure (c–f) correspond to the buckling point assumption. The experimental curve was obtained by
Glynos et al.26

Table 1 (a) Simulation parameters of Fig. 5 when the Reissner to Pogor-
elov transition is employed. (b) Simulation parameters of Fig. 5 when the
Reissner regime is used, coupled with the buckling point, to extract the
shell thickness

Radius (R0) Thickness (h)
Young’s
modulus (E)

Surface
tension (gBW)

(a)
2 mm 36 nm 6 GPa 0
Dimensionless numbers
k̂b = 3.3 � 10�5 P̂A = 9.4 � 10�4 Ŵ0 = 4.6 � 10�6 ĝBW = 0

(b)
2 mm 13 nm 48 GPa 0
Dimensionless numbers
k̂b = 4.3 � 10�6 P̂A = 3.2 � 10�4 Ŵ0 = 1.6 � 10�6 ĝBW = 0
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In this context Young’s modulus is recovered, E = 48 GPa, from
the linear part of the f–d curve by employing Reissner’s model.
The latter values are also incorporated in the numerical model,
see also solid line in Fig. 5(b) and Table 1b, providing a more
accurate simulation of the experimental f–d curve, until the
onset of buckling. Furthermore, plotting the shape of the MB
for indicative values of deformation, as predicted by the above
simulation, we can see that solutions corresponding to the
linear regime exhibit a flat contact area, while in the non-linear
regime buckling takes place signified by dimple formation,
Fig. 5(c–e). In addition, the MB is assumed to be compressed
symmetrically at both poles, therefore the profiles of the dis-
joining pressure in the vicinity of the cantilever and substrate
surfaces are identical, Fig. 5(f). Finally, the components of the
total energy follow the same pattern as in the calculations
performed in the context of Elsner et al.,20 as expected owing
to the very small dimensionless bending resistance, k̂b o 10�5,
that characterizes polymeric shells. However, the energy due to
gas compression has no significant contribution in the simula-
tions pertaining to the f–d curves reported in ref. 26, since the
volume reduction is relatively small. This was anticipated based
on the much smaller resistance to volume compression of the
latter type shells, P̂A = 9.4 � 10�4, and is confirmed by the
profiles of the numerical f–d curves, Fig. 5(b), which do not
exhibit a curved upwards regime; for more details see also the
analysis in ref. 31.

Nevertheless, the numerical simulations presented in Fig. 5(b)
exhibit significant discrepancies compared to the experimental
f–d curve, mainly pertaining to the extensive horizontal plateau
obtained in the post-buckling regime of afm measurements. This
type of response cannot be attributed to 3-d effects, since it occurs
at lower deformation that expected for 3d buckling to take place,51

and this strongly indicates plastic deformations which was
confirmed by unloading measurements in the context of the
afm measurements reported in ref. 26 but also in earlier relevant
experimental/theoretical studies.49 In particular, the horizontal
plateau occurs right after buckling takes place in the f–d curve in
the former experimental study.26 Consequently, we can presume
that unstable behavior sets in such as elasto-plastic buckling or
viscoelastic creep, soon after the onset of primary buckling.
Similar findings of unstable behavior and discrepancies between
loading and unloading measurements have been reported
elsewhere,49 for deformations that lie beyond the onset of buck-
ling, and was attributed to the impact of friction in the static
response. In fact, simulations of the static response in the
parameter range relevant to the latter study49 recover the post-
buckling behavior captured in the experiments as the energeti-
cally favored response, while failing to follow the experimental
curve to higher deformations in which regime Updike and
Kalnins49 postulate the onset of the above mentioned instabilities.
In such situations accurate estimation of the elastic properties
probably requires additional parameters, e.g. the yield stress or
shell viscosity, which are not a-priori known and their assessment
is beyond the scope of the present study.

We also wish to employ our methodology in order to
compare with experimental data obtained for larger polymeric

shells which are surrounded by air, instead of being immersed
in a liquid, during afm measurements. Such experiments are
available in the literature for rubber shells by Updike and
Kalnins49 or table tennis balls by Shorter et al.40 The size of
these shells is a few centimeters with a thickness to radius ratio
B1/100. In addition, their relatively big size allows for identifi-
cation of buckling or other type of phenomena with a naked eye
and direct comparison with instabilities in the profile of the f–d
curve. Commercially available software packages are typically
employed40,51 in the literature to simulate such experiments.
Here, we use an interaction potential with only the repulsive
term in order to account for the fact that the surrounding
medium is air and consequently van der Waals repulsion is the
predominant intermolecular force as the cantilever contacts the
shell. In this fashion, we compare our numerical simulations
with data obtained by Sorter et al.40 for a table tennis ball with
R0 = 2 � 10�2 m. In this case, the f–d curve has an extensive
linear regime followed by a non-linear one. The transition takes
place at a sharp point, which conforms very well with eqn (15).
Thus, we recover the value of the shell thickness from the
buckling point to be h = 4 � 10�4 m. Subsequently, employing
Reissner’s model in the slope of the linear regime, eqn (13a), we
estimate the Young’s modulus, E = 2.8 MPa. It should be
pointed out that the value used by Shorter et al. is E = 2.2 MPa.
Then, performing simulations with a Hamaker potential we
recover with satisfactory agreement the experimental response
in terms of the f–d curve, Fig. 6(a). In the above simulations, we
assumed, as Shorter et al.40 suggest, that variations in the internal
gas pressure are negligible due to minute volume variations.
As a result we set g = 0 indicating an isobaric process. Otherwise,
the increase of the internal pressure as a result of the volume
reduction creates a strong curved upwards regime after the
buckling point, which is not registered in the measured f–d
curve. It should also be noted that a central aspect of the
present calculations for bigger shells is the requirement for
finer meshes. When we simulate MBs with a radius of several
microns a mesh with 400 elements is sufficient to reproduce
analytical49 or experimental results, while typical mesh refine-
ment calculations with 800 or even 1600 elements give the same
response pattern. However, it should be noted that a mesh with
400 or 1000 B-cubic splines failed to recover the experimental
response and finer meshes with 1500, 2000 and 3000 elements
are used in Fig. 6(a). Converged solutions with the relatively
sparser meshes follow the non-linear response indicating
buckling, but the deformed shape corresponds to unstable
buckling solutions exhibiting multilobed shapes. The solutions
with the finer meshes exhibit stable buckling shapes of the
standard form with the dimple around the pole region,
Fig. 6(b). Overall, in cases where the shell radius is very large
and the transition region that connects the contact with the
bulk of the shell is much smaller in comparison with the shell
radius;31,46 typically on the order of the film thickness, d, that
occupies the region between the shell and substrate. As a result
finer meshes are indeed necessary in order to obtain a reliable
solution that captures details of the shape in the macroscale,
O(R0), and the microscale, O(d).
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B. MB covered with lipid monolayer (P̂A E 1)

In this section, we compare numerical results with experi-
mental AFM data for MBs covered with a phospholipid28,29

shell. As was also pointed out in our earlier study,31 the static
response pattern of this type of MBs differs significantly from
MBs covered with a polymeric shell. In particular, there is an
initial linear response that is identified as Reissner regime, but
at higher deformations the f–d curve becomes non-linear and
curved-up with a cubic dependence. This response type is in
contrast with classic shell theory where, for a relative thin shell,
transition to buckling is predicted at relatively large deforma-
tions and this is signified by a nonlinear and curved-down
response pattern following the initial linear Reissner regime.31

For soft phospholipid shells, the encapsulated gas plays a
central role in shell equilibrium, because its compressibility
is comparable with the elastic rigidity. Thus, with increasing
external force the shell volume decreases while the gas pressure
increases as well, tending to relax the compressive tensions
responsible for buckling. Fig. 7(a) describes the F–Dc/D0 curve
for a Definity MB that was obtained by Buchner Santos et al.28

with the afm. In this curve we fit a linear and a cubic
polynomial in the linear and non-linear regimes, respectively,
in order to obtain the corresponding coefficients based on the
approach presented in the previous section, combining the
Reissner theory in eqn (13a) and the cubic law in (16b),
maintaining a satisfactory regression parameter, B0.99, in
both regimes. In this fashion we estimate the area dilatation
and bending moduli as the two fundamental, independent
elastic parameters, rather than the Young modulus and shell
thickness,30 by invoking eqn (16b) in the non-linear regime and
the slope of the linear regime in Reissner’s law (13a); see also
Fig. 7(a). In the case examined here the initial diameter is set to
D0 = 4.2 mm and the Poisson ratio to n = 0.5. Employing the

above methodology on the data provided in ref. 28 we obtain for
the area dilatation and bending moduli w = 0.19 N m�1 and
kb = 5.8 � 10�16 N m, respectively.

We next perform simulations using the above estimated
values for the elastic properties and a relative weak potential,
as there is no indication for strong adhesion, i.e. no significant
pull-off force in the experiments. As can be gleaned from
Fig. 7(b), the experimental and numerical curves are in excel-
lent agreement. The FEM model accurately captures the linear
regime, while slightly underestimating the force in the pressure
dominated regime at high deformations. In addition, the
shape of the MB for three indicative solutions is depicted in
Fig. 7(c–e), where no buckling is observed. Instead, the shape
near the poles remains flattened as the deformation increases
and a progressively elongated contact area is exhibited. This
behavior is in agreement with the parametric study performed
in our earlier work31 pertaining to soft phospholipid shells
characterized by large resistance to compression, P̂A = O(1),
in comparison with the area dilatation modulus. It should also
be noted that for similar properties of the cantilever and
substrate, as this is reflected in the intensity and nature of
the interaction potential, the shape of the microbubble around
the two poles is identical thus validating the assumption of
symmetry across the equatorial plane of the microbubble.

It should be stressed at this point that Buchner Santos et al.28

adopt for the shell thickness a value of 5 nm, as proposed by
the manufacturer of the statically interrogated MB’s, and they
estimate the Young’s modulus to E = 10–50 MPa, based on their
measurements. This corresponds to an area dilatation modulus in
the range of w = 0.05–0.25 N m�1 which is in good agreement with
the estimate obtained in the present study. However, a shell with
h = 5 nm and E = 10–50 MPa, upon applying the formula from
classic shell mechanics (see also eqn (10) in Section II-A of the

Fig. 6 (a) Dimensionless force R0F/Eh3 as function of the dimensionless deformation D/h. Comparison between experiment and simulation employing
the disjoining pressure model. The simulation parameters are R0 = 2 cm, h = 0.4 mm, E = 2.8 MPa, n = 0.4, A = 10�10 N m, g = 0 and the corresponding
dimensionless numbers: k̂b = 4 � 10�5, P̂A = 0, Â = 2.2 � 10�10 and ĝBW = 0. (b) Evolution of shapes obtained with a 2000 elements mesh for selected
values of dimensionless deformation. The experiment was conducted by Shorter et al.50 for a table tennis ball.
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present study), corresponds to a bending resistance of kb E
(1–7) � 10�19 N m that is three orders of magnitude lower than
the value estimated in the present study. Moreover, simulations
with the parameter values estimated by Buchner Santos et al.28

indicate the onset of shell buckling. However, the afm measure-
ments do not capture buckling within the reported deformation
range. This corroborates our assertion that for MBs covered
with phospholipid monolayers the area dilatation modulus and
bending resistance constitute the proper set of independent shell
parameters.

Further post-processing of the calculations with the FEM
model can give a more detailed picture of the main force

balance. In Fig. 8(a) we plot the components of the total energy
as function of deformation. The dominant energies are
the elastic components, i.e. stretching and bending, while at
Dc = 300 nm we observe a slight increase of the energy due to
gas compression which is reflected in the curved upwards
regime in the numerical F–Dc curve. Surface energy is zero in
this panel reflecting the assumption of zero surface tension and
implying that the lipid monolayer fully covers the gaseous
phase. This assumption is valid, especially for MBs with small
size, where higher packing of lipids can be reached. Measure-
ments of the surface tension for such type of MBs also suggest
very small values.52,53 The profiles of the disjoining pressure

Fig. 7 (a) Force as function of dimensionless deformation by Buchner Santos et al.28 for a Definity MB with D0 = 4.2 mm, solid lines describe linear and
non-linear fitting. (b) Comparison of experimental and numerical F–D curves, the simulation parameters are: R0 = 2.1 mm, w = 0.19 N m�1, kb = 5.8 � 10�16 N m,
n = 0.5, gBW = 0 N m�1, W0 = 10�4 N m�1 and dA = 50 nm, Mooney–Rivlin law. The dimensionless numbers are k̂b = 6.9 � 10�4, P̂A = 1.1, Ŵ0 = 5.2 � 10�4

and ĝBW = 0. (c–e) Shape of the deformed MB for three indicative solutions at deformation Dc = 77 nm, Dc = 200 nm and Dc = 400 nm; the substrate is
located at the origin of the axis and the cantilever is depicted with a horizontal line at the upper part of the MB.
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are plotted as function of the radial coordinate s in Fig. 8(b), for
three indicative solutions at Dc = 77, 200 and 400 nm. The
growth of the contact region near the north pole of the MB,
s = 0, in response to the movement of the cantilever results in
an increase of the total force. The profile of the disjoining
pressure resembles that of a point load placed at the pole
region and is gradually displaced as the cantilever further
squeezes the shell. Most of the loading is concentrated around
the transition region, while at the contact area the disjoining
pressure assumes lower values since the liquid film thickness
increases tending to the characteristic length dA. This is a
typical evolution of the disjoining pressure when the f–d curve
follows the Reissner regime, Fig. 4(b). However, upon extending
the simulation towards even higher deformations the disjoin-
ing pressure around the contact area is seen to form a plateau,
indicating a slow thinning of the liquid film in response to the
significant increase of the internal pressure,31 panel Fig. 8(b),
in response to the increased repulsion from the cantilever. The
contribution of the contact region in the total force is also
evident in the nearly cubic increase with increasing deforma-
tion, Fig. 7(a and b), that reflects the O(D/R0)2 growth of
pressure in that region.31 The plateau is followed by a local
maximum in the disjoining pressure at the edge of the transition
region,31 followed by a smooth attenuation towards the equator
region, indicating the importance of the transition region in
connecting the contact region with the outer shell where the
loading is absent. Moreover, in the simulations portrayed in Fig. 7
and 8 the flat cantilever and substrate surfaces are characterized
by the same properties (W0,dA) of the interaction potential. There-
fore the two profiles must be symmetric for the same deformation
and this is indeed reflected in the numerically obtained profiles of
the disjoining pressure.

In the same context, Abou-Saleh et al.29 investigated the
response of lipid MBs using the afm in an extensive range
of deformations. They studied the effect of adding an extra
functional coating on the mechanical response, where they

measure a significant increase of the shell stiffness. The F–Dc

curve of phospholipid MBs without extra coating follows the
pattern previously described i.e. initially linear and at higher
deformations curved upwards. Proceeding in the same manner
as in the analysis of the Buchner Santos et al.28 curves, we
employ the analytical models pertaining to the linear Reissner
regime, eqn (13), and the ensuing nonlinear regime, eqn (16b),
to extract the area dilatation and bending moduli, see also
Fig. 9(a). Indeed, upon combining the Reissner with the
non-linear regime, we calculate for the area dilatation modulus
w = 7.7 � 10�3 N m�1 and the bending modulus kb = 1.76 �
10�15 N m. Then, we employ the numerical model with the
calculated elastic parameters and as can be gleaned from
Fig. 9(b) the experimental and the numerical curves are in
excellent agreement. In a similar fashion as in the simulations
portrayed in Fig. 7, the deformed shape remains flattened for
all deformations around the two pole regions where a progres-
sively longer contact area is formed as the deformation
increases, Fig. 9(c–e). It should also be stressed that in order
to apply the Reissner relation, eqn (13a), the deformation D of
the single pole must be employed corresponding to one half the
displacement of the cantilever, Dc, reported in ref. 28 and 29,
since the latter incorporates the deformation of both poles. The
energy distribution and disjoining pressure profiles were also
monitored in this case. However, they are not shown as they
exhibit the same behavior as in the simulations pertaining to
the afm measurements in ref. 28.

C. Capsules with constant volume (P̂A - N)

In this subsection simulations with our methodology are pre-
sented and compared against experimental data for mono-
disperse melamine formaldehyde (MF)22,24 and polydisperse
poly-DL-lactic acid (PLA)22 shells using the afm22 and a micro-
manipulation rig.24 In both cases the shell contains an incom-
pressible liquid instead of a gas and consequently the
interrogated particles are referred to as microcapsules rather

Fig. 8 (a) Dimensionless energy components Ŵi as function of deformation Dc. (b) Dimensionless disjoining pressure profiles P̂ as function of the radial
coordinate s, the disjoining pressure due to the cantilever. The calculations refer to the simulation curve in (b).
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than microbubbles. One of the central aspects of the modeling
of such capsules is the assumption of negligible drainage of
water through the shell, which implies that the total volume
remains constant. Therefore, in order to investigate the validity
of the assumption of an impermeable shell and facilitate/
validate the parameter estimation process, we perform simu-
lations assuming constant volume for the PLA,22 and MF
capsules.22,24

Afm measurements on PLA capsules22 exhibit a curved
upwards regime in the f–d curve without an initial linear
regime. Subsequent fitting of the experimental data on a
theoretical expression that consists of an initial (D/R0)0.5 non-
linear regime where bending and stretching balance each other

and a cubic rule, eqn (16b), an estimate was obtained for
the Young’s modulus of these capsules that is on the order of
E E 1 MPa, for an a priori known shell thickness h E 20 nm
based on the number of polyectrolyte bilayers and a typical
bilayer thickness of 4 nm.22 Simulations performed in the
context of the present study with the above shell parameter
estimates recover the response pattern of the afm measure-
ments as long as the deformation remains relatively small,
D/R0 r 0.2, thus identifying the limit of validity of the constant
volume formulation. In particular, as can be gleaned from the
f/d curve portrayed in Fig. 10(a), the numerical results obtained
with the present methodology are in excellent agreement
with the experimental curves,22 indicating a pronounced cubic

Fig. 9 (a) Force as function of dimensionless deformation by Abou-Saleh et al.29 for a MB covered with phospholipid and D0 = 3.5 mm, solid lines
describe linear and non-linear fitting. (b) Comparison of experimental and numerical F–D curves, the simulation parameters are: R0 = 1.75 mm,
w = 7.7 � 10�3 N m�1, kb = 1.76 � 10�15 N m, n = 0.5, gBW = 0 N m�1, W0 = 10�4 N m�1 and dA = 50 nm, Mooney–Rivlin law. The dimensionless numbers
are k̂b = 7.5 � 10�2, P̂A = 2.3, Ŵ0 = 1.3 � 10�2 and ĝBW = 0. (c–e) Shape of the deformed MB for three indicative solutions at deformation Dc = 0.14,
1.00 and 1.70 mm, the substrate is located at the origin of the axis and the cantilever is depicted with a horizontal line at the upper part of the MB.
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curved upwards response pattern at the outset of the simulation,
for both sizes that were interrogated. Thus, the force required to
obtain large deformations was seen to increase significantly due
to the dominant resistance to compression of the enclosed liquid
that is a result of the requirement for constant volume. As was
discussed in Section II-B in the context of eqn (17), this reflects the
dominant contribution to the repulsive force on the shell from the
contact region and affects the nature of the f–d curve which
now exhibits an O(D/R0)3 dependence of the force on the shell
deformation at the north pole. This is particularly so for the
large capsules, Fig. 10(a), for which the bending resistance
is less important hence the resistance to bending is not
significant, and we can recover the above Young modulus value,
E E 1 MPa, via application of the cubic rule described by
eqn (16b) on the afm curve. In fact, eqn (17) that contains the

contribution of the contact and transition regions in the total
force as the sum of the Reissner and cubic terms, can be used to
describe the static response pattern of constant volume capsules.
In the cases shown in Fig. 10(a) bending resistance is subdominant
to stretching, k̂b is 2.8 � 10�6 and 1.1 � 10�5 and P̂A is 20 and 10
when the radius of the shell R0 is 5 mm and 2 mm respectively,
hence the Reissner term is subdominant in eqn (17). This is the
type of behavior that was predicted in our previous theoretical/
numerical study31 for capsules with very large resistance to com-
pression, large P̂A, that do not exhibit a marked Reissner regime in
their f–d curves. Consequently, it is in agreement with the model
proposed by Lulevich et al.,22 that accounts for the cubic non-
linearity but assumes a (D/R0)0.5 dependence in the initial part of
the f–d curve instead of the linear Reissner regime, since it is the
cubic part that provides the dominant contribution to the force.

Fig. 10 (a) Comparison of experimental and numerical F–Dc curves assuming constant volume for two PLA capsules with R0 = 5 mm and R0 = 2 mm;
(b and c) shape of the deformed capsule as obtained by simulations for R0 = 5 mm, when Dc/D0 = 0.1 and Dc/D0 = 0.2, respectively; (d) dimensionless
disjoining pressure profiles P̂ as function of the radial coordinate s; (e) dimensionless energy components Ŵi as function of the dimensionless
deformation Dc/D0, Simulation parameters for solid curve: R0 = 5 mm, E = 1 MPa, h = 25 nm, n = 0.5, gBW = 0 N m�1, W0 = 10�5 N m�1 and dA = 50 nm,
neo-Hookean law and the dimensionless numbers: k̂b = 2.78 � 10�6, P̂A = 20, Ŵ0 = 4 � 10�4 and ĝBW = 0. Simulation parameters for dashed curve:
R0 = 2 mm, E = 1 MPa, h = 20 nm, n = 0.5, gBW = 0 N m�1, W0 = 10�5 N m�1 and dA = 50 nm, neo-Hookean law and the dimensionless numbers:
k̂b = 1.1 � 10�5, P̂A = 10, Ŵ0 = 5 � 10�4 and ĝBW = 0. The experimental curves were obtained by Lulevich et al.22
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It should also be noted that based on the experimentally
reported f–d curves the larger capsule, (R0 = 5 mm), is suscep-
tible to instabilities, especially at high deformations. This
might indicate collapse of the shell followed by water drainage,
or it might also reflect the onset of elastoplastic buckling23,26 or
creep displacement which are effects that are not accounted for
in the shell model employed here. The evolution of the
deformed shape of the capsule as the external force increases
is illustrated in Fig. 10(b and c), where the upper contact area is
seen to follow very smoothly the curvature of the rigid sphere
that constitutes the tip of the cantilever, while the lower contact
area remains flat. This type of deformation cannot be charac-
terized as buckling of the upper contact area, because it is not
the result of compressive stresses. Rather it resembles the
gradual evolution of an indentation process affected by the
cantilever tip onto the elastic shell surface. The slight asym-
metry in the capsule shape at the two poles shown in panels
Fig. 10(b and c) is a result of the spherical tip of the cantilever.
Nevertheless, the radius of the glass sphere is much larger, in
comparison with the capsule radius, and consequently its
curvature does not introduce a significant discrepancy in
comparison with the response of a plane cantilever or sub-
strate. The slight asymmetry in the arrangement of the inter-
rogated capsules is better visualized by plotting the profile of
the disjoining pressure, panel Fig. 10(d), which exhibits plateau
in its distribution along the contact area. Furthermore, due to
the very large resistance to gas compression effected by the
condition for constant volume, the internal pressure increases
significantly as the force increases. This is illustrated by the
gradually intensifying plateau in the contact region, Fig. 10(d),
and the nonlinear behavior in the f–d curve, especially for large
shells, that can be used to recover the area dilatation modulus
as was shown above. Finally, the evolution of the solution is
registered in terms of the energies that constitute the static
equilibrium, Fig. 10(e), and it is seen that, for the parameter
range considered pertaining to an incompressible liquid, most
of the energy is due to stretching of the shell while bending is
negligible.

Next, the simulation is repeated for the case of melamine
formaldehyde (MF) capsules that were tested by Lulevich et al.22

and Mercade-Prieto et al.24 In both cases the response differs
from the above described measurements with PLA shells since
the shell possesses a larger bending resistance, k̂b = 1.1 � 10�5

and 4.8� 10�4, respectively. In particular, in the measurements
reported by Mercade-Prieto et al.24 using micromanipulation
and compression of the microcapsules between two rigid flat
surfaces, the initial linear – Reissner-part of the response is
present in the small deformations regime of the experimental
f–d curve, thus reflecting the balance between bending and
stretching in the transition region of the shell, Fig. 3(a), before
the curved upwards pattern is captured that was identified as
the dominant force component for PLA shells. In this context,
the importance of a simplified model for the approximation
of the f–d curves of such capsules, as the one provided by
eqn (17) of the present study, was pointed out. Simulations
were also performed in the same study using ABAQUS and

fitting was performed on the numerical data using an expression
that contained linear and quadratic terms in the deformation.
In this fashion, estimates were obtained of the shell shear
modulus and thickness on the order of E = 1.17 GPa and
h = 290 nm for microcapsules with rest radius on the order of
R0 = 4.4 mm.

In the present study eqn (17) was employed to provide
estimates of the shell elastic parameters by using the linear
and cubic part of the static response curve in the manner
described in the Section II-B. Thus, parameter values of the
same order of magnitude were obtained with the ones provided
in ref. 24, i.e. E = 0.36 GPa and h = 490 nm. Using the two
available sets of shell parameters simulations were performed
with the methodology proposed in the present study. It was
thus seen that using the parameter estimates provided in ref. 24
fully recovers simulations performed with ABAQUS in the latter
study while excellent agreement is obtained with the experi-
mental data in both the linear and nonlinear parts of the f–d
curve, Fig. 11(a). The shell is seen to progressively acquire more
elongated shapes along the equator without buckling taking
place, panel Fig. 11(b). This is a result of the incompressible
nature of water enclosed in the shell that does not allow for
bending to take place in the pole region as that would cause an
abrupt volume reduction. Instead the contact region elongates
to accommodate the additional energy provided by the inter-
action with the cantilever, panel Fig. 11(b). Furthermore, due to
the larger bending resistance of MF shells, there is an identifi-
able linear part in the f–d curve where the linear Reissner
regime holds before nonlinearity sets in. In fact, the numerical
f–d curve obtained with the estimates provided upon applying
the linear and cubic part of eqn (17) on the experimental f–d
curve, accurately captures the linear regime while under-
estimating the force required to generate larger deformations
since it ignores an intermediate quadratic part that follows the
initial Reissner regime, before cubic effects dominate the static
response, and consequently underestimates the Young’s modulus E.
Nevertheless, simulations with the parameter estimates obtained
via the combination of linear and nonlinear regime incorporated
in eqn (17), provide an overall accurate description of the
experimental f–d curve and recover the aspects of the deformed
shell illustrated in panels Fig. 11(b–d) for the same deformation.
Subsequent improvement of the parameter estimates is possible
by increasing the Young’s modulus while reducing the shell
thickness, in order to maintain the slope of the initial Reissner
regime that is BEh2, see also eqn (13a). In this manner excur-
sions from the experimental f–d curve are minimized and the
parameter estimates proposed in ref. 24 are recovered.

The absence of buckling is corroborated by plotting the
disjoining pressure as the force increases, Fig. 11(c), that
exhibits a point load distribution for small deformations that
is indicative of the Reisner response, followed by a similar
pattern with the simulations for the softer PLA capsules shown
in Fig. 10(d), where the disjoining pressure forms a plateau in
the contact region and gradually dominates the force exerted
on the shell. Finally, the contribution to the total energy
among the different stiffness components is provided in panel
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Fig. 11(d), indicating the dominant effect of stretching and
bending resistances for small deformations. For large deforma-
tions the pattern of stretching energy dominating over bending
is captured, as was also obtained in the context of our simula-
tions with the PLA capsules depicted in Fig. 10(e).

Simulations performed in the present study in reference to
the afm measurements by Lulevich et al.22 with MF capsules,
using an average value for shell elasticity, E = 100 MPa, exhibit a
very similar behavior with the simulations portrayed in Fig. 11
in the context of the experiments by Mercade-Prieto et al.;24

small P̂A. However, it should be stressed that the response
pattern in the experimental curve of the former study indicates
rupture of the shell and water drainage at not very large
deformations, as the authors of the latter study point out. Even
though the present model does not predict rupture or any other
kind of collapse it should be noted that the simulations break
at around Dc/D0 4 0.25 due to inaccuracies in the calculation of
the disjoining pressure distribution. It is conjectured that the

excessive shell stretching in the two pole regions of such
capsules as the external force increases, compromises the
validity of the model employed since it neglects the importance
of friction at the contact region. Finally, in the afm measure-
ments reported by Mettu et al.25 where the effect of increasing
temperature on the shell stiffness is investigated, the linear
Reissner part in the f–d curve is also quite pronounced in view
of the relatively large stiffness of the shell, E E 15 MPa, and
comparable resistance to compression, P̂A E 0.2 for shell
diameter and thickness on the order of 4.3 mm and 60 nm,
respectively.

IV. Conclusions

An extensive comparison was conducted in this study between
AFM measurements of coated microbubbles (MB) and capsules
and the theoretical/numerical model presented in our earlier

Fig. 11 (a) Comparison of experimental and numerical F–D curves assuming constant volume for an MF capsule with R0 = 4.4 mm and E = 1.17 GPa,
h = 290 nm (k̂b = 4.8 � 10�4, P̂A = 1.3 � 10�3), E = 0.36 GPa, h = 490 nm (k̂b = 1.4 � 10�3, P̂A = 2.4 � 10�3), depicted with a solid and dashed line
respectively; the rest of the simulation parameters aren = 0.5, gBW = 0 N m�1, W0 = 10�5 N m�1 and dA = 50 nm, for a shell obeying the neo-Hookean law.
The experimental curve was obtained by Mercade-Prieto et al.24 (b) Shape of the deformed capsule, (c) dimensionless disjoining pressure profiles P̂ as
function of the radial coordinate s and (d) dimensionless energy components Ŵi as function of the dimensionless deformation Dc/D0, pertaining to the
afm simulations depicted in the continuous f–d curve.
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study for the static response of MB’s squeezed between two
rigid flat plates. The thinning of the liquid film between the
MB’s coating and the cantilever results in an increase in the
local pressure, known as the disjoining pressure. Employing a
wall-bubble interaction potential we showed that it is possible
to accurately capture force–deformation (f–d) curves of AFM
experiments for a wide variety of experimental arrangements
and materials and obtain reliable estimates of the bubble-shell
elastic properties. In that sense it extends previous methodo-
logies using various forms of interaction potentials for the
study of free drops and bubbles subject to indentation, that
mainly focused on the linear regime of the static response.

Based on the assumption of axi-symmetry, valid for a wide
range of deformations,51 the f–d curves pertaining to polymeric
shells initially follow the linear Reissner regime, followed by a
non-linear curved downwards regime (Pogorelov) that is asso-
ciated with buckling around the contact area. As the external
force further increases, a curved upwards regime is registered
due to resistance to gas compression. The Reissner model in
the linear regime with the buckling point that signals the
Pogorelov regime, eqn (13a) and (15), provide the necessary
information to calculate both the shell thickness and the
Young modulus, based on data obtained at relatively small
deformations.31 Simulations recover the static response of
AFM measurements until, at higher deformations, instabilities
associated with cantilever friction,49 changes in the elastic shell
behavior20 or inelastic effects26 occur. Such phenomena cannot
be captured by the present model, nevertheless they are not an
issue in the parameter estimation of our methodology. The
latter was also successfully applied on polymeric shells that
coat large bubbles compressed in the open air.40,49 In this case,
a purely repulsive potential was applied to properly capture the
interaction between the shell and indenting cantilever with
air in between, and accurately recover the shell mechanical
properties.

A systematic comparison was also performed between our
model and afm experiments28,29 that are available in the
literature for MBs covered with soft phospholipid monolayers
with significant resistance to volume compression, In these
cases the typical sequence of Reissner and Pogorelov responses
was not detected in the experimental or the numerical curves
since buckling is bypassed and the shape around the contact
area remains flattened. The area dilatation and bending moduli
were estimated by combining the Reissner model and the
asymptotic equation for the pressure dominated regime which
is characterized by a nonlinear curved upwards response
pattern,31 eqn (17). The dominant force on the shell arises
either in the transition or in the contact region of the shell, and
reflects the balance between shell stretching and bending and
between shell stretching and pressure change, respectively, in
agreement with the experimental curves.28,29 This behavior
strongly supports the validity of our assumption regarding MBs
covered with lipid shells, namely that area dilatation and bending
modulus constitute the primary independent elastic parameters.

When the shell encapsulates an incompressible liquid,
buckling is not possible as well and simulations exhibit a

strong curved upwards response in the f–d curves beginning
from the small deformation regime when the bending stiffness
is relatively unimportant, k̂b E 10�6, in conformity well with
experimental findings.22 The f–d curves in both simulations
and experiments exhibit a nearly cubic response at moderate
deformations, in agreement with our previous findings31 in the
parameter range for which stretching and resistance to volume
compression constitute the dominant shell rigidities. In such
cases the linear Reissner regime is weak and its effect is
restricted in mitigating the cubic response. On employing the
nonlinear estimate for the force deformation dependence,
eqn (16b), we obtained reliable predictions of the area dilata-
tion modulus. When the bending stiffness is comparable with
the stretching stiffness, as for melamine formaldehyde shells,24

besides the nonlinear regime at large deformations, the linear
regime is also present in the initial part of the f–d curves. Then
eqn (17) constitutes a reliable first model of the response
pattern that, coupled with simulations, provides optimal and
accurate estimates of the Young’s modulus and shell thickness.

Finally, the above methodology accurately captures the contact
stresses on a coated microbubble in the vicinity of a solid or
flexible wall and is expected to assist the modeling of the trapping
process of chemically modulated shells for the purpose of
attaching them to specific substrates via application of ultra-
sound. In this fashion, the impact of intermolecular forces on
the dynamic aspects of the wall-interaction and the resulting
resonance frequencies and shell break-up threshold, will be
essential for the control of trapped bubble pulsations near a
substrate and the design of novel drug delivery protocols.
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Appendix A: derivation of minimum
distance between the MB and a
cantilever

The liquid film thickness, which is incorporated in the inter-
action potential and the disjoining pressure, is defined as the
minimum distance between the two surfaces, e.g. the cantilever
and the microbubble or the substrate and the microbubble.
When a flat cantilever is considered, Fig. 1(a), the minimum
distance is:

d = zCS � z, (A-1)

and for the substrate–microbubble the film thickness is:

d = z, (A-2)

However, for a spherical cantilever or a cantilever with more
complex geometry the minimum distance is defined by the
Euclidean norm. We now present a methodology for calculating
the disjoining pressure when the cantilever interacting with the
shell is not flat and possesses a tip, e.g. a spherical tip as in the
experiments reported in the literature of afm measurements.17,22,34
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We consider a global cylindrical coordinated system (s,z) with
its origin located at the intersection between the axis of
symmetry and the substrate plane. Then, the axial position of
the cantilever is described as a known function of the cantilever
radial coordinate sc:

zc = f (sc), (A-3)

For example, in the case of a spherical cantilever with center at
(0,zcs) and radius Rc the axial position of points at the cantilever
surface reads as zc ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc

2 � sc2
p

þ zcs. The point (sc,zc) on the
cantilever surface that corresponds to the minimum distance
from a point on the shell interface, lies on the line that is
vertical at that point and connects the (sc,zc) with (s,z), which
can be mathematically described by the following relation

(z � zc)zc
0 + s � sc = 0, (A-4)

where zc
0 ¼ @zc

@sc
is the slope of the tangent at the point (sc,zc).

Therefore, solving the system of eqn (A-1) and (A-2), the
coordinates of the cantilever are calculated, where for a spherical
cantilever we obtain:

sc ¼
sRcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z� zcsð Þ2þr2
q and zc ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc

2 � sc2
p

þ zcs;

ðA-5a; bÞ

Note that, if for example an ellipsoidal cantilever is considered
then the previous system requires an iterative method for the
solution, like the Newton–Raphson method. Then, the minimum
distance d between the shell surface and the cantilever is:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� scð Þ2þ z� zcð Þ2

q
; ðA-6Þ

Then the disjoining pressure can be calculated as:

P ¼ �@wint

@n
¼ �@wint

@d
@d
@n
¼ �@wint

@d
@d
@s

				
z

@s
@n
þ @d
@z

				
s

@z

@n

� �
;

~n ¼ �zs~es þ ss~ez
ðA-7a; bÞ

The term
@wint

@d
is easily calculated by differentiation of the

interaction potential, while for the rest of partial derivatives
further calculations are required taking into account the defini-
tion of the outwards pointing normal vector on the shell sur-
face, Fig. 12. In particular, differentiation of eqn (A-6) with
respect to radial and axial coordinates gives:

@d
@s

				
z

¼ 1

d
s� scð Þ 1� @sc

@s

� �
þ z� zcð Þ �@zc

@s

� �� �

@d
@z

				
s
¼ 1

d
s� scð Þ �@sc

@z

� �
þ z� zcð Þ 1� @zc

@z

� �� �
;

ðA-8a; bÞ

with

@s
@n
¼ �zs and

@z

@n
¼ ss; ðA-8c; dÞ

where s denotes the arc-length on the bubble surface and when
it is used as subscript denotes differentiation. However, in
eqn (A-8a,b) the derivatives of the cantilever coordinates with
respect to (s,z) are not known, thus we differentiate eqn (A-4)
while introducing the known cantilever shape via (A-3):

@sc
@s
¼ 1

1þ zc
0 2 � z� zcð Þzc0 0

;

@sc
@z
¼ zc

0

1þ zc
0 2 � z� zcð Þzc0

with zc
0 ¼ @

2zc

@sc2
;

ðA-9a; bÞ

Then, employing the chain rule of differentiation:

@zc
@s
¼ @zc
@sc

@sc
@s
¼ zc

0@sc
@s

; and
@zc
@z
¼ @zc
@sc

@sc
@z
¼ zc

0@sc
@z
;

ðA-9c; dÞ

One additional differentiation of the above terms will be
required and calculated in the same manner as above, when
the jacobians of the disjoining pressure are needed. The above
methodology can be also employed for the calculation of
the film thickness in coating/spreading problems when the
substrate has a corrugated profile or topography in general.
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Fig. 12 Minimum distance between a point on the shell surface and a
cantilever of an arbitrary shape.
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23 R. Mercadé-Prieto, R. Allen, D. York, J. A. Preece, T. E.
Goodwin and Z. Zhang, Compression of elastic–perfectly
plastic microcapsules using micromanipulation and finite
element modeling: Determination of the yield stress, Chem.
Eng. Sci., 2011, 66, 1835.
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