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How do chemical patterns affect equilibrium
droplet shapes?†

Yanchen Wu, *a Fei Wang,*a Shaoping Ma,a Michael Selzerab and Britta Nestlerab

By utilizing a proposed analytical model in combination with the phase-field method, we present a

comprehensive study on the effect of chemical patterns on equilibrium droplet morphologies. Here,

three influencing factors, the droplet sizes, contact angles, and the ratios of the hydrophilic area to the

hydrophobic area, are contemplated. In the analytical model, chemical heterogeneities are described by

different non-linear functions. By tuning these functions and the related parameters, the analytical

model is capable of calculating the energy landscapes of the system. The chemically patterned surfaces

display complex energy landscapes with chemical-heterogeneity-induced local minima, which

correspond to the equilibrium morphologies of the droplets. Phase-field (PF) simulations are accordingly

conducted and compared with the predicted equilibrium morphologies. In addition, we propose a

modified Cassie–Baxter (CB) model to delineate the equilibrium droplet shapes. In contrast to the classic

CB model, our extension is not only restricted to the shape with a spherical cap. Both the energy

landscape method and the modified CB model are demonstrated to have a good agreement with the PF

simulations.

1 Introduction

Predicting the droplet shapes and manipulating the movement
of droplets on heterogeneous surfaces have sparked great
interest both in fundamental research and industrial applications.
For instance, the precise deposition of droplets with controlled
shapes is of significance in liquid-based printing applications,
such as inkjet printing,1,2 surface tension induced microfluidic
devices,3,4 lab-on-a-chip,5,6 manipulation of the interactions in
protein adsorption,7,8 liquid metal printing,9 solder droplet
printing,10 and droplet sampling.11,12 Diverse strategies have
been applied to regulate the droplet shapes, among which
chemical pattern and surface geometry methods are widely
utilized.13–17 Taking droplet sampling for example, a super-
hydrophilic–superhydrophobic patterned surface can be used
to form arrays of droplets where active molecules, nonadherent
cells, or microorganisms are trapped for high-throughput (HT)
screening.11,12 Moreover, through careful design of the patterned
surface, we can obtain the desired droplet shapes with a certain
size, within which biochemical reactions occur, and the shape
and size of the droplets can influence the reaction process.
These patterned surfaces ranging from millimeter scale to

nanometer scale are obtained by using printed circuit board
technology, elastomer stamps, photolithography, and litho-
graphy, to name a few.18 In this study, we use a versatile and
robust strategy to show a complete control of droplet shape via
the design of chemical patterns. We anticipate that this liquid-
based patterning strategy will facilitate droplet manipulation
technology.

Droplets on chemically patterned surfaces may have multiple
equilibrium shapes, which are caused by the pinning effect on
the surface discontinuity.19 The equilibrium shape of a sessile
droplet is obtained by minimizing its total interfacial energy.
At the equilibrium state, the droplet has a constant mean
curvature, which is governed by the Young–Laplace equation.
The local contact angle is determined by the three surface
tensions on the triple line, which follows the quintessential
Young’s law. When droplets are deposited on a heterogeneous
surface, the classical Cassie–Baxter model (CB) has been proven
to be a successful model in a wide range of situations.20–23

However, this model can merely predict the apparent contact
angle of droplets on a composite surface and loses its validity
when the wavelength of the roughness or chemical heterogeneity
is relatively large.24 To extend and amend the CB model, different
modified approaches have been proposed and discussed.23,25–30

Carmeliet et al. studied droplet wetting and distortion on
chessboard-patterned surfaces with varying patch sizes. They
found a critical ratio of the patch size to the droplet radius,
above which the droplet shape is distorted and no single contact
angle can be determined. When the chemical heterogeneity is
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comparable to the droplet size, anisotropic wetting may happen
and the complex geometry of the deformed droplet is challenging
to describe with a general analytical method. One common
method to delineate static anisotropic wetting for droplets on
chemically heterogeneous surfaces is studying droplet distortion
from the baseline, since the baseline profile of the droplet is
more accurate, symmetric, and stable.31 Here, the droplet distor-
tion is quantified by the ratio a/b, where a and b are the lengths of
the half major and minor axis of the droplet baseline (see
Fig. 1(a)). The anisotropic droplet shapes on chemically patterned
surfaces have been investigated by a number of authors.18,32–47

Due to the lack of accurate prediction of the number as well
as the shapes of equilibrated droplets on chemically patterned
surfaces, the elaborate maneuver of droplet formation and
morphology control remains a tough task. In this work, we
show that the equilibrium shapes of droplets on chemically
patterned surfaces can be analytically predicted by minimizing
the free energy of the system. A free energy minimization
method has been previously used in ref. 18 to study the
morphological transitions of droplet states with a variation
in the droplet volumes and the contact angles on striped
patterned surfaces. They theoretically derived stability criteria
for the morphological transitions of droplets on striped surfaces
by using simple parameterizations of the channels and bulges in
terms of cylindrical and spherical segments. Differing from this
purpose, the present model aims to find the complete set of
equilibrium states, where more complex patterned surfaces are
considered. For this consideration, we use a concise model,
where the baseline of the droplets is approximately delineated
by an ellipse with semi-axes a and b. Benefiting from this
approximation, we are able to calculate the total interfacial
energy by integration and thus obtain the energy landscapes in
terms of a and b. Here, a and b are used to identify different local
energy minima and the corresponding equilibrium shapes
of droplets. Our prediction is based on the surface energy
landscapes and all the energy minima are checked through
phase-field simulations. By using both methods together, we
address the complete set of equilibrium states of droplets.
Moreover, we propose a modified CB model to compare with

the diverse predicted equilibrium droplet shapes. We further
elucidate that the number and the shapes of the equilibrated
droplets can be controlled by tuning the droplet sizes, contact
angles, and the ratios of the hydrophilic to the hydrophobic
areas. We emphasize that we herein focus on droplets whose
size is comparable to the length scale of the chemical patterns,
both of which are smaller than the capillary length, so that the
influence of gravity can be neglected.

Simulation offers great flexibility and efficiency in investi-
gating droplet wetting phenomena under various conditions
and thus sometimes shows great advantages over experiments.
Various numerical methods have been devoted to modeling
droplet behaviors, like molecular dynamics (MD) and Monte
Carlo (MC) methods, the Lattice-Boltzmann method (LB),
thin-film model, and phase-field method (PF), to name a few.
Among these methods, the MD and MC methods are usually
restricted to the nano- or microscale owing to the relatively high
computational load. The LB method and the thin-film model
are applicable at the mesoscale. The LB method with a scale-
bridging nature shows a great advantage in the parallel imple-
nentation and the simplicity of programming,48 yet it usually
suffers from the shortcoming of high spurious velocities at the
interface.49 As derived by a long wave approximation from the
Navier–Stokes equations to a single nonlinear partial differen-
tial equation for the film thickness, the thin-film model can be
used to simplify some fluid dynamics problems.50,51 Actually,
the thin-film model includes a form of the Cahn–Hilliard
equation and thus describes the dynamics of a conserved order
parameter field.52,53 The Cahn–Hilliard type PF model and
Allen–Cahn type PF model both can be viewed as the gradient
flow of the Lyapunov energy functional and thus show a
monotonic decrease in the total free energy with time.54 Since
the Cahn–Hilliard type PF model is naturally conserved, i.e., the
mass conservation is obeyed, the dynamic process of the
described system can be taken into account. This makes it
possible to conduct an analysis of instability phenomena like
spinodal dewetting, Rayleigh instability, etc.55–57 However, the
Allen–Cahn type PF model can be considered as a gradient
dynamics, and its kinetic path is different from the Cahn–
Hilliard type model. In this work, we use an Allen–Cahn type PF
model with volume preservation. In this model, an additional
bulk energy is introduced to counterbalance the volume
changes caused by the original nonlinear terms in the Allen–
Cahn type PF model, similar to the role of a Lagrange multiplier
to ensure volume conservation. The idea can be seen as some
kind of redistribution of mass along the corresponding phase
boundaries.58 Compared to the Cahn–Hilliard model, the
Allen–Cahn equation is more numerically efficient, especially
for three-dimensional simulations, which are necessary for the
study of the chocolate and chessboard pattern surfaces in the
current work. The PF model, which is a diffuse interface model,
has been extensively studied and employed in the areas of large
interface deformations or topological changes, such as droplet
coalescence, breakup, wetting, and so forth.59 A great advan-
tage of the PF model is that it is free of explicitly tracking the
interface between two phases, making it feasible to implement

Fig. 1 Schematic illustration for the geometric assumptions of a droplet
on a chemically patterned surface. (a) Bottom view. The red ellipse centred
at O1 with semi-axes a and b is the droplet baseline. The parameter rb

denotes the base radius. (b) Side view. The circular arc above the black line
passing through O1 corresponds to a circle centred at O2 with radius rc and
depicts the profile of the liquid–gas interface. Here, h is the droplet height,
and j and b represent polar angles on the surfaces of the red ellipse and
blue arc, respectively.
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for interfacial dynamics in multi-phase flows. More informa-
tion about the advantages and limitations of the PF method
have been elucidated in ref. 60.

The paper is organized as follows: we first explain the
theoretical framework for describing the equilibrium shapes
of droplets on different chemically patterned surfaces. Then,
we introduce the numerical method, and thereafter we utilize
the theoretical framework combined with numerical simula-
tions to investigate the number and shapes of equilibrated
droplets affected by droplet sizes, contact angles and the ratios
of the hydrophilic to the hydrophobic areas. In the last section,
a summary and conclusions are presented.

2 Analytical model

In this section, we present a detailed description for the
analytical method, which was only briefly depicted in our
previous work.61 We here apply this analytical approach to
scrutinize the wetting of chemically patterned surfaces with
various characteristic lengths, contact angles, and ratios of the
hydrophilic area to the hydrophobic one, which were not
contemplated in the previous work. In comparison with the
model in ref. 61, three major improvements are recounted here:
(i) A new parameter l is introduced in the nonlinear functions
depicting the chemical heterogeneities of the substrate. With
this new parameter, it is convenient to manipulate the ratio of
the hydrophilic area to the hydrophobic area. (ii) A new para-
meter w is employed to control the lattice roundness of the
chocolate patterned surface. (iii) Most importantly, a modified
Cassie–Baxter model is proposed here for a comparison with
the analytical approach.

We consider a sessile droplet on a solid surface, which can
be interpreted as a three-phase system consisting of a solid,
liquid, and gas phase. The equilibrium state of this system is
achieved by minimizing the total interfacial energy, which is
formulated as

E ¼ Algglg þ
ð
Als

ðgls � ggsÞdA; (1)

where Alg and Als represent the areas of the liquid–gas and
liquid–solid interface, respectively. The parameters glg, gls and
ggs denote the interfacial energy density of liquid–gas, liquid–
solid and gas-solid, respectively. It is postulated that the
equilibrated droplet has an elliptical baseline with semi-axes
a and b (Fig. 1(a)). As sketched in Fig. 1(b), the droplet cap
(liquid–gas interface) is described with a series of circular arcs
having varying curvature radius

rc(j) = [rb
2(j) + h2]/2h, (2)

where rb, h and j are the base radius, droplet height and polar
angle of the base ellipse, respectively. In the polar coordinate,
the base radius rb is given by

rbðjÞ ¼
abffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 sin2ðjÞ þ b2 cos2ðjÞ
q : (3)

The volume of the droplet Vd follows the expression

Vd ¼
p
6
hð3abþ h2Þ: (4)

The area of the liquid–gas interface Alg is formulated as

Alg ¼
ð2p
0

rc
2ðjÞð1� cos bÞdj; (5)

where b is the polar angle between the rays from O2 to the apex
of the cap and the baseline of the droplet (see Fig. 1(b)), reading

b ¼ arccos
rcðjÞ � h

rcðjÞ
: (6)

From eqn (2)–(5), for a droplet with a fixed volume Vd(a,b,h), the
area of the droplet cap Alg can be fully described via a and b.
Therefore, the first term of the total interfacial energy in
eqn (1), namely, E1(a,b) := glgAlg, has two degrees of freedom.

We consider three chemically patterned surfaces, whose
chemical heterogeneities are described as fk(rb,j) := gls � ggs,
where k = 1, 2, and 3 denote the striped, chocolate, and
chessboard patterns, respectively. The functions fk(rb,j) are
expressed as

f1¼ gmþ g0 tanh½xðcosd1�lÞ�

f2¼ gmþ g0 tanhfx½ðcosd1�lÞðcosd2�lÞ�wðcosd1þ cosd2Þ�g

f3¼ gmþ g0 tanh½xðcosd1�lÞðcosd2�lÞ�

8>>><
>>>:

(7)

with d1 = (2prb sinj + ipL)/L and d2 = (2prb cosj + jpL)/L. Here,
gm and g0 are the mean surface energy density difference and
the amplitude of the heterogeneity, respectively. For example,
the parameter set (gm = 0, g0 = 0.5) corresponds to the situation
where the static equilibrium contact angles on the hydrophilic
(y1) and hydrophobic (y2) areas are 601 and 1201, respectively.
The sharpness of the chemical pattern is controlled by the
parameter x.

The index i, j = 0, �1, �1/2,. . . depicts the center point
position of the droplet baseline. Fig. 2 highlights all the
possible coordinates of the index, with respect to which the
equilibrated droplets are symmetric on the three chemically
patterned surfaces. For the striped patterned surface (Fig. 2(a)),
the red points P1 (i = �1, �3,. . .) are on the center of
the hydrophilic stripes (white), while the blue points P2

(i = 0, �2, �4,. . .) locate on the center of the hydrophobic ones
(grey). For the chocolate and chessboard patterned surfaces,
the droplet base center points P1, P2, and P3 with the coordi-
nates ( j,i) are indicated in Fig. 2(b) and (c), respectively.
It should be noticed that P1, P2, and P3 are periodically
distributed on the surfaces and the validation for the high
symmetry property of these positions has been fully discussed
in ref. 61. The characteristic length is defined as L := Ldry + Lwet,
where Ldry and Lwet are the respective characteristic lengths for
the hydrophobic and hydrophilic areas. For instance, Ldry (Lwet)
stands for the width of a hydrophobic (hydrophilic) stripe
for the striped surfaces. For the chocolate and chessboard
patterns, Ldry and Lwet denote the length of the hydrophobic
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lattice and the distance in the direction of j or i between
two neighbouring hydrophobic lattices (Fig. 2(b) and (c)),
respectively.

We define a parameter n := Lwet/Ldry to characterize the area
ratio of the hydrophilic to the hydrophobic regions on the three
chemically patterned surfaces. This parameter n is manipulated
by varying l in the functions f1, f2, and f3. Here, we select three
typical values of n = 1 : 1, 1 : 2, and 1 : 3, corresponding to
l = cos 901, cos 601, and cos 451, respectively. For these three
values of n, the contours fk(x,y) of the three chemically
patterned surfaces are shown in Fig. 3(a)–(c), where we have
made the following coordinate transformation: x = rb cosj and
y = rb sinj. It is found that the three functions with selected
parameters perfectly describe the desired heterogeneity of the
three typical chemically patterned surfaces. In particular, the
parameter w in f2 is introduced to control the roundness of
the isolated hydrophobic areas (red areas in Fig. 3(b)).

With the heterogeneity functions fk, the second term of the
interfacial energy in eqn (1) is calculated through the integra-
tion:

ð
Als

ðgls � ggsÞdA ¼
ð2p
0

1

2
rb

2fkðrb;jÞdj � e (8)

By substituting the expressions of rb in eqn (3) and fk(rb,j) in
eqn (7) into eqn (8), the integration in eqn (8) depends solely
on the two parameters a and b for a certain patterned surface
when the droplet position is fixed, namely, E2ða; bÞ : ¼Ð

Als
ðgls � ggsÞdA. Therefore, the total interfacial energy

E = E1 + E2 can be described as a function of the parameters
a and b. The philosophy of this method is to minimize the total
interfacial energy E in terms of a and b, so that the equilibrium
shapes of droplets are depicted by the local minima of the
energy landscapes E(a,b).

In the following, we will propose a modified CB model to
address the equilibrated droplets on chemically patterned
surfaces. Firstly, let us revisit the classical CB model, which
delineates the average contact angle �y of droplets on chemically
heterogeneous surfaces:

�y = arccos(x1 cos y1 + x2 cos y2). (9)

Here, xm represents the area fraction of the surface component
with the corresponding equilibrium contact angle ym, m = 1, 2.
In the current work, the area fractions xm range from 0.25 to
0.75. The average angle �y actually reflects the energy minimum
state of droplets and reveals the wettability of the chemically
heterogeneous surface.

We assume that an equilibrated droplet on the chemically
patterned surface is delineated by a spherical cap (see Fig. 4),
whose contact angle reads �y. This spherical cap is described by

Fig. 2 (a–c) Sketches of the surface topology for three chemically
patterned surfaces: stripe, ‘‘chocolate,’’ and ‘‘chessboard.’’ Here, the grey
and white areas denote hydrophobic and hydrophilic surfaces, respectively.
The coordinates of the droplet base center positions at equilibrium are
highlighted by P1, P2 and P3. (a) P1: i = 1, P2: i = 0. (b) P1: ( j = 0, i = 0),
P2: ( j = 1, i = 0), and P3: ( j = 1, i =�1). (c) P1: ( j = 0, i = 0), P2: ( j = 0, i = 1), and
P3: ( j = �1/2, i = 1/2) or P1: ( j0 = 0, i0 = 0), P2: ð j0 ¼ 1=

ffiffiffi
2
p

; i0 ¼ 1=
ffiffiffi
2
p
Þ, and

P3: ð j0 ¼ 0; i0 ¼ 1=
ffiffiffi
2
p
Þ. The indexes with primes for the last three points are

in the rotated coordinate system.

Fig. 3 (a–c) Contour plot of the functions f1(x,y), f2(x,y), f3(x,y) describing
the heterogeneities of the three chemically patterned surfaces: stripe,
‘‘chocolate,’’ and ‘‘chessboard,’’ respectively. Here, x = rb cosj and y =
rb sinj. The patterns are obtained by setting gm = 0, g0 = 0.5, and x = 100.
The characteristic length L in (I), (II), and (III) is 20, 30, and 40, respectively.
The ratios n of 1 : 1, 1 : 2, and 1 : 3 correspond to l = cos 901, cos 601, and
cos 451, respectively. In (b) (I), (II), and (III), we set w = 0.55, 0.13, and 0.10,
respectively. The red and blue colors show fk = �0.5 or 0.5, corresponding
to the hydrophilic and hydrophobic area, respectively.

Fig. 4 Droplet morphology in the form of a spherical cap. The liquid–
solid contact area is highlighted in the cyan color.
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the following equations

Vd ¼ pð3rb2 þ h2Þ=6 volume

h ¼ rcð1� sin �yÞ height

rb ¼ rc sin �y base radius:

8>>><
>>>:

(10)

Here, rc and rb are both constants. When the droplet volume Vd

and �y are given, rb is obtained via eqn (10), namely, rb = rb(Vd,�y).
The baseline of an equilibrated droplet may deviate from the
circular shape (red circle in Fig. 4) and exhibit an elliptical
morphology, as assumed in the previous section. In this case,
we use the contact area Asl = prb

2 of the circular base area as a
reference value to appraise the one of the elliptical base area,
i.e., pab = C(Vd,�y), where C = prb

2. The proposed modified
CB model will be compared with the PF simulations in the
following.

3 Numerical model

Mathematically, the process of a droplet depositing on a
surface can be seen as a free boundary problem where the
evolving interface minimizes its surface energy to achieve an
energetically favourable state. In this work, an Allen–Cahn-type
phase-field method is utilized to simulate the equilibrium
shapes of droplets on chemically patterned surfaces. This
model has been comprehensively discussed and validated in
previous studies.61–64 For brevity, we here give a succinct
description of this method. To describe the liquid (l) and gas
(g) phases, we introduce a space- and time-dependent order
parameter f(x,t) varying continuously from 0 to 1 across the
liquid–gas interface. In the pure liquid and the pure gas phases,
we have f = 1 and f = 0, respectively. The time evolution of the
order parameter f(x,t) acts to reduce the free energy functional
of the system, which is formulated as61–67

FðfÞ ¼
ð
O

1

e
wðfÞ þ eaðf;rfÞ þ gðfÞ

� �
dOþ

ð
S

fwðfÞdS:

(11)

Here, O and S indicate the spatial domain and solid–fluid
boundary, respectively. The parameter e is related to the thick-
ness of the liquid–gas interface. The function w(f) is an
obstacle potential, which reads

wðfÞ ¼
16
p2glgfð1� fÞ if f 2 ½0; 1�

1 else:

(
(12)

The term a(f,rf) in eqn (11) denotes the gradient energy
density, which is expressed as

a(f,rf) = glg|rf|2. (13)

The bulk energy density g(f) in eqn (11) is adopted to ensure
volume conservation58,68

gðfÞ ¼
X2
a¼1

walðfaÞ; (14)

where wa is a weight function and l(f) = f3(6f2 � 15f + 10)
represents an interpolation function. The last term in eqn (11)
presents a wall free energy, which is formulated as

fw(f) = gls + (ggs � gls)l(f). (15)

The time evolution of f is derived by the functional derivative
of F(f), reading

te
@f
@t
¼ 2eglgDf�

16

ep2
glgð1� 2fÞ � @gðfÞ

@f
in O; (16)

where t is a temporal relaxation parameter for the gas–liquid
interface. As proposed in ref. 69 and 70, the boundary condition
that is consistent with Young’s law follows

tw
@f
@t
¼ 2eglg

@f
@n
� ðggs � glsÞ

@lðfÞ
@f

on S: (17)

Here, tw is a phenomenological parameter determining the
deviation of the system from the equilibrium state, and n
depicts the normal vector of the wall S.

To solve the equation system numerically, the finite differ-
ence method on a regular grid with an explicit Euler time
scheme is applied. A fine time step is adopted according to
the von Neumann stability analysis, so that the numerical
stability of the simulations is guaranteed. In this work, the
length x, time t, and energy E are nondimensionalized by the
characteristic parameters, x* = 1 � 10�6 m, t* = 1 � 10�9 s,
and E* = 1 � 10�11 J, respectively.

4 Results and discussion

In this section, by using the analytical methods proposed in
Section 2 and the PF model described in Section 3, we study the
influence of droplet sizes, contact angles, and the ratios of the
hydrophilic area to the hydrophobic area upon the equilibrium
morphologies. Here, three typical chemically patterned surfaces,
namely, striped, ‘‘chocolate,’’ and ‘‘chessboard’’ patterned surfaces,
are considered.

4.1 Droplet size

In this part, the contact angles on hydrophilic and hydrophobic
areas are set as 601 and 1201, respectively, i.e., y1 = 601,
y2 = 1201. The characteristic length in eqn (7) is a constant
value L = 40. With varying the droplet volume Vd, we use the
ratio R/L to characterize the effect of the droplet size on
the equilibrium patterns. Here, R is the effective radius of the
droplet, which is calculated according to R = (3Vd/4p)1/3.

In Fig. 5, we present the surface energy landscapes for
droplets with different volumes as well as the corresponding
equilibrated states on the chocolate-patterned surface. For the
sake of conciseness, the simulation setups, the energy maps,
and the snapshots of the equilibrated droplets on the other two
patterns (striped and chessboard patterned surfaces) are fully
described in the ESI.† From (I) to (III) in Fig. 5, the size of the
droplets varies from R/L = 0.75 to R/L = 0.25. The hydrophobic
square lattices (red) have a width of Ldry = L/2 = 20 and the
distance between two neighbouring lattices is Lwet = L/2 = 20.
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In each panel, the surface energy landscapes in (A), (B), and (C)
are for droplets with base center positions on P1, P2, and P3,
respectively. The energy minima in the deep blue region are
sequentially numbered, corresponding to the snapshots of the
PF simulation results labeled with the same number in (D).
As an example, we compare the baseline (red dashed ellipse) of
the droplets from the analytical model with the one from the PF
simulations in (I)(D). The elliptic baseline with semi-axes a, b
from the analytical model is obtained from the coordinates of
the energy minima in the energy landscapes.

It is observed that the analytical predictions of the energy
landscapes show satisfactory agreement with the simulation
results. Actually, the elliptical baseline can be considered as an
average approximation for the curved triple line of the droplets.
This model is more accurate when the aspect ratio a/b is closer
to 1. This can be confirmed by the fact that the first and fourth
snapshots from PF simulations in (I)(D) agree excellently
with the analytical model (red dashed lines), while the other

snapshots with a/b far away from 1 show relatively large
deviations from the analytical predictions.

Through the energy-map method and the PF simulations, we
obtained the influence of the droplet size on the quantity N and
the morphologies of the equilibrated droplets on the three
typical chemically patterned surfaces, as illustrated in Fig. 6.
Here, the top ((a), (b)), medium ((c), (d)), and bottom ((e), (f))
rows correspond to the striped, chocolate-patterned, and
chessboard-patterned surfaces, respectively. As shown in
Fig. 6(a), (c) and (e), the equilibrated quantity N increases with
the ratio R/L. This reveals that large droplets tend to have more
equilibrium shapes for all three patterned surfaces. Moreover, a
comparison among Fig. 6(a), (c) and (e) shows that for a fixed
ratio R/L, the number of equilibrium states increases with
an increase in the complexity of the surface pattern, i.e.,
striped-patterned surface - chocolate-patterned surface -

chessboard-patterned surface. The underlying reason for the
effect of the droplet volume and the complexity of the patterned

Fig. 5 Surface energy landscapes for droplets with different sizes on chocolate-patterned surfaces and snapshots of equilibrated droplets through PF
simulations. (I) R/L = 0.75, (II) R/L = 0.5, and (III) R/L = 0.25. The chemical heterogeneities are described by f2(rb,j) in eqn (7) with the following
parameters: gm = 0, g0 = 0.5, x = 100, L = 40, l = 0, and w = 0.55. The energy minima are specified by different numbers, corresponding to the snapshots
in (D) labeled with the same number. The surface energy landscapes for (A), (B), and (C) depict the systems with the droplet base center positions on
P1, P2, and P3, respectively. (D) Snapshots of equilibrated droplets via PF simulations (blue: hydrophilic, red: hydrophobic).
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surfaces is as follows. An increase in the droplet volume and the
complexity of the patterned surfaces both gives rise to more
covered energy discontinuous lines, which have a pinning effect
on the spreading of the droplets. Due to this pinning effect
from the increased amount of discontinuous lines, more
possible equilibrated droplet shapes are prone to appear.

Fig. 6(b), (d) and (f) depict the droplet base radii a and b at
equilibrium from PF simulations (filled symbols) and the
energy-map model (hollow symbols) in comparison with the
modified CB model (solid curves). The scenarios for droplets
with different sizes are distinguished by different colors. As we
can see, for each volume, the simulation results coincide with
the one from the energy-map model. Besides, the coloured
solid curves are consistent with the same coloured symbols.
Certain deviations of the energy-map model from the PF
simulations are due to the strongly curved contact line of the
droplets, which is caused by the pinning effect on the hydro-
philic–hydrophobic discontinuous lines on the surfaces. While

in our energy-map model, we have applied an elliptical baseline
to averagely describe the triple line. Nevertheless, the good
agreement between the simulations, energy landscape method,
and the modified CB model implies the capability as well as the
justifiability of the proposed approaches. It should be noticed
that in the present work, there exists a limit for the aspect ratio
a/b. When the value of a/b is beyond the limit, the droplet
becomes slender with a super high/low aspect ratio. In this
case, interfacial instabilities may appear, leading to the
breakup of the droplets. This topic is out of the scope of the
present study and will be addressed in forthcoming work.

At this point, we have benchmarked the analytical model
by studying the number and the shapes of the equilibrated
droplets with various volumes on the three typical chemically
patterned surfaces. As the droplet volume increases, for a
certain patterned surface, more equilibrated droplet shapes
appear. In the modified CB model, we assume that the different
equilibrated droplets with the same volume on a certain surface
tend to have the same liquid–solid contact area. This hypo-
thesis has been confirmed by PF simulations. For instance, as
shown in Fig. 6(b), (d) and (f), for each droplet size, the results
from the PF simulations and the energy landscape method
(filled and hollow symbols) locate near the corresponding curve
pab = constant. This reveals that the equilibrated droplets have
approximately the same contact area Als = pab. The slight
deviation of the symbols from the solid curves is by dint of
the disparity between the curved contact line in simulations
and the postulated elliptical baseline in the analytical model.
Furthermore, the distinct droplet shapes on the chemically
patterned surfaces are attributed to the pinning effect on the
hydrophilic/hydrophobic boundaries. Big droplets have large
contact areas and long contact lines, which cross more hydro-
philic/hydrophobic boundaries, leading to an increase in the
number of equilibrium shapes.

4.2 Contact angle

In this section, we systematically investigate the equilibrated
droplet shapes affected by the contact angles on hydrophilic
and hydrophobic areas. The difference between the contact
angles Dy := y2� y1 is divided into three groups: Dy = 301, 451, and
601. As listed in Table 1, in each group, four pairs of contact angles
(y1,y2) are chosen. In the following simulations, the blue and the
red areas of the substrates correspond to the low contact angle (y1)
and the high contact angle (y2), respectively. The characteristic
length is constant L = 40. Droplets with the same size (R/L = 1) on
three typical chemically patterned surfaces are focused on.

As three typical examples, Fig. 7(I), (II) and (III) display the
surface energy landscapes and the snapshots of the simulated

Fig. 6 The number N and the morphologies of the equilibrated droplets
on three typical chemically patterned surfaces in dependence of the
droplet sizes. (a and b), (c and d), and (eand f) are for striped, chocolate-
patterned, and chessboard-patterned surfaces, respectively. (a), (c), and
(e) depict the relation N versus R/L. (b), (d), and (f) describe the equilibrated
droplet morphologies with different sizes predicted by PF simulations
(filled symbols), in comparison with the energy-map model (hollow
symbols) and the modified CB model (solid curves).

Table 1 The setup of contact angles

Dy 301 451 601

Contact angle pairs (y1,y2) (301,601) (451,901) (301,901)
(601,901) (751,1201) (601,1201)
(901,1201) (901,1351) (901,1501)
(1201,1501) (1351,1801) (1201,1801)
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equilibrium droplets on the chocolate-patterned surface
for contact angle pairs (301, 901), (901, 1501), (1201, 1801),
respectively. The surface energy landscapes (A), (B), and (C) in
each panel correspond to droplets with base centers locating
on P1, P2, and P3, respectively. The energy minima in the
energy maps are labeled with different numbers, corres-
ponding to the simulation snapshots indicated by the same
number in (D). The geometrical parameters for the patterned
surface are the same as the ones in Fig. 5. For brevity, the
energy landscapes and the snapshots of the equilibrated
droplet shapes for striped and chessboard patterned surfaces
are included in the ESI.†

By using the above-mentioned energy landscape model
together with PF simulations, we found all the possible equili-
brium droplet shapes on the three chemically patterned
surfaces for the contact angle pairs tabulated in Table 1. The
number N of the equilibrium droplet shapes versus �y and Dy is
illustrated in Fig. 8(a), (d), (g) and (b), (e), (h), respectively. Here,
the first, second, and last row correspond to the striped,
chocolate, and chessboard patterned surfaces, respectively.

For the three patterned surfaces, the following similarities
(i) and (ii) and differences (iii) are observed: (i) For all three
surfaces, N decreases with �y and remains almost constant when
�y \ 1001. For instance, for the chocolate-patterned surface
(Fig. 8(d)) and �yZ 1001, we observe N = 3 and these three states
are shown in Fig. 7(II) and (III), where the droplet base centers
locate at the positions P1, P2, and P3, respectively. With a
decrease in �y, the energy landscape becomes more intricate
(see e.g., Fig. 7(I)), where the quantity of equilibrium states
rises. The underling reason is that with a decrease in �y, the
liquid–solid contact area is enlarged, which leads to more
discontinuous lines covered by the droplets. Hence, N increases
with a decrease in �y. (ii) For all three patterned surfaces, N
increases with a decrease in Dy when Dy o 0. This is because
when Dy o 0 deviates farther from 0, on the one hand, the
pinning effect is more pronounced, and on the other hand,
�y decreases. (iii) Different results are observed for distinct
patterned surfaces when Dy 4 0. For the striped and chocolate
patterned surfaces, N remains constant, whereas N increases
with Dy for the chessboard patterned surface. The former

Fig. 7 Surface energy landscapes for droplets on chocolate-patterned surfaces with different contact angles and corresponding snapshots of
equilibrated droplets from PF simulations. (I) y1 = 301, y2 = 901, (II) y1 = 901, y2 = 1501, and (III) y1 = 1201, y2 = 1801. The chemical heterogeneities are
depicted by f1(rb,j) in eqn (7) with x = 100, L = 40, l = 0, and w = 0.55. The mean value gm and the amplitude g0 of the surface energy density are set
according to the contact angle pairs. The energy minima are shown by different numbers, corresponding to the snapshots in (C) labeled with the same
number. The surface energy landscapes for (A), (B) and (C) represent the setups where the droplet base center positions are P1, P2 and P3, respectively.
(D) Snapshots of equilibrated droplets from PF simulations (blue: hydrophilic, red: hydrophobic).
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observation is due to the relatively small contact area resulting
from a high value of �yZ 1001. The latter one is as a result of the
high density of the discontinuous lines, which gives rise to a
higher chance of pinning. For the striped and chocolate pat-
terned surfaces, although the pinning effect becomes stronger
with an increase in Dy when Dy 4 0, the number of pinning
lines is not as high as the one for the chessboard pattern, when
the size of the droplets is comparable with the characteristic
length. In contrast, for the chessboard pattern, the high density
of discontinuous lines facilitates the occurrence of more equili-
brated shapes when the pinning effect is reinforced with a rise

in Dy. From the relations N vs. �y and N vs. Dy, we should set low
values of �y as well as high values of |Dy| to obtain more
equilibrated droplets, and vice versa.

Fig. 8(c), (f) and (i) describe the values (a,b) of equilibrated
droplets from the PF simulations (filled symbols) and the
energy landscape model (hollow symbols) for different �y. These
results are compared with the modified CB model (solid
curves). As �y decreases, for droplets with the same size, the
contact area tends to increase and therefore the curve ab =
C(Vd;�y) from the modified CB model translates upper right
(see eqn (10)).

Fig. 8 The number and the morphologies of the equilibrated droplets on three typical chemically patterned surfaces in dependence of the contact
angles. (a–c), (d–f), and (g–i) are for the striped, chocolate-patterned, and chessboard-patterned surfaces, respectively. (a) and (d) and (g), and (b) and (e)
and (g) illustrate N versus �y and Dy, respectively. Here, Dy varies from �601 to 601, which is achieved by fixing y1 (e.g. y1 = 901, 1201) and changing y2.
(c), (f), and (i) depict the equilibrated droplet morphologies with different average contact angles predicted by PF simulations (filled symbols),
in comparison with the energy-map model (hollow symbols) and the modified CB model (solid curves).
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4.3 The ratio of the hydrophilic area to the hydrophobic area

Apart from changing y1 and y2, the average contact angle �y can
also be adjusted by tuning the area ratio of the hydrophilic area
to the hydrophobic area while fixing the intrinsic contact angles
on these two areas. In this part, we set the contact angles on the
hydrophilic and hydrophobic areas as y1 = 601 and y2 = 1201,
respectively. As aforementioned, the area ratio of the hydro-
philic area to the hydrophobic area is characterized by the
parameter n. For the chocolate patterned surfaces, we set n =
1 : 1, 1 : 2, and 1 : 3 for the present investigation. To avoid
repeated discussion of the similar wetting behaviors, the
striped and chessboard-patterned surfaces will not be further
discussed in this section.

For the chocolate-patterned surfaces with n = 1 : 1, 1 : 2, and
1 : 3, the surface energy landscapes and the snapshots of the
equilibrated droplets from the PF simulations are shown in
Fig. 9(I), (II) and (III), respectively. The number N and the
coordinates (a,b) of the local minima in the surface energy

landscapes are both well corroborated by the simulations,
as illustrated in Fig. 10(a) and (b), respectively. It is worth
mentioning that we have converted the ratio n into the average
contact angle by using eqn (9). As n decreases, i.e. �y increases,
the equilibrated droplet becomes spherical successively and
N decreases. This finding coincides very well with the results
shown in Fig. 8. The comparison between the simulation
results, the energy landscape model, and the modified CB
model is illustrated in Fig. 10(b), where sound agreement is
obtained.

5 Summary and conclusions

In this study, we have shed light on the equilibrium morphol-
ogies of droplets on three typical chemically patterned surfaces.
Because of the contact line pinning effect, the droplets reach
different energy minimum states and thus achieve distinct
equilibrium shapes. The number of equilibrated droplets and

Fig. 9 Surface energy landscapes for droplets on chocolate patterned surfaces with different area fractions of hydrophilic and hydrophobic areas and
corresponding snapshots of equilibrated droplets from PF simulations. The droplet size is set as R = 40. The chemical heterogeneities are described by
f2(rb,j) in eqn (7) with gm = 0, g0 = 0.5, and x = 100. The ratios for (I) n = 1 : 1, (II) n = 1 : 2, and (II) n = 1 : 3 correspond to (L = 20, l = 0, w = 0.55), (L = 30,
l = cos 601, w = 0.13), and (L = 40, l = cos 451, w = 0.10), respectively. The energy minima are designated by different numbers, corresponding to the
snapshots in (D) indicated with the same number. The surface energy landscapes for (A), (B) and (C) correspond to the droplet base center positions P1, P2

and P3, respectively. (D) Snapshots of equilibrated droplets from PF simulations (blue: hydrophilic, red: hydrophobic).
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the equilibrium morphologies are both dependent on the droplet
sizes, contact angles, and the ratios of the hydrophilic area to the
hydrophobic area. These influencing factors have been system-
atically discussed in this work. Our discussion is based on
a combination of the surface energy landscape method with
phase-field simulations. It has been shown that the analytical
predictions obtained from the surface energy landscape approach
are well consistent with the PF simulations. It is worth noting that
in pure experiments or simulations, a number of tries are
probably required to find all the equilibrium states with varying
parameters and it is even likely that some equilibrium morpho-
logies might be missed if the number of experimental samples
is not sufficiently large. This demonstrates that the energy land-
scape model may be used as guidance for experiments and
simulations without blind attempts.

Furthermore, we have noticed that the number of equili-
brium droplet shapes for all three chemically patterned
surfaces increases with the droplet volume. This tendency is
due to the fact that an increase in droplet volume leads to an
enlarged contact area between droplets and the substrates, so
that the triple lines cross more energy discontinuous lines.
On these discontinuous lines, the pinning effect occurs, resulting
in more equilibrium shapes of droplets. Similarly, we have varied
the contact angles on the hydrophilic and hydrophobic areas
while fixing the droplet volume. We figured out that as the average
contact angle decreases, i.e., the substrate is globally relatively
hydrophilic, the contact area between the droplet and substrate
increases, which leads to a rise in the number of equilibrated
states. To sum up, the increase in the volume or the decrease in
the average contact angle engenders more equilibrium shapes of
droplets. The average contact angles can be controlled either by
changing the intrinsic contact angles on the hydrophilic and
hydrophobic areas or the area ratio of these two components.
It should be noticed that although both decreasing average
contact angle and increasing volume lead to a large droplet–
substrate contact area and thus facilitate more equilibrium states,
a universal behavior for the number of equilibrium states N versus
contact area Als does not exist. In Fig. 11, we plot the functional
relation between N and Als for droplets on the chocolate-patterned

surface. Here, different Als values are obtained by changing the
average contact angle �y (hollow squares) or droplet radius R (filled
circles). As Als increases, N rises. Although the tendencies are
similar between these two curves, the quantities of the equili-
brium states for the same Als are not always the same. This reveals
that N is not uniquely dependent on Als. Other aspects such as the
pinning force or droplet height may also have an important role
for the stability analysis of the droplets. Given the limit of the
content, these factors will not be further discussed.

We have further investigated the morphological properties
of the equilibrated droplets on different patterned surfaces. For
a certain chemically patterned surface, the surface energy
landscape method in combination with the PF simulations has
been adopted to find the possible equilibrium shapes of droplets.
These results have been compared with the modified CB model
proposed in this work. It has been shown that the simulation
results coincide with those of the modified CB model. This
demonstrates that the proposed modified CB model is robust
and able to accurately delineate the droplet shapes, especially the
base area. Therefore, the classical CB model has been successfully
extended to be able to predict the equilibrium droplet shapes,
which are not necessarily in the shape of a spherical cap. The
comprehensive predictions of the droplet shapes in this work are
of significant importance for applications of droplet manipulation
and the findings open a promising avenue for a delicate control of
droplet formation as well as for the design of functional surfaces.

It should be emphasized that our model can be easily
further extended to other chemically patterned surfaces whose
heterogeneities are symmetric. In the present work, we have
assumed that the droplet has the form of a quasi-spherical
cap with an elliptical contact baseline on the substrate.
However, it is beyond the validity of our model if the chemical
pattern is extremely complex, where the droplet shapes become
asymmetric.
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Fig. 10 (a) The number N of the equilibrium droplet shapes on chocolate
patterned surfaces as a function of �y. (b) Equilibrium morphologies of
droplets on chocolate patterned surfaces with different fractions of
hydrophilic and hydrophobic areas predicted by PF simulations (filled
symbols) compared with the energy landscape model (hollow symbols)
and the modified CB model (solid curves).

Fig. 11 Functional relation between N and Als for droplets on the
chocolate-patterned surface. The hollow squares and filled circles depict
two distinct cases, where Als is changed by setting different average
contact angle �y and droplet radius R values, respectively. The solid and
dashed lines are the corresponding fitting curves.
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