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Theory of droplet ripening in stiffness gradients†

Estefania Vidal-Henriquez * and David Zwicker *

Liquid droplets embedded in soft solids are a new composite material whose properties are not very

well explored. In particular, it is unclear how the elastic properties of the matrix affect the dynamics of

the droplets. Here, we study theoretically how stiffness gradients influence droplet growth and

arrangement. We show that stiffness gradients imply concentration gradients in the dilute phase, which

transport droplet material from stiff to soft regions. Consequently, droplets dissolve in the stiff region,

creating a dissolution front. Using a mean-field theory, we predict that the front emerges where the

curvature of the elasticity profile is large and that it propagates diffusively. This elastic ripening can occur

at much higher rates than classical Ostwald ripening, thus driving the dynamics. Our work shows how

gradients in elastic properties control the arrangement of droplets, which has potential applications in

soft matter physics and biological cells.

1 Introduction

Phase separation has recently been established as a crucial
mechanism for organizing membrane-less organelles in bio-
logical cells.1–4 These membrane-less organelles, or biomolecular
condensates, often posses properties of liquid-like droplets, like
internal rearrangement, spherical shapes, and monomer exchange
with their surroundings. However, these droplets exist in complex
environments that cannot be described as simple liquids. For
example, the cytoskeleton in the cytosol5,6 as well as the chromatin
in the nucleoplasm7 have solid-like properties, which could affect
droplets. Indeed, recent experiments showed that droplets typically
form in chromatin-poor regions in the nucleus.8 This suggests that
the elastic properties of chromatin suppress droplet formation.
However, it is difficult to disentangle the effect of the elastic
surroundings from other potential processes that could affect
droplet formation in the complex case of a living cell.

Physical experiments with synthetic materials can help to
understand how an elastic environment affects droplet growth.
For instance, oil droplets growing in a homogeneous PDMS gel
form mono-disperse emulsions and the stiffness of the gel
controls droplet size.9 There are several advantages of these
experiments: first, the system is not driven, implying it relaxes
toward equilibrium after preparation. Second, the gel is strongly
cross-linked, so it does not spontaneously rearrange on the time
scale of the experiments.10 Viscous relaxation is thus negligible.
Third, droplets are large compared to the mesh size, implying that

the gel can be described by a continuum theory. Taken together,
these properties allow to isolate the effects of an elastic environ-
ment on droplets.

The aim of the present paper is to understand how spatially
varying stiffnesses affect droplet dynamics. This is motivated by
recent experiments showing that stiffness gradients lead to
elastic ripening, where droplets dissolve in stiffer regions.11

Moreover, these experiments revealed a dissolution front invad-
ing stiffer regions, while the material of the dissolving droplets
accumulated in softer regions. We already developed a theore-
tical description of the situation, which is based on the
assumption that the gel exerts a pressure onto droplets that
is proportional to the local stiffness.11 Numerical simulations
of this theory showed excellent agreement with the measured
data. In the present paper, we analyze this model numerically
and analytically to understand the details of elastic ripening. In
particular, we use a simplified, coarse-grained version to derive
scaling laws for where and when the dissolution front starts
and how it evolves in time. These simple equations allow us to
predict how the model parameters affect elastic ripening in
more complex situations, e.g., when the elasticity profile varies
in all spatial dimensions.

2 Elasticity gradients produce
dissolution fronts

We aim at understanding the dynamics of an emulsion embedded
in a gel with spatially varying stiffness. Motivated by elastic ripening
experiments,11 we focus on the case where the gel is strongly cross-
linked and behaves as an elastic material. Moreover, the droplets
are well separated and deform the gel only locally, so they only
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interact by exchanging material via the dilute phase. This
exchange is driven by the difference between the concentration
in the dilute phase and the concentration right outside a
droplet’s surface. We determine the latter by considering a
single droplet in an homogeneous elastic environment.

2.1 Thermodynamics of isolated droplets

Motivated by recent experimental results,11 we describe a three-
component system of two liquids and a network of cross-linked
polymers. At high temperatures, the two liquids are miscible
and form a homogeneous gel with the polymer network. When
the temperature is lowered, one liquid forms droplets by
segregating from the other two components. Therefore, this
phase separation can effectively be described as a binary
system; droplets with a high volume fraction fin of the segre-
gating liquid coexist with a dilute gel phase of lower volume
fraction f. In the case of thermodynamically large phases,
these equilibrium volume fractions can be determined by
minimizing the total free energy of the system using the
Maxwell construction;12 see ESI.† In particular, the equilibrium
conditions imply that the pressures and chemical potentials are
identical in both phases.

In the case of a single spherical droplet of radius R
embedded in an isotropic elastic matrix, the droplet exhibits
an additional pressure P due to both surface tension and elastic
effects. In the simple case of a dense droplet phase and an ideal
dilute phase, the resulting equilibrium volume fraction in the
dilute phase can be approximated as

feq � f0 exp
P

cinkBT

� �
; (1)

see ESI.† Here, cin is the concentration of the segregating fluid
inside the droplet, kB is Boltzmann’s constant, T is absolute
temperature, and f0 denotes the equilibrium volume fraction
of the dilute phase in a thermodynamically large system for
P = 0. Consequently, eqn (1) implies that the additional
pressure P increases the equilibrium volume fraction in the
dilute phase.

The pressure P on a single spherical droplet of radius R
embedded in an elastic gel is

P ¼ 2g
R
þ PEðRÞ; (2)

where g is the surface tension and PE is the pressure exerted by
the isotropic elastic gel, which is related to its stress–strain
curve. We here consider droplets that are much larger than the
gel’s mesh size, implying that the gel experienced large strains
during droplet growth. Such situations typically arise when the
gel has a maximal stress PC that it can sustain. For example,
when growing droplets fracture the gel, PC is the critical stress
that is required for fracturing. In the simplest case, PC is
proportional to the Young’s modulus E of the gel, PC = zE.
The proportionality constant z can be determined experimentally
or from theory. For example, Neo–Hookean theory13,14 predicts
z = 5/6, while the silicon gels used in the elastic ripening
experiments exhibit z E 0.5.15 Taken together, we here focus

on the case where the pressure exerted by the gel is a simple
function of the stiffness, PE = zE. For simplicity, we assume that
this pressure is also exerted on shrinking droplets, ignoring
small hysteresis effects due to gel fracturing.15

To see whether surface tension g is important in the ripening
experiments, we next estimate the relevant pressure differences
between droplets. The pressure difference generated by surface
tension is roughly gDR/R2, where R is the mean droplet radius and
DR denotes the difference in the radii. Conversely, the pressure
difference created by the external gel can be estimated by the
typical stiffness difference DE. Surface tension is thus negligible if
the ratio

K ¼ gDR
R2DE

(3)

is small. In the ripening experiments,11 we have g = 4 mN m�1,
DR E 5 mm, R E 10 mm, and DE = 740 kPa, implying K E
3 � 10�4, so that Ostwald ripening is indeed negligible.
Taken together, the equilibrium volume fraction feq can thus
be approximated by

feqðEÞ � f0 exp
E

Ê

� �
; (4)

where Ê = cinkBT/z is the relevant stiffness scale. This expression
allows us to determine the volume fraction feq outside a droplet
embedded in a gel described by a local stiffness E.

2.2 Dynamical equations of emulsions

We now consider an emulsion of droplets embedded in a gel
with spatially varying stiffness E(-x). We describe the system by
the droplet radii Ri and their positions -

xi, as well as the volume
fraction f(-x) in the dilute phase. The thermodynamics dis-
cussed in the previous section imply that the equilibrium
volume fraction feq right outside each droplet depends on its
position. The difference between feq and f drives a diffusive
flux between the droplet and the dilute phase. Since we are only
interested in dynamics on length scales larger than the droplet
radii, we evaluate all involved quantities at the droplet position
-
xi. Consequently, the material efflux Ji integrated over the
droplet surface can be expressed as Ji = 4pDRi[feq(-xi) � f(-xi)],
where D is the molecular diffusivity.12 This flux drives changes in
droplet radius,

dRi

dt
¼ D

Rifin

f ~xið Þ � feq ~xið Þ
h i

; (5)

where we used that the volume fraction fin inside the droplet is
much larger than the fraction feq outside. This equation
describes how a droplet grows by taking up material from its
immediate surrounding. On large length scales, material diffuses
in the dilute phase, implying

@tf ¼ Dr2f� fin

X
i

dVi

dt
d ~xi �~xð Þ; (6)

where Vi = (4p/3)Ri
3 are the individual droplet volumes. Here, the

last term accounts for the material exchange with droplets. Note
that we consider immobilized droplets whose positions -

xi are
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constant, since the elastic gel restricts the motion of the droplets.
In principle, our model allows overlapping droplets, but since they
do not move and their initial positions are far apart, overlapping
does not occur in practice. Consequently, eqn (5) and (6) fully
describe how an emulsion of droplets evolves over time.

The dynamics of the system is governed by two diffusive
fluxes that act on different length scales. Locally, material is
exchanged between the droplets and the dilute phase by the
flux Ji. Conversely, transport on longer length scales only
happens in the dilute phase by the redistribution flux �Drf.

2.3 Numerical simulations show dissolution fronts

We simulated eqn (5) and (6) to understand the effects of an
elasticity gradient on the emulsion dynamics. Motivated by
elastic ripening experiments,11 we consider a system consisting
of two regions of different stiffness Esoft and Estiff. When the two
regions are put side-by-side, a transition region emerges.
To capture this, we model the stiffness profile in the entire
system by

EðxÞ ¼ Estiff þ Esoft

2
þ Estiff � Esoft

2
tanh

x

w

� �
; (7)

where x denotes the coordinate perpendicular to the interface
and w is the width of the transition region. Generally, we chose
parameter values motivated by experiments.11 For instance, we
initialized the simulations with tiny droplets distributed uni-
formly without overlap in the whole system and imposed a
uniform volume fraction field f(-x) in the dilute phase.

Fig. 1 shows the time course of a typical simulation. Starting
from the homogeneous initial condition, the system quickly
forms two separate regions aligned with the stiffness profile
(upper panel). Here, the stiff side exhibits smaller droplets and
larger volume fractions in the dilute phase compared to the soft
side. Droplets then start dissolving in the transition region and
a dissolution front moves into the stiff side. Simultaneously,
droplets grow on the soft side of the transition region while
droplets far into the soft side remain unchanged. The exact
same dynamics have been observed in the elastic ripening
experiments;11 see Fig. 2. These dynamics can be understood
qualitatively by considering the diffusive fluxes in the system.

In the initial stage, the system is supersaturated everywhere,
f 4 feq. Consequently, material is transferred from the dilute
phase to the droplets until a local equilibrium is reached,
f = feq. Eqn (4) implies that feq is smaller for softer regions,
so more material is absorbed by the droplets. We thus observe
larger droplets in softer regions (see Fig. 1), consistent with
experimental observations.9

After the initial, local equilibration, material redistribution
on longer length scales sets in. Since the stiffer side exhibits
larger volume fractions f in the dilute phase, material is
transported to the soft side. Consequently, on the stiff side,
f drops below the local equilibrium volume fraction feq,
droplets shrink, and eventually dissolve. This process starts
close to the transition region, since the redistribution flux is
driven by gradients in f, which do not exist further away. Once
droplets start disappearing in the transition region, droplets

further away begin to be affected and a dissolution front forms
that invades the stiff side. All the material redistributed from
the stiff side is absorbed by the droplets on the soft side close to
the transition region, which effectively shield all the other
droplets on the soft side.

3 A coarse-grained model explains the
dissolution dynamics

To understand the front’s dynamics quantitatively, we next
consider a simplified version of our model. Here, we do not
describe the dynamics of individual droplets, but rather focus
on the fractions of material in droplets and in the dilute phase.
We thus introduce the coarse-grained volume fraction c of
material contained in droplets,

cð~x; tÞ ¼ fin

Ð Ð Ð P
i

Vid ~xi �~yð Þd3yÐ Ð Ð
d3y

; (8)

where the integrals are performed over a small discretization
volume centered at -

x. Note that the discretization volume needs
to be large enough to contain multiple droplets, but also small
compared to the characteristic length scales of the elasticity
gradient. Introducing the local mean droplet volume V(-x,t),
we can express c as c = finnV, where n is the local droplet

Fig. 1 Numerical simulation showing a dissolution front invading the stiff
region defined by a sigmoidal elasticity profile (upper panel). Subsequent
images show projections of 3-dimensional simulations (obtained by
solving eqn (5) and (6) of the droplets (symbols) and the volume fraction
f in the dilute phase (density plot with color bar at the bottom) at the
indicated times. The model parameters are f0 = 0.033, fin = 1, Estiff =
0.15Ê, Esoft = 10�4Ê, and w = 1.45c. Here, c = (Vsys/Ndrop)1/3 is a typical
droplet separation with associated diffusive time tD = c2/D, where Vsys is
the system’s volume and Ndrop is the total number of droplets. The mean
droplet radius on the stiff side is 0.08c.
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number density. Motivated by the elastic ripening experiments
and our numerical simulations, we consider the case where the
volume of individual droplets does not deviate substantially
from the local mean volume V. In this case, the volume
fractions f and c, characterizing the amount of material in
the dilute phase and droplets, respectively, are sufficient to
describe the system’s state.

The dynamics of the coarse-grained system follow from
eqn (5) and (6). We show in the ESI,† that the dynamical
equations are

@tc ¼ D f� feq

� � 48p2n2

fin

c
� �1=3

(9a)

qtf = Dr2f � qtc. (9b)

The first equation describes the local exchange of material
between droplets and their surroundings, while the second
equation accounts for the redistribution of material over long
length-scales.

Fig. 3 shows that the results of the numerical simulation of the
coarse-grained model are virtually indistinguishable from that
of the detailed model. Therefore, the coarse-grained model captures
the essential features of the elastic ripening process. In particular,
the dynamics of the dissolution front are governed by the material
distribution, while individual droplets are irrelevant.

3.1 Dissolution starts at high curvatures of the elasticity
profile

We now use the coarse-grained model to understand where and
when the dissolution front appears, i.e., when droplets first
disappear. In the numerical simulations, we observe that f
quickly approaches feq by local equilibration between the
droplets and the dilute phase. Assuming that the system is
initialized with f = finit and c = cinit, the volume fractions
approach f E feq and c = c0 with c0 E cinit + finit � feq after
this initial stage. Consequently, the volume fraction f in the
dilute phase is controlled by the stiffness profile E(-x), while the
remaining material is absorbed in the droplets.

After the initial equilibration stage, the inhomogeneities
in E, and thus in f, drive diffusive fluxes toward the soft side.
However, we observe that these fluxes mostly affect c and hardly
change f before the first droplets disappear. To understand the

dynamics in this stage, we approximate eqn (9b) by qtc E
Dr2feq. Consequently, c evolves as

c(-x,t) E c0(-x) + tDr2feq (10)

and the curvature of the equilibrium field feq, set by the
elasticity profile, controls droplet dynamics. In particular,
droplets grow in convex regions (r2feq 4 0), while they shrink
in concave ones. Note that eqn (10) only holds when c 4 0,
since otherwise droplets would be absent and the flux in the
dilute phase changes f; see eqn (9b).

We can use eqn (10) to estimate the time and position of the
start of the dissolution front. In particular, droplets dissolve
after a time t*(-x) E �c0(-x)/(Dr2feq), when all material is
removed from the droplet phase. The dissolution front starts
at the earliest of these time points, tstart = minx

-(t*|t* Z 0),
which is given by

tstart ¼
1

D
min
~x
�c0ð~xÞ
r2feq

 !
(11)

Fig. 2 Our model quantitatively captures the dynamics of dissolution fronts in the elastic ripening experiments.11 Shown are the experimental and
numerical mean droplet radii as a function of the distance from the interface on the stiff side for five different time points. The model parameters are
Estiff = 0.0341Ê, Esoft = 3.2 � 10�4Ê, w = 0.37c, and the mean droplet radius on the stiff side is 0.09c; see ESI,† for further details on the comparison.

Fig. 3 The coarse-grained model (red lines, eqn (9)) captures the detailed
dynamics of the full model (blue lines, eqn (5) and (6)). Shown are the
profiles of the volume fractions f in the dilute phase (upper panels) and the
fraction c contained in droplets (lower panels) for three different time
points t. The model parameters are given in Fig. 1.
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where the minimum is constrained to regions where t* Z 0,
i.e., where droplets shrink (r2feq o 0). The location corres-
ponding to the minimum denotes the starting position of the
front. Eqn (11) highlights that the front appears where droplets
are small and sparse (small c0) as well as dissolve quickly
(strongly negative curvature r2feq).

The starting time tstart can be estimated for the simple
stiffness profile given by eqn (7). In particular, the droplet
volume fraction c0 will be close to the value cstiff deep into the
stiff side; the curvature is approximatelyr2feq B Df/w2, where
Df = feq(Estiff) � feq(Esoft) denotes the difference in the
equilibrium volume fractions between the two sides and w is
the width of the transition region. Using these estimates,
eqn (11) suggests a time scale

t̂ ¼ w2cstiff

DDf
; (12)

which should govern the starting time of the front. In contrast,
the starting position sstart is dominated by the location of the
largest negative curvature of feq. For the simple stiffness profile
given in eqn (7), this position should scale with the width w of
the transition region.

We test the prediction of eqn (11) and the scaling discussed
above by comparing to numerical simulations of the full model;
see Fig. 4. The collapse of the starting times shown in the left
panel indicates that t̂ is the relevant time scale for this process.
Moreover, the actual prediction tstart given in eqn (11) is within
a factor of two of the measured data. This analysis shows that
the front appears earlier for larger stiffness differences (larger
Df) between the two sides, for narrower transitions regions
(smaller w), as well as when there is less material in the droplet
phase (small cstiff). Fig. 4b shows the corresponding starting

positions, which clearly are determined by the width w of the
transition region. The data collapse indicates that neither the
absolute stiffnesses nor the droplet size affects where the front
appears.

3.2 Two fronts move in opposite direction initially

Shortly after the first droplets dissolved, the surrounding
droplets continue to shrink and disappear. Consequently, the
region devoid of droplets expands in all directions. The mate-
rial of the shrinking droplets is transported toward the soft side
by diffusive fluxes. Initially, the material will accumulate where
the equilibrium field feq has the largest positive curvature
(maximal r2feq); see eqn (10). The accumulating material is
absorbed by the droplets in this region, which thus grow; see
Fig. 1. The fact that droplets grow on the soft side implies that
the front moving from sstart toward this side slows down.
Conversely, the front moving in the opposite direction can
continue invading the stiff side.

3.3 Dissolution front moves diffusively at late times

We next analyze the late time dynamics of the front invading
the stiff side. Specifically, we consider the case where the width
L of the region devoid of droplets is large compared to the
width w of the transition region (L c w). At this stage, the front
moving toward the soft side is virtually stationary. We can thus
understand the dynamics of the front invading the stiff side by
analyzing the width L of the region devoid of droplets (where
c = 0). The dynamics in this region are governed by a simple
diffusion equation of the volume fraction f in the dilute phase;
see eqn (9b). At the stiff side of this region, the dissolving
droplets impose the equilibrium fraction feq(Estiff) as a boundary
condition for the diffusion equation. The corresponding boundary
condition at the soft side can be approximated by feq(Esoft). For
simplicity, we focus on slow fronts where the diffusion equation is
in a stationary state, so the fraction f in the region devoid of
droplets is governed by

fðxÞ ¼ feq Esoftð Þ þ Df
x

L
for 0 � x � L; (13)

where Df = feq(Estiff) � feq(Esoft) and x denotes the distance
from the boundary on the soft side. The dynamics of L can be
obtained by considering the change of the total amount
of material on the stiff side (x Z 0). Because of material
conservation, this change is equal to diffusive flux at x = 0,
which can be determined from eqn (13). We show in the ESI,†
that this implies qtL = a/(2L) with

a ¼ 4D 1þ 2cstiff

Df

� ��1
; (14)

where cstiff is the droplet volume fraction deep into the stiff
side. Consequently, the region devoid of droplets expands as

LðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðt� t0Þ

p
; (15)

where t0 is such that L(t0) = 0. This equation implies a diffusive
motion of the front with diffusivity a.

Fig. 4 The starting time tstart and position sstart of the front scale with the
predicted time and length scales, respectively. Results from numerical
simulations of the full model (dots) for various parameters are compared to
the theoretical predictions from the coarse-grained model (gray line). The
time point tstart of the first dissolving droplet is shown in panel (a) as a
function of the predicted associated time scale t̂ given in eqn (12). The
theoretical prediction given by eqn (11) is shown for c = 0.09f0 and
w = 1.45c. Panel (b) shows the associated starting position sstart together
with the equivalent prediction following from eqn (11), which is shown
for c = 0.09f0 and Estiff = 0.15Ê. The remaining parameters are Esoft =
10�4Ê and fin = 1.
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We test the theoretical prediction given in eqn (15) by
comparing to numerical simulations of the full model. Fig. 5
shows the recorded times and positions when droplets dis-
solved (gray symbols), thus marking the dissolution fronts. The
fronts start in the transition region on the stiff side and then
move in opposite directions. The front moving toward the soft
side slows down and comes to a halt on the soft side of
the transition region, as predicted in the previous section.
Conversely, the front invading the stiff side is quicker and does
not stop. We measure its speed by fitting eqn (15) to the front
positions deep into the stiff side to extract a and t0; see Fig. 5a.
Since the model explains the measured data at late times,
we conclude that the front moves diffusively.

The fitted front diffusivity a is presented in Fig. 5b as a
function of the relevant non-dimensional parameter Df/cstiff.
This parameter compares the strength Df of the elastic ripening
to the fraction cstiff of material that needs to be removed from the
droplets. Consequently, the front is faster for larger Df/cstiff. The
theoretical prediction for a, given in eqn (14), matches the data
well for a o 2D. The fact that the front diffusivity a needs to be
smaller than or comparable to the molecular diffusivity D is not

surprising since we assumed that the front is slow enough for the
region devoid of droplets to be in a stationary state; see eqn (13).
Consequently, our theory predicts a maximal front diffusivity of
4D while the simulations indicate that faster fronts are possible.

4 Elasticity profiles spatially control
droplets

So far, we considered elasticity profiles that only vary in one
direction. However, our full model (eqn (5) and (6)) and the
coarse-grained model (eqn (9)) are more general. In particular,
eqn (11) implies that droplets first disappear in regions of
strongly negative curvature r2feq. Then, a front of dissolving
droplets moves in all directions. The material of the dissolving
droplets accumulates in regions of large positive curvature
r2feq, where droplets grow and remain for a long time.
Consequently, where droplets grow or shrink is governed by
feq(-x) and thus the elasticity profile E(-x).

Fig. 6 shows a numerical simulation of the full model for
a two-dimensional elasticity profile (left panel). A detailed
simulation of a similar pattern has already identified that
droplets accumulate in the soft valleys8 and the time course
shown in the right panels of Fig. 6 confirms that droplets follow
the dynamics described above. A movie of this simulation,
as well as one for a more complex elasticity profile, can be found
in the ESI.† Taken together, this shows that we can engineer
elasticity profiles to locate droplets in precise arrangements.

5 Conclusions

We presented a theoretical description of elastic ripening,
which agrees quantitatively with experimental data.11 Therefore,
our theory identifies the driving mechanism of elastic ripening:
the elastic matrix exerts a pressure onto droplets that raises the
equilibrium concentration in their surroundings; gradients in this
concentration then lead to diffusive material transport in the
system. Surprisingly, the droplets do not start to dissolve in
regions where the stiffness is maximal nor where its gradient is
largest. In fact, our coarse-grained model reveals that droplets
initially shrink faster where the curvature of stiffness is larger.

Fig. 5 Dissolution fronts move diffusively. (a) Position and time points of
dissolving droplets in a simulation of the full model (dots) are compared to
a fit (red line) of the theoretical prediction given in eqn (15). Model
parameters are Estiff = 0.09Ê and c = 0.09f0. Remaining parameters are
given in Fig. 1. (b) The front diffusivity a (dots) determined from fitting to
numerical simulations is compared to the prediction (line) given by
eqn (14). Simulations were done for cstiff/f0 = 0.03, 0.09, 0.30 for various
Estiff, while the remaining parameters are the same as in panel (a).

Fig. 6 The elasticity profile controls the droplet dynamics. Left: Density plot of a two-dimensional elasticity profile E( x
-

). Right panels: Snapshots of a
numerical simulation of the full model for three time points showing droplets as white symbols and the fraction f in the dilute phase as a color code.
The remaining model parameters are fin = 1, f0 = 0.033, and cstiff = 0.09f0.
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However, at late times droplets only remain in the softest regions.
Taken together, we find complex dissolution dynamics, where for
instance two fronts move in opposite directions, as in the
experiments.11 In particular, we derived scaling laws for the time
when the first droplets disappear (eqn (12)) and for the late-stage
dynamics of the dissolution front (eqn (15)). Taken together, these
laws can be used to predict the effect of elastic ripening for
various setups.

Elastic ripening competes with Ostwald ripening since both
effects are driven by pressure differences between droplets.
Their relative importance is quantified by K, given by
eqn (3), when DE is the relevant stiffness difference in the
droplets’ surroundings. For instance, although elastic ripening
dominates initially in the simulation shown in Fig. 6, Ostwald
ripening will eventually occur between the remaining islands
because they have the same elastic properties (DE E 0).
A similar situation occurs in heterogeneous elastic materials,
where DE corresponds to local stiffness variations. Thus, both
elastic ripening and Ostwald ripening can happen in the same
system, on different length- and time-scales.

The elastic ripening in stiffness gradients is similar to other
droplet coarsening dynamics in gradient systems. For instance,
concentration gradients, e.g., of regulating species that com-
pete for mRNA binding,16 have been shown to bias droplet
locations in experimental1 and theoretical studies.17–19 Similarly,
other external fields, like temperature gradients created by local
heating20,21 or even gravity22 could be used to control droplet
arrangements. Such systems can be analyzed using approaches
that are similar to the ones presented here.

We showed that elastic ripening allows to control droplet
arrangements, which could for instance be used in technical
applications for micropatterning or for creating structural
color. Moreover, our theory can help to understand the locali-
zation of biomolecular condensates in biological cells. For
instance, elastic ripening explains experiments where droplets
have been induced in the stiff regions of heterochromatin, but
moved into softer regions immediately.8 We expect that similar
processes happen in the cytosol, where biomolecular conden-
sates should be less likely where the cytoskeleton is dense.
Interestingly, there are counterexamples, like centrosomes that
localize to regions of high microtubule density23–25 or ZO-1
clusters that concentrate in the acto-myosin cortex.26,27 This
seems to contradict elastic ripening, but in both examples the
condensates interact with the elastic matrix: centrosomes bind
the tubulin of microtubules28 and the ZO-1 protein interacts
with the F-actin of the cortex.29 Consequently, there are two
competing gradients in this situation: droplets are repelled by
the stiffness of the surrounding matrix but are attracted by its
molecular components. Indeed, when the actin-binding
domain of ZO-1 is removed, the clusters do not accumulate in
the cortex anymore, but are more broadly distributed,26 as
predicted by elastic ripening.

Our theoretical description of elastic ripening can be natu-
rally extended to include other effects. In fact, the dynamics
described by eqn (5) and (6) already include surface tension
effects when the pressure given by eqn (2) is used. Although we

did not analyze the impact of surface tension since it is negli-
gible in the experiments, it will become important on longer
timescales or when surface tensions are large. Moreover, the
elastic properties of the matrix might be more complex than
considered here. For instance, the cytoskeleton can shown
strain-stiffening, which might arrest droplet growth, as well
as visco-elastic effects, which allow to relax elastic stresses.6

The latter effect can be captured by the theory of viscoelastic
phase separation, which affects the coarsening behavior.30,31

This stress-relaxation, as well as the reduced stress due to
hysteresis effects,15 could slow down elastic ripening. Finally,
the droplets themselves can possess elastic properties. This is
particularly true in biological condensates,32 which sometimes
even form solid-like aggregates33 that potentially cause
diseases.4 All these effects might be crucial for understanding
the behavior of biomolecular condensates in cells.
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Hyman, Science, 2009, 324, 1729–1732.

2 J. Berry, C. Brangwynne and M. P. Haataja, Rep. Prog. Phys.,
2018, 81, 046601.

3 S. Boeynaems, S. Alberti, N. L. Fawzi, T. Mittag,
M. Polymenidou, F. Rousseau, J. Schymkowitz, J. Shorter,
B. Wolozin, L. Van Den Bosch, P. Tompa and M. Fuxreiter,
Trends Cell Biol., 2018, 28, 420–435.

4 S. Alberti and D. Dormann, Annu. Rev. Genet., 2019, 53,
171–194.

5 A. F. Pegoraro, P. Janmey and D. A. Weitz, Cold Spring
Harbor Perspect. Biol., 2017, 9, a022038.

6 M. L. Gardel, K. E. Kasza, C. P. Brangwynne, J. Liu and
D. A. Weitz, Methods Cell Biol., 2008, 89, 487–519.

7 F. Erdel, M. Baum and K. Rippe, J. Phys.: Condens. Matter,
2015, 27, 064115.

8 Y. Shin, Y.-C. Chang, D. S. Lee, J. Berry, D. W. Sanders,
P. Ronceray, N. S. Wingreen, M. Haataja and C. P.
Brangwynne, Cell, 2018, 175, 1481–1491.

9 R. W. Style, T. Sai, N. Fanelli, M. Ijavi, K. Smith-Mannschott,
Q. Xu, L. A. Wilen and E. R. Dufresne, Phys. Rev. X, 2018,
8, 011028.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Ju

ne
 2

02
0.

 D
ow

nl
oa

de
d 

on
 6

/3
0/

20
24

 1
0:

01
:1

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sm00182a


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 5898--5905 | 5905

10 R. W. Style, R. Boltyanskiy, G. K. German, C. Hyland, C. W.
MacMinn, A. F. Mertz, L. A. Wilen, Y. Xu and E. R. Dufresne,
Soft Matter, 2014, 10, 4047–4055.

11 K. A. Rosowski, T. Sai, E. Vidal-Henriquez, D. Zwicker,
R. W. Style and E. R. Dufresne, Nat. Phys., 2020, 16, 422–425.

12 C. A. Weber, D. Zwicker, F. Jülicher and C. F. Lee, Rep. Prog.
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J.-M. Verbavatz, F. Jülicher, T. Müller-Reichert, A. A. Hyman
and J. Brugués, J. Cell Biol., 2019, 218, 3977–3985.

29 A. S. Fanning, T. Y. Ma and J. M. Anderson, FASEB J., 2002,
16, 1835–1837.

30 H. Tanaka, J. Phys.: Condens. Matter, 2000, 12, R207–R264.
31 H. Tanaka and Y. Nishikawa, Phys. Rev. Lett., 2005, 95,

078103.
32 L. M. Jawerth, M. Ijavi, M. Ruer, S. Saha, M. Jahnel, A. A.
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