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Hierarchical self-assembly of patchy colloidal
platelets†

Carina Karner, *ab Christoph Dellagoa and Emanuela Bianchi bc

Anisotropy at the level of the inter-particle interaction provides the particles with specific instructions for

the self-assembly of target structures. The ability to synthesize non-spherical colloids, together with the

possibility of controlling the particle bonding pattern via suitably placed interaction sites, is nowadays

enlarging the playing field for materials design. We consider a model of anisotropic colloidal platelets

with regular rhombic shape and two attractive sites placed along adjacent edges and we run Monte

Carlo simulations in two-dimensions to investigate the two-stage assembly of these units into clusters

with well-defined symmetries and, subsequently, into extended lattices. Our focus is on how the site

positioning and site-site attraction strength can be tuned to obtain micellar aggregates that are robust

enough to successively undergo to a second-stage assembly from sparse clusters into a stable

hexagonal lattice.

1 Introduction

Nowadays, colloids of different shapes can be accurately syn-
thesized within a vast range of symmetries, from complex
convex units – such as spheroidal colloidal molecules, rods or
polyhedra – to concave shapes – such as multi-pods or bowl-
shaped colloids.1–3 On top of the shape-dependent anisotropic
interaction, directionality in bonding is often sought after
in order to fine tune the assembly of the particles into either
finite clusters4–7 or extended crystals.8–10 The combination of
bonding sites or extended surface patches11–13 – i.e., regions of
the particle surface where bonding occurs – and non-spherical
particle shapes imparts preferred bonding directions between
the particles, thus creating a rich enthalpic versus entropic
competition to be taken advantage of for materials design.14

Finite clusters can serve, for instance, as prototypes of
micro-robots to perform tasks at the micro-scale such as
delivery and targeting. Recent and successful examples of
anisotropic patchy particles assembling into finite clusters are
colloidal asymmetric dumbbells that show a rotational propul-
sion under electric field,15 dielectric cubes with one metallic
facet that reconfigure on demand,16 or Janus spheroids that act
as encapsulating agents.17

Self-assembled finite clusters can be also used as non-
spherical building blocks for further – hierarchical – assembly

into extended structures and thereby expand the versatility of
the original units.18–22 Colloidal molecules composed of different
types of particles, for instance, can be designed to support the
assembly of superstructures with target photonic or phononic
properties.23

In general, the combination of shape and bond anisotropy
leads to an extraordinary control over the crystal structure:
polyhedral nanoparticles covered with DNA surface ligands
have been shown, for instance, to assemble into crystals fully
determined by the size and the symmetry of the particles and by
the length of the DNA-ligands.24,25 DNA-based functionaliza-
tion can also be achieved by creating suitably shaped frames for
spherical nanoparticles: two-dimensional, square-like DNA
frames with functionalized edges are able to tune the assembly
of the resulting complex units from finite clusters (micelles
as well as chain-like aggregates) to planar architectures;26 while
tetravalent DNA-cages are able to induce the assembly of
isotropic nanoparticles into diamond crystals.27

Within this vast realm, colloidal platelets, i.e. colloids with
lateral size at least one order of magnitude smaller than the
other two dimensions,1 may show, e.g., interesting electronic
properties as isolated fluorescent emitters28 or even form
tilings with photonic properties.29 In general, colloidal platelets
of different shapes can be realized both at the nanometer and
the micron scale by, e.g., folding long, single-stranded DNA
molecules to create two-dimensional shapes,30,31 by soft
lithography10 or by making use of preferred growth mechan-
isms thus obtaining, e.g., silica polygonal truncated pyramids,
lanthanide fluoride nanocrystals or polymer-based platelets.6,14,32,33

Directional bonding can then be added by, e.g., covering the
particle edges with ligands14 or immersing the platelets in a
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liquid crystal.6 While the directional bonding constraints favor
particle configurations that maximize the number of bonds,
the particle shape favors edge-to-edge contacts; the possible
competition between these two driving-agents can lead to self-
assembled tilings with tunable properties.34–36

Here we consider hard colloidal platelets with a regular
rhombic shape decorated with two mutually attractive patches
arranged – in different geometries – along two adjacent particle
edges. We define two classes of rhombi characterized by having
the two patches enclosing either the big or the small angle and,
for each of them, we move the patches either in a symmetric
or asymmetric fashion along the particle edges. Thus, the
resulting building blocks present a wide range of bonding
patterns, the combination of which gives rise to different
assembly products: chains as well as micelles with three-, five-
or six-fold symmetry. We first investigate the emerging assembly
scenarios according to the patch positioning at different inter-
action energies. For most of the studied systems, we are able
to trace a region in the parameter space where micelles are the
prevalent assembly product. Hence the second part of our paper
investigates if and how systems of micelles with different geo-
metries form a well-defined lattice via hierarchical assembly.

2 Methods
2.1 Particle model

We consider regular hard rhombi decorated with two attractive
patches. The interaction potential between two of such hard
particles, i and j, is given by

U ~rij ;Oi;Oj

� �
¼

0 if i and j do not overlap

1 if i and j do overlap

(

where -
rij is the center-to-center vector, while Oi and Oj are the

particle orientations. Overlaps between rhombi are detected via
the separating axis theorem for convex polygons.37,38

The patch–patch interaction is a square-well attraction given
by

W pij
� �

¼
�e if pij o 2rp

0 if pij � 2rp;

(

where pij is the patch–patch distance, 2rp is the patch diameter
and e denotes the patch interaction strength.

A patchy rhombi model of this kind was first detailed in
ref. 39, with four attractive patches placed in the center of the
edges. In this work, we focus on two-patch rhombi where the
patches either enclose the big angle (manta rhombi, referred to
as ‘‘ma’’) or the small angle (mouse rhombi, referred to as
‘‘mo’’); see the particle sketches reported at the top of Fig. 1.

In either type of system, patches can be placed anywhere on
the respective edges, resulting in an – in principle – infinite
number of possible two-patch rhombi systems. To methodically
characterize the patch positioning, we introduce two patch
topologies. Patch topologies prescribe how to move the patches
with respect to each other. In the symmetric/asymmetric (s/as)
topology, patches are placed symmetrically/asymmetrically with

respect to their enclosing vertex. Note that, within a specific
topology, the relative distance D of one patch with respect to the
enclosing vertex also determines the position of the other
patch: in the s-topology, both patches are placed at distance
D from their common vertex, in the as-topology, one patch is
at distance D from the reference vertex, while the other is at
(1 � D). With these definitions a two-patch system is fully
defined through its patch configuration (ma or mo), its topology
(s or as) and its relative position on the edge (D). It is important to
note that when patches are placed in the edge-center, i.e., at
D = 0.5, the s- and as-topology collapse into the same topology,
referred to as center topology, so that the respective rhombi
systems are referred to as ma- and mo-center systems. A summary
of the used particle parameters can be found in Table 1.

2.2 Simulation details

For the first-stage assembly, we use grand canonical Monte
Carlo (GCMC) simulations with standard periodic boundary
conditions to model the adsorption of the self-assembling
platelets on a surface.39 Together with single particle rotation/
translation moves and particle insertions/deletions, we imple-
ment also cluster moves40,41 to avoid kinetic traps. We equili-
brate the systems for 3 � 105 MC-sweeps at a low packing
fraction (i.e., at f E 0.05) with meq and then we increase the
chemical potential to m* to observe the assembly. We run the
simulations for about E3 � 106–7.0 � 106 MC-sweeps before
collecting statistics. In order to further improve statistics, we
perform eight simulations runs per system and interaction
strength. For the second-stage assembly – from the aggregated
clusters into super-lattices – we run isobaric–isothermal Monte
Carlo simulations (NPT-MC) with isotropic volume moves
at different pressure values, P. The system parameters for all
simulations are given in Table 2.

3 Results

In general, the investigated systems yield three different classes
of self-assembly products: chains, loops and micelles, emerging
from the specific interplay between steric constraints and
patchiness, and characterized by specific bonding patterns.
By construction, our patchy rhombi can form a maximum of
two bonds per particle, one per edge. Each of such bonds can
occur either when the rhombi are oriented parallel (p) to each
other or when the rhombi are arranged in an arrowhead – i.e.,
non-parallel (np) – configuration. Chains must have p-bonded
but can also present np-bonds, loops can accommodate both
p- and np-bonds, while micelles are minimal loops and consist
of np-bonds only.

We find that micelles are mostly in competition with chain
assemblies, as loops rarely form. While our previous publication
detailed the properties of chain assemblies,42 this work focuses on
micelles. First, within the framework of a small cluster analysis, we
establish for which topologies and patch positions micelles can
form (see Fig. 1). Subsequently, we determine for which (D,e)-
values micelles are the dominant assembly product in simulations
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(see Fig. 2–4). Finally, we compress the micelle assemblies with the
highest yield and analyze the quality of the second-stage assembly
products (see Fig. 5–7).

3.1 Small cluster analysis

The small cluster analysis reported in Fig. 1 allows us to discern
which clusters fulfill the given bonding constraints irrespective
of their formation probability in a simulation or experiment.

Note that the bonding constraints themselves follow from the
patch configuration (ma or mo), the patch topology (s or as) and
the patch position (D). In addition to p- and np-bonds, we
distinguish between on-edge bonds (on) where the edges align
and off-edge bonds (off) where the edges are offset with respect
to each other. In the case of the p-off bonds, we further specify
if the bond is closer to the small (p-off-s) or to the big angle
(p-off-b) (see the small cluster analysis and the glossary of Fig. 1
for sketches of bonding scenarios).

Table 1 Particle parameters: the opening angle a, the side length l (which
sets the unit of length), the patch size 2rp, the patch–patch attraction
strength e (in unit of kBT), the patch position D, as labeled. Note that D
refers to the relative placement of a patch on a rhombi edge. See Fig. 1 for
sketches

Parameter Symbol Value

Angle a 601
Side length l 1.0
Patch radius rp 0.05
Interaction strength e [5.2, 10.2]
Patch position D [0.2, 0.8]

Table 2 System parameters in reduced units (as used in all simulations)

System parameter Symbol Value

Area of simulation box A 1000�sin(601)
Box width Lx

ffiffiffiffiffiffiffiffiffiffi
1000
p

Box height Ly
ffiffiffiffiffiffiffiffiffiffi
1000
p

� sinð60�Þ
Chemical potential eq. meq 0.1
Chemical potential m* 0.3
Boltzmann constant kB 1
Temperature T 0.1
Pressure P [5, 100]

Fig. 1 Sketch of a patchy rhombus (in the center) and small cluster analysis for manta (ma) and mouse (mo) systems in the symmetric (s) and asymmetric
(as) topologies. The columns correspond to different particle classes (ma, mo) and different topologies (s, as), as labeled; the rows correspond to different
D-values. At D = 0.5, the s- and as-topologies collapse to the center topologies, referred to as ma-center and mo-center. Clusters that satisfy bonding
restrictions are colored in yellow and clusters that do not satisfy bonding restrictions and would yield non-satisfied bonds are colored in burgundy.
Allowed micelles are enlarged and outlined in black. Cluster labels – in the letters a–r – are detailed in the glossary at the bottom. In the glossary, each configuration
is characterized by the number of particles in the cluster (from two up to six) and by the bond type: parallel (p) vs. non-parallel (np) as well as on-edge (on) vs.
off-edge (off). Thus, dimers with on-edge non-parallel bonds (2np-on) are labeled with a, dimers with off-edge non-parallel bonds (2np-off) are labeled with b,
dimers with on-edge parallel bonds (2p-on) are labeled with c, dimers with off-edge parallel bonds (2p-off) are labeled with either d (off-edge bonds closer to the
small angle, 2p-off-s) or e (off-edge bonds closer to the big angle, 2p-off-b). The same logic applies to trimers and bigger clusters.
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In ma-s, micelles consist of three np-on-bonded particles
(also referred to as boxes) and they can form at all D-values
(see clusters labeled as f in the corresponding panels of Fig. 1).
For D o 0.5 micelles are the only possible self-assembly
product as bonding incompatibilities prevent dimers (see clus-
ter e in the corresponding panel of Fig. 1) from growing into
chains and loops (see clusters n and m, respectively).
In contrast, for D Z 0.5, chains and loops can form since the
patch positioning does not anymore disfavor the formation of
p- and mixed-bonded clusters of sizes bigger than two (see
clusters h, i, j and k in the corresponding panels of Fig. 1).

In mo-s, micelles consist either of five or six np-on-bonded
particles (referred to as 5- and 6-stars, respectively) and they can
form at all D-values (see clusters o and q in the corresponding
panels of Fig. 1). We note that, micelles of three particles
(boxes) would have non-satisfied bonds, thus they are energe-
tically disfavored with respect to the stars. For D o 0.5, three-
particle clusters with p- and np-bonds are still allowed (see
cluster k in the corresponding panel of Fig. 1), thus rendering
chains a possible self-assembly product, albeit with a restricted
configuration space. For D Z 0.5, also both p- and mixed-bonded

clusters can form (see clusters h, i, j and k in the corresponding
panel of Fig. 1).

In both ma-as and mo-as, there are no bonding restrictions
for p-bonds, and hence chains, loops and micelles are allowed
for all values of D. Furthermore, micelles have pores in the
center as particles can form np-bonds only off-edge. Therefore,
the resulting clusters are referred to as open boxes in the case
of ma-as (see clusters g in the corresponding panels of Fig. 1)
and open stars in the case of mo-as (see clusters p and r in the
corresponding panels of Fig. 1).

It is important to note that while in s-topologies the geo-
metrical form of the assembled micelles is the same at all
D-values, in as-topologies the cluster geometry does change
because of the D-dependent opening and closing of the pores.
While at D = 0.5 (corresponding to ma- and mo-center), the pores
are completely closed yielding closed boxes and stars, the pores
continuously open as D is moved off-center and – as a result – the
rhombi corners protrude more and more. As in ref. 34, in the sticky
limit, the side length of the pores is given by

lpore = |l � 2D|. (1)

Fig. 2 Self-assembly products of symmetric manta (ma-s) and mouse (mo-s) systems. (a) Histogram of yields of different cluster types in the ma-s
system at D = 0.7 and e = [5.2, 10.2]kBT. Histograms for the other D-values can be found in Fig. S1 of the ESI.† Cluster types of interest are: clusters with
size N o 3 (liquid, blue), three np-bonded particle loops (boxes, pink) and clusters with N Z 3 (chains/loops, yellow). The barycentric color triangle in (b)
maps the distribution of cluster types for all (D,e)-values to the heatmap in (c) (see the ESI† for the detailed description of the barycentric coordinates).
(d) Simulation snapshots of ma-s. From top to bottom: chains, loops and boxes at e = 10.2kBT, D = 0.7, boxes at e = 7.2kBT, D = 0.7, rhombi liquid at
e = 5.2kBT, D = 0.7. (e) Histogram of yields of different cluster types in the mo-s system at D = 0.2 and e = [5.2, 10.2]kBT. Histograms for the other D-values
can be found in Fig. S2 of the ESI.† Cluster types of interest are: clusters with N o 5 (liquid, blue), five np-bonded particle loops (5-stars, purple),
6 np-bonded particle loops (6-stars, pink) and clusters with N Z 5 (chains/loops, yellow). The barycentric color triangles in (f) and (g) map the distribution
of cluster types to the heatmap column/s for D = 0.2/[0.3, 0.8] in (h). (i) Simulation snapshots of mo-s. From top to bottom: chains, loops and stars
at e = 10.2kBT, D = 0.7, 5-stars at e = 10.2kBT, D = 0.2, 6-stars at e = 9.2kBT, D = 0.3, rhombi liquid at e = 5.2kBT, D = 0.8.
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Once lpore is known, the area of the pores can be calculated for both
triangular (ma-as systems) and hexagonal pores (mo-as systems).34

3.2 First stage self assembly

Beyond the described bonding restrictions, we need to deter-
mine under which conditions the different aggregates emerge
in many-body systems. For that, we run GCMC simulations
and, at the end of the self-assembly process, we calculate yields
of chains/loops and micelles.

The yield of a cluster type is defined as the percentage
of particles in clusters belonging to the selected cluster type.
We define cluster types of interest according to the specific
systems. In ma-systems – for both the s- and the as-topology –
we distinguish clusters of size N o 3 (classified as liquid), three
np-bonded particle loops (classified as boxes/open boxes) and
non-box clusters with size N Z 3 (corresponding to chains/
loops). In mo-systems – both s and as – we distinguish clusters
with size N o 5 (liquid), five np-bonded particle loops (5-stars/
open 5-stars), six np-bonded particle loops (6-stars/open
6-stars) and non-star clusters N Z 5 (chains/loops).

The obtained yields are reported as a function of e for each
D-value (see panels a and e of Fig. 2 and 3 for an example
D-value, while for the full overview of D-values see Fig. S1–S4 in
the ESI†). Through a mapping to a barycentric coordinate
system (see ESI† for the mapping and calculation details), we
obtain heatmaps for the four investigated systems (ma-s, mo-s,
ma-as and mo-as) where at each (D,e)-value we identify the
predominant self-assembly scenario. The heatmaps reflect the
relative dominance of the different cluster types: whenever one
cluster type has a yield higher than 2/3, the heatmap obtains
the color of the respective triangle edge (blue for liquid, yellow
for chains/loops, pink and purple for micelles) and we call this
cluster type 2/3-dominant; if no cluster type dominates by more
than 2/3, one of the mixed colors in the center of the triangle is
adopted (see panels c and h of Fig. 2 and 3 for the heatmaps,
see panels b, f and g in Fig. 2 and 3 for the respective
barycentric triangles). Simulation snapshots are displayed
in Fig. 2d and i for ma-s/mo-s systems and in Fig. 3d and i
for ma-as/mo-as systems. Micelle yields for all systems are given
in Fig. 4.

Fig. 3 Self-assembly products of asymmetric manta (ma-as) and mouse (mo-as) systems. (a) Histogram of yields of different cluster types in the ma-as
system at D = 0.7 and e = [5.2, 10.2]kBT. Histograms for remaining D values can be found in Fig. S3 of the ESI.† Cluster types of interest are: clusters with
size N o 3 (liquid, blue), three np-bonded particle loops (open boxes, pink) and clusters with N Z 3 (chains/loops, yellow). The barycentric color triangle
in (b) maps the distribution of cluster types for all (D,e)-values to the heatmap in (c) (see the ESI† for the detailed description of the barycentric
coordinates). (d) Simulation snapshots of ma-as. From top to bottom: chains, loops and open boxes at e = 10.2kBT, D = 0.7, open boxes at e = 8.2kBT,
D = 0.7, rhombi liquid at e = 5.2kBT, D = 0.7. (e) Histogram of yields of different cluster types in the mo-as system at D = 0.2 and e = [5.2, 10.2]kBT.
Histograms for the other D-values can be found in Fig. S4 of the ESI.† Cluster types of interest for D = 0.2 are: clusters with size N o 5 (liquid, blue), five
np-bonded particle loops (open 5-stars, purple), six np-bonded particle loops (open 6-stars, pink), and clusters with N Z 5 (chains/loops,yellow). The
barycentric color triangle in (f) and (g) maps the distribution of cluster types to the heatmap column/s for D = 0.2/[0.3, 0.8] in (h). (i) Simulation snapshots
of mo-as. From top to bottom: chains, loops and open stars at e = 10.2kBT, D = 0.2, chains, loops and open stars at e = 8.2kBT, D = 0.2, chains, loops and
open stars at e = 8.2kBT, D = 0.3, rhombi liquid at e = 5.2kBT, D = 0.2.
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We start our discussion with ma-s systems (Fig. 2, panels
from a to d). When e r 6.2kBT such systems remain liquid over
the whole D-range. On increasing D, the self-assembly process
takes place: at e = 7.2kBT and e = 8.2kBT, boxes are the
2/3-dominant self-assembly product at all D-values; while for
e Z 9.2kBT there exists a range of D-values where chains/loops
prevail over the micelles (see Fig. 2c). The yield of boxes
increases monotonically with e for all D-values until e = 9.2kBT
(see Fig. 4a). For e Z 9.2kBT and D o 0.5, the yield of the boxes
reaches values above 0.95, while at D = 0.5, we observe a sudden
drop: for D Z 0.5 bonding restrictions allow chains/loops to
form and compete with boxes and as soon as the interaction
strength is e Z 9.2kBT, chains/loops prevail over the boxes. The
dip in the box-yield at ma-center becomes deeper on increasing
e and while for e = 9.2kBT the yield recovers to 0.8 at D = 0.8, for
e = 10.2kBT the yield remains below 0.45 at D = 0.8. Summarizing,
in ma-s, boxes prevail over chains/loops over a wide range of
(D,e)-values.

In mo-s systems (Fig. 2, panels from e to i), we observe
characteristic self-assembly products only for e Z 8.2kBT.
At such high interaction strengths, micelles emerge with a
non-negligible yield at D = 0.2 in the case of 5-stars and at
D = 0.3 and 0.4 in the case of 6-stars. For these D-values, the star-
yields rise monotonically with e (see Fig. 4b for the 5-star-yield and

Fig. 4c for the 6-star-yield), but only reach values above 2/3 for e Z
9.2kBT (see Fig. 2h). The highest 5-star-yield is reached at e = 10.2kBT
and D = 0.2 with 0.838� 0.04. On increasing D, the 5-star-yield falls
to 0.084 � 0.018 at D = 0.3 and becomes smaller than 0.025 at
D = 0.5. In contrast, 6-stars reach their highest yields at e = 9.2kBT,
with the highest value 0.754� 0.028 at D = 0.4. On increasing D, the
6-star-yield drops to E0.2 at mo-center and proceeds to drop
gradually below 0.05 at D = 0.8. With star-yields below 0.2 for
D Z 0.5, chains/loops prevail as dominant clusters at high e-values
(see Fig. 2h for phase boundaries).

Summarizing, in mo-s, stars have a significantly narrower
(D,e)-range of prevalence compared to boxes in ma-s (see Fig. 2c
for ma-s and Fig. 2h for mo-s). While boxes are 2/3-dominant
for all D at intermediate e-values, stars reach yields above 2/3
only at high e-values and only for D o 0.5. At high e and for
D Z 0.5 extended chains become available to mo-s and are
formed at a higher rate.

In ma-as systems (Fig. 3, panels from a to d), the yield of
micelles (open boxes, in this case) rises monotonously with e:
open boxes become 2/3-prevalent for intermediate interaction
strengths (i.e., at e = 7.2kBT and 8.2kBT) over the whole D-range,
with the highest yields – above 0.9 – achieved at e = 8.2kBT (see
Fig. 3c for the heatmap and Fig. 4d for numerical values of
yields). At high interaction strengths, i.e., for e Z 9.2kBT, the
open box yield drops for all D, first to 0.4 at e = 9.2kBT and then
to 0.2 at e = 10.2kBT. The drop in the micelle-yield is due to the
emergence of chains, that can form at all D-values and prevail
over the open boxes when e Z 9.2kBT.

In mo-as systems (Fig. 3, panels from e to h), micelles (open
stars, in this case) do not become dominant at any (D,e)-value.
In particular, the yield of open 5-stars stays below 0.03 for all
D-values and does not increase with e, meaning that these
micelles are always negligible compared to chains/loops (see
Fig. 4e). In contrast, the yield of open 6-stars does increase with
e for all but the most extreme D-values (i.e., D = 0.2 and 0.8);
nonetheless, as the maximum yield stays below 0.25 (see
Fig. 4f), also these micelles are negligible over the whole
D-range. While for e r 7.2kBT, the systems are mostly liquid,
for e Z 7.2kBT, chains become the most dominant cluster type
at all D-values.

Concluding, micelles in as-topologies have a smaller window
of prevalence compared to micelles in s-topologies because in
as-topologies extended p- and mixed bonded chains are allowed at
all D-values and they dominate over micelles for high interaction
strengths. In the following, we describe the properties of the
observed micelles, mostly focusing on their packing properties.
For the detailed characterization of the chain/loops assemblies we
refer the reader to ref. 42.

3.3 Second-stage assembly

To further explore the versatility of patchy rhombi as building
blocks, we compress configurations with high micelle yields
and thereby induce a second-stage assembly process. We use
the configurations as they formed within simulations, including
all not fully formed and misshaped clusters and monomers. This
enables us to study the efficiency of the hierarchical assembly

Fig. 4 Yields of micelles as a function of D: (a) boxes in ma-s systems.
(b) 5-Stars in mo-s systems. (c) 6-Stars in mo-s systems. (d) Open boxes
in ma-as systems. (e) Open 5-stars in mo-as systems. (f) Open 6-stars in
mo-as systems. Different curves within each panel denote yields at
different e-values and are colored according to the legend at the bottom.
Yields are averaged over eight simulation runs per system.
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process, from two-patch rhombi to micelle lattices and show
viable routes for material synthesis. Within our computer simula-
tions, the second-stage self-assembly is modeled with NPT-MC
simulations and the pressure range is P = 5–100. We selected
systems with a high percentage of micelles, i.e., with yields higher
than 0.75. While there are (D,e)-values for which boxes, open boxes
and stars reach yields above 0.75, maximum yields of open stars
stay below 0.25. Therefore we exclude them from our second-stage
assembly investigation and focus on boxes, open boxes and stars.
Note that boxes, open boxes and stars are hard particles: boxes are
convex as they are regular hexagons; open boxes are non-convex,
with their protrusions growing more prominent as D moves
towards off-center-values; 5-stars and 6-stars are non-convex.

Upon increasing pressure, micelles pack and tend to form
crystalline domains with local hexagonal order. We define the
packing fraction as

j ¼ Np
Ap

A
; (2)

where Np is the total number of particles, Ap is the area of a
rhombic platelet and A is the total area of the simulation box.
We note that the area of the patches is not included in Ap as the
patches can completely overlap. The equations of state (eos) for
the different systems at selected D-values are reported in panel
b of Fig. 5 (ma-s), Fig. 6 (ma-as) and Fig. 7 (mo-s). To charac-
terize the emergence of long range order, we calculate the radial
distribution function, g(r), where r is the center-to-center dis-
tance between two micelles. At this point we note that the side
length of our rhombi is l = 1. Additionally, we measure the local
order with the hexatic order parameter, that is given for every
micelle j as

Cj ¼
1

Nn

XNn

k¼1
exp i6Yj;k

� �
; (3)

where Nn is the number of all next neighbors and Yj,k is the
relative bond angle between j and its neighbor micelle k, with
respective to a chosen simulation box vector. To determine all

Fig. 5 Second-stage assembly of boxes at e = 8.2kBT for symmetric manta systems (ma-s). (a) Left: Simulation snapshots of the system with D = 0.3 at P = [10,
30, 100] (from top to bottom). Right: Centers of mass of boxes of the respective snapshots colored according to the hexatic order parameter, C, defined in
eqn (3) (see the color wheel in panel c). (b) Eos for box systems at D = [0.3, 0.5, 0.7], where f denotes the packing fraction defined in eqn (2). (c) Color wheel
denoting the values of C for the center of mass snapshots in panel a. (d) Average fraction of the largest hexagonal domain hSLi – defined in the text – as
function of P; note that the average is taken over all D-values; note that the background of the eos-plot in panel a is colored according to hSLi. Error bars
denote the standard deviation and their wide extent is due to relatively small system sizes. (e) The radial distribution function g(r) at D = 0.3 and P = 100.
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next neighbours, we calculate a distance histogram including
the first 12 neighbours for every micelle and we define next
neighbours as all micelles within the first minimum of this
histogram. Finally, to quantify the transition between iso-
tropic to hexatic, we calculate the average fraction of parti-
cles in the largest hexagonal domain hSLi. For the calculation
of hSLi, we consider two neighbouring micelles, i and j as part
of the same domain if the difference of their hexatic order
parameter dCij o 151. The average is then taken over parallel
simulation runs.

Box assembly. To study the second-stage assembly of boxes,
we select ma-s systems with D = [0.3, 0.5, 0.7] and e = 8.2kBT.
The box-yields for these systems are 0.963 � 0.010 at D = 0.3,
0.948 � 0.011 at D = 0.5 and 0.947 � 0.016 at D = 0.7.

Upon increasing pressure, boxes assemble into a lattice with
hexatic/hexagonal order at all selected D-values. On the left
hand side of Fig. 5a, we display simulation snapshots for boxes
with D = 0.3 at different pressures, while on the right hand side
we show the same snapshots with the box centers colored
according to their respective C (see Fig. 5c for C-color wheel).

Fig. 6 Second-stage assembly of open boxes at e = 8.2kBT for asymmetric manta systems (ma-as). (a) Left: Simulation snapshots of the system with
D = 0.3 at P = [10, 30, 60, 100] (from top to bottom); clusters are colored to facilitate visual distinction. Right: Centers of mass of open boxes of the
respective snapshots colored according to the hexatic order parameter, C, defined in eqn (3) (see the color wheel in panel e). (b) Eos for open box
systems at D = [0.2, 0.3, 0.4], where f is the packing fraction defined in eqn (2). (c) Left: simulation snapshot of the system at D = 0.4 and P = 100. Right:
Centers of mass of open boxes of the respective snapshot colored according to C. (d) Left: Simulation snapshot of the system at D = 0.2 and P = 100.
Right: Centers of mass of open boxes of the respective snapshot colored according to C. (e) Color wheel for the values of C for the center of mass
snapshots in panels a, c and d. (f) Average fraction of largest hexagonal domain hSLi – defined in the text – as function of P for D = [0.2, 0.3, 0.4, 0.5], as
labeled. The error bars denote the standard deviation and are wide due to relatively small system sizes. (g) The radial distribution function g(r) at D = [0.2,
0.3, 0.4] and P = 100, as labeled. (h) Magnified view of the blue rectangle of snapshot of ma-asD = 0.3, P = 100. Black lines connect boxes at hexagonal
lattice positions; red lines connect boxes that are shifted due to defects. (i) Magnified view of the red rectangle of ma-asD = 0.2. Black lines connect boxes
at hexagonal lattice positions; red lines connect boxes that are shifted due to defects. (j) Sketch of the perfect hexagonal open box tiling with triangular
pores (ot-tiling) as observed in local regions in simulation snapshots.
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We note that, while at P = 10, the system of boxes is liquid, at
P E 20 the system becomes hexatic, i.e., with local hexagonal
order but no long range order. As P increases further, long
range order becomes stronger. At P = 100, remaining single
rhombi induce grain boundaries into the otherwise perfectly
hexagonally ordered domains. We confirm the hexatic/hexagonal
order at P = 100 with the radial distribution function (see Fig. 5e).
Further, we calculate hSLi as function of the pressure (see Fig. 5d)
to visualize the growth of ordered domains we colored the back-
ground of the eos-curves (see Fig. 5b). The same scenario is
observed at all selected D-values: from D = 0.3 to D = 0.7 the
equations of state collapse onto one curve (see Fig. 5b).
The maximum packing at the highest pressure P = 100 is
f = 0.793 � 0.006 for all D-values. Therefore we conclude that
for these boxes, the specific D-value does not influence the
second-stage assembly.

It is important to note that although significant parts of the
systems are ordered hexagonally at high pressures, the small
system sizes render it impossible to determine whether the
system is hexagonal on a long range scale. See ref. 43 for detailed
studies on the liquid-hexatic-hexagonal phase transitions.

Open box assembly. For the assembly of open boxes into
super structures, we choose ma-as systems at e = 8.2kBT and
D = [0.2, 0.3, 0.4]. Note that at D = 0.5 ma-as collapses to ma-
center, thus forming boxes (already discussed in Fig. 5). As D
moves towards off-center values, pores in the boxes open up
and become bigger and bigger, while at the same time the
corners protrude more and more. As a consequence, the eos-curves
gradually shift to lower packing fractions at intermediate and high
P-values (see Fig. 6b). While boxes at D = 0.5 and P = 100 yield a
packing of 0.793 � 0.006, for open boxes at D = 0.3 the packing is
0.728 � 0.017, and at D = 0.2 it is 0.691 � 0.025.

Fig. 7 Second-stage assembly of 5-stars and 6-stars at e = 9.2kBT for symmetric mouse systems (mo-s). (a) Simulation snapshots of the system at
D = 0.2 at P = [10, 25, 100] (from top to bottom), where 5-stars are predominant. (b) Eos for star systems at D = [0.2, 0.3, 0.4], where f is the packing
fraction defined in eqn (2). (c) Simulation snapshots of the system at D = 0.3 at P = [10, 25, 100] (from top to bottom), where 6-stars are predominant.
(d) The radial distribution function g(r) for the 5-star system at D = 0.2 and P = 100. (e) The yield of 5-stars and 6-stars at D = 0.2 and D = 0.3 as function
of P, as labeled. (f) The radial distribution function g(r) for the 6-star system at D = 0.3 and P = 100. (g) The red inset is a magnified view of 5-star
neighbourhoods at D = 0.2 and P = 100. (h) The dark blue inset is magnified view of a 6-star neighborhoods at D = 0.3 and P = 100. The black lines
connect the star centers and highlight the hexagonal order of this neighbourhood.
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As with the boxes, we also measure the positional order with
g(r), hSLi and C for the open boxes. The peak pattern of the g(r)
shows that hexagonal order is still pronounced at D = 0.4,
significantly deteriorates already at D = 0.3 and ceases comple-
tely at D = 0.2 (see Fig. 6g). Similarly, hSLi indicates smaller
ordered domains for D = 0.3 and D = 0.2 (note that due to large
error-bars – that are a result of the relatively small system
sizes – we can only report trends for hSLi). The progressive
reduction of the hexatic/hexagonal order with increasing D can
also be directly observed in the simulation snapshots reported
in Fig. 6a–d as well as in the insets 6h and i. In conclusion, in
ma-as the hexatic/hexagonal order gets destroyed as D shifts
towards off-center values.

Star assembly. For the second-stage assembly of stars, we
select systems at e = 9.2kBT with D = 0.2 (5-stars) and D = [0.3,
0.4] (6-stars). The star yields of these initial configurations are
0.838 � 0.041 for 5-stars at D = 0.2, 0.727 � 0.025 for 6-stars at
D = 0.3 and 0.754 � 0.028 for 6-stars D = 0.4. It is important to
note that these yields from CGMC simulations decay for all
NPT-MC runs, even at low pressures P (see Fig. 7e).

The eos-curve for 5-stars (red dots in Fig. 7b) lies slightly
above the 6-star curves for all intermediate and high P-values,
indicating that 5-stars pack less close at the same P with respect
to 6-stars (green squares and blue triangles in Fig. 7b). The
packing fraction for 5-stars at P = 100 is 0.696 � 0.0214, while
for 6-stars at D = 0.3 it is 0.706 � 0.018.

The analysis of the g(r) at P = 100 (panels d and f of Fig. 7)
suggests that in both star systems there exists a residual
hexagonal order. However, the resulting structures can not be
described as hexagonal lattices due to the many non-star
clusters present already in the initial configuration – as the
star-yields are low compared to those observed for the boxes.
Simulation snapshots in Fig. 7a and c show that these clusters
often have the structure of non-completed or misshaped stars.
These ‘‘broken stars’’ induce defects to an extent that destroys
local and, subsequently, long range order.

Moreover, the 5-star-yield reduces on increasing pressure
(see Fig. 7e): while the yield of 6-stars at D = 0.3 only slightly
decreases with P, the 5-star yield at D = 0.2 decreases from
0.75 � 0.03 at P = 10 to 0.54 � 0.04 at P = 100. This is due to the
fact that, as the pressure is increased, the void where a sixth
star would fit, starts to fill up. The result are conglomerates of
destroyed 5-stars (see Fig. 7b, red inset). Together with already
present grain boundaries, these conglomerates completely
break the hexatic/hexagonal lattice order.

In contrast, for 6-stars, we observe the presence of residual
areas with hexagonal ordering and triangular pores indepen-
dent of D (see Fig. 7b, dark blue inset).

4. Conclusion

In this paper, we investigate the assembly of patchy colloidal
platelets with a regular rhombic shape. We consider a simple,
purely two-dimensional model consisting of rhombi decorated
with two bonding patches, arranged in different ways along

adjacent particle edges. Rhombic platelets realized, for instance,
with shape anisotropic DNA origami could be decorated with
sticky-ended DNA strands: the possibility to place them with high
accuracy on the platelets surface27,30 would allow the reproduction
of different patch topologies.

We explore dynamically accessible self-assembly products
at finite temperatures to understand which self-assembly
scenarios would emerge in experiments. Depending on the
patch arrangement and interaction strength we find micelles
(minimal loops) or chains to be the prevalent self-assembly
product. We observe that equivalent simulation runs produce
comparable chain and micelle yields over simulation times of
about 107 MC sweeps.

While an earlier work studied the properties of chains,42 this
work focuses on micelles. In general, we distinguish two types
of micelles: boxes, that emerge for systems where the patches
enclose the big angle (manta), and stars that are formed by
systems where the patches enclose the small angle (mouse).

Boxes and stars can be stabilized for systems where both
patches are distributed symmetrically at a distance less than 0.5
(D o 0.5) from their enclosing angle. For systems with DZ 0.5,
micelles and chains compete at high interaction strengths.

In systems, where patches are distributed asymmetrically –
i.e., the distance of one patch to the enclosing angle is D, while
the distance of the second patch is (1 � D) – stars and boxes
have a pore in the center and we call them open boxes and open
stars. We note that while for large as well as small D-values the
pore size is maximal, the pore closes off completely for D = 0.5
and symmetric and asymmetric patch distributions are identical.
We find that, while open boxes are prevalent at intermediate
interaction strength, open stars never reach a yield over 0.25.
At high interaction strength chains prevail for all D-values in both,
manta and mouse systems.

We note that in our investigations the patch size is fixed to
1/10th of the side length. As this feature can be tuned in experi-
mental systems, for instance by changing the length of the sticky-
ended DNA strands, it would be interesting to investigate how the
self-assembly process is influenced by a change in the patch size.
From our results we speculate that, a larger yield of chains would
be observed on increasing the patch size, as the larger patch areas
would imply a stronger interaction strength.

In the second part of the paper we compress the systems of
boxes, open boxes and stars and characterize the emerging
lattices. Of course, the yield of the first structures plays an
important role in the second-stage assembly process,19 so we
compress only those systems where micelle yield is sufficiently high.

While boxes yield a hexagonal lattice independent of D,
open boxes self-assemble into a hexagonal lattice with a
D-dependent long range order. As D becomes more extreme,
gaps and pores within the lattice grow larger, while the long
range order decays. In contrast, the self-assembly product of
stars displays no long range hexagonal order for any D-value.

We note that, in box systems defects in the hexagonal order
are exclusively due to either vacancies or not fully formed boxes.
In open box and star systems, on the other hand, defects
inherent to the particle shape arise.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
Fe

br
ua

ry
 2

02
0.

 D
ow

nl
oa

de
d 

on
 4

/2
5/

20
24

 9
:2

5:
21

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sm00044b


2784 | Soft Matter, 2020, 16, 2774--2785 This journal is©The Royal Society of Chemistry 2020

For what concerns open boxes, the best hexagonal order
would be achieved by the lattice reported in Fig. 8a. We refer to
this lattice as open triangular tiling (ot-tiling) as it has triangular
pores, whose size depend on D. In the ot-tiling, all rhombi are
aligned in a non-parallel fashion. Although such an alignment is
able to incorporate the protruding corners while maximizing
edge-to-edge contact, other on-edge alignments are possible and
can poison the local order. As a consequence, in simulations, we
observe orientational point defects due to the fact that rhombi
belonging to different boxes align in a parallel way, as shown in
Fig. 8b. While for closed boxes this kind of parallel alignment is
commensurable with the closed-packed hexagonal lattice, in
open box systems, lattice distorting defects are introduced and
the more extreme D is, the more the lattice is distorted. While at
D = 0.4 and D = 0.3 open boxes still achieve long range order and
high packing, at D = 0.2 the orientation defects destroy the lattice
completely: no long range order is observed and a lower packing
is reached.

We note that, the ot-tiling is reminiscent of the perfect
kagome lattice observed in ref. 34, that is a hexagonal lattice
with two kinds of pores: triangular and hexagonal ones. Both
pore sizes are dependent on D, with the pores becoming larger
at more extreme D-values. We refer to such a tiling as open
triangular-hexagonal tiling (oth-tiling) and we sketch it in
Fig. 8c. To map the ot-tiling to the oth-tiling, the on-edge
alignment of the unbonded edges – i.e., those edges that are
not decorated with patches – must shift to an off-edge alignment.
This shift would open up the hexagonal pores of the oth-tiling.
Clearly, the ot-tiling prevails over the oth-tiling because hard

particles prefer arrangements that maximise edge-to-edge
contacts. To stabilize a defect-free kagome lattice, neighboring
boxes must be forced into an off-edge alignment. One strategy
to reach this goal might involve the presence of patches in the
outer perimeter of the open boxes in positions that stabilize
the off-set edge contacts. The specific topology supporting the
oth-tiling in ref. 34 can in fact be interpreted as a four patch
extension of the ma-as topology that forms the open boxes.

Analogue to open boxes, we speculate that, if the star yield
was high enough, an ot-tiling could be the assembly product of
the 6-stars systems (see Fig. S5c in the ESI†). In this case, the
distortion from such an hexagonal perfect lattice would be less
extreme with respect to the open boxes as neighboring stars
have no choice but to align parallel, thus leading to line defects
(see Fig. S5d in the ESI†). Local hexagonal arrangements and
line defects can be observed in simulations; however the
hexagonal order does not prevail there as stars are not stable
under compression. To enhance the stability of stars – and thus
the quality of the second-stage assembly products – parallel
bonds between the rhombi should be disfavored as it is this
type of bonding that allows broken stars and disfavors chains
(see Fig. S6a in the ESI†). A strategy to disfavor parallel bonds might
consist in having different kinds of patches, where different types
of patches attract each other (see Fig. S6b in the ESI†).
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