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Numerical simulations of self-diffusiophoretic
colloids at fluid interfaces

T. Peter,ab P. Malgaretti, *ab N. Rivas,c A. Scagliarini, cde J. Harting fg and
S. Dietrichab

The dynamics of active colloids is very sensitive to the presence of boundaries and interfaces which

therefore can be used to control their motion. Here we analyze the dynamics of active colloids

adsorbed at a fluid–fluid interface. By using a mesoscopic numerical approach which relies on an

approximated numerical solution of the Navier–Stokes equation, we show that when adsorbed at a fluid

interface, an active colloid experiences a net torque even in the absence of a viscosity contrast between

the two adjacent fluids. In particular, we study the dependence of this torque on the contact angle of

the colloid with the fluid–fluid interface and on its surface properties. We rationalize our results via an

approximate approach which accounts for the appearance of a local friction coefficient. By providing

insight into the dynamics of active colloids adsorbed at fluid interfaces, our results are relevant for two-

dimensional self assembly and emulsion stabilization by means of active colloids.

I. Introduction

The dynamics of synthetic or biological, self-propelled objects
is strongly affected by the presence of boundaries and interfaces.1–5

For example, sperm cells have been observed to accumulate at solid
walls6 and bacteria swim in circles when close to substrates7 or fluid
interfaces.8 Moreover, synthetic swimmers have been shown to be
sensitive to both solid boundaries9–17 and liquid interfaces.18–24

Concerning synthetic swimmers, the presence of boundaries and
interfaces is particularly relevant for self-phoretic colloids. Since
these active colloids attain their net displacement by generating
local gradients of intensive thermodynamic quantities, such as
temperature or the (electro)chemical potential,25–28 their active
displacement is sensitive to barriers and interfaces, which affect
the profile of the local temperature and the (electro)chemical
potential gradients.

In this contribution we analyze the dynamics of self-
diffusiophoretic colloids (i.e., particles inducing local gradients
in the chemical potentials of certain suspended species) which
are adsorbed at a fluid–fluid interface. The fluid flow induced
by the local stresses is caused by the chemical reaction on the
surface of the particle and it will be affected by the presence of
two, phase separated fluid phases. The description of such a
system via the standard coarse-grained approach, within which
the relative velocity between the particle and the fluid is
accounted for by the so-called phoretic slip velocity on the
surface of the particle,9,25–28 might be insufficient. Indeed, the
phoretic slip velocity has been invoked in those cases in which
the imbalance in the local chemical potential is confined to a
thin shell around the particle where the Stokes equation is
solved analytically.25 This approach becomes more complicated
if the active colloid is adsorbed at a fluid interface in the
presence of a three-phase contact line. In this context, we
present a novel approach, based on numerical simulations, in
which the motion of the self-diffusiophoretic colloid is
obtained by using the lattice Boltzmann method in order to
construct approximate solutions of the Navier–Stokes equation
directly. In our scheme this hydrodynamics solver is combined
with an advection and diffusion equation for the reactants.
Such an approach allows us to discuss the reliability of the slip-
velocity approach by comparison with previous approximate
analytical results.19 In particular, in the present study we focus
on the case in which the two fluids have the same viscosity, for
which the approximate analytical model19 predicts the absence
of any torque on the particle. Interestingly, our results show
that, even in this case, self-phoretic colloids trapped at fluid
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interfaces reorient their symmetry axis. This reorientation
occurs whenever the axis of symmetry of the particle is not
perpendicular or parallel to the interface. Indeed, for these
cases the presence of the interface affects the velocity profile
and leads to net torques on the particle.

The presentation of our study is organized as follows. In
Section II we present the diffusiophoretic model under study.
In Section III we describe our numerical method based on
lattice Boltzmann simulations. In Section IV we report our
results for the dynamics of self-diffusiophoretic colloids
trapped at fluid interfaces, and in Section V we summarize
our main findings.

II. Model

We describe the active colloid via the diffusiophoretic model.25–28

We assume that a chemical reaction occurs at the surface of
the colloid with a rate which depends on the local chemical
properties of the surface. Accordingly, in the regime of small
Péclet numbers, the mass density rrp of the reaction product†
obeys the following differential equation:

@

@t
rrpðrÞ ¼ D= � =rrpðrÞ þ brrpðrÞ=WðrÞð Þ; (1)

where W is the interaction potential between the reaction
product and the colloid, D is the diffusion coefficient of the
reaction product, and b�1 = kBT is the thermal energy. Eqn (1) is
to be solved with the boundary conditions

J�n||r�rc|=R = aRrrx(|r � rc = R|) (2)

and

rrp(r - N) = 0, (3)

where |r � rc| is the distance of a fluid cell from the center of
mass of the colloid, located at rc and characterized by its radius
R, a is the reaction rate,‡ x is dimensionless and identifies the
portion of the surface of the active colloid which is catalyzing
the chemical reaction, and rr is the mass density of the reactant
(which we assume to be spatially homogeneous).

The spatial variation of the mass density of the reaction
product along the surface of the colloid induces a net motion
of the fluid which, in the low Reynolds number regime, is
governed by the Stokes equation

Zr2v(r) = rPtot(r) (4)

with

rPtotðrÞ ¼
1

mrp
rrpðrÞrWðrÞ þ rP; (5)

where Ptot is the local pressure, mrp is the mass of the reaction
product molecule and P is determined either by imposing fluid

incompressibility (r�v = 0) or by the equation of state for the
fluid (as in our numerical scheme, see below). The boundary
conditions for the fluid velocity are

v(r � rc) = U + X � (r � rc), for |r � rc| = R
(6)

and

v(r - N) = 0, (7)

v(zI)�n = 0 (8)

where U(X) is the linear (angular) velocity of the colloid, and
v(zI)�n is the component of the fluid velocity perpendicular to
the interface located at zI.§

III. Numerical methods

Our system is composed of two phase separated fluids (e.g., oil
and water) acting as solvents, the reactants, and the products of the
chemical reaction (such as the decomposition of hydrogen peroxide
into water and oxygen), and the colloid (see Fig. 1). In order to
determine the dynamics of the system, we put forward diverse
numerical approaches for describing each of these components.

A. The lattice Boltzmann method

In order to solve the dynamics of the fluids we use the lattice
Boltzmann method (LBM) as it is implemented in the LB3D
package.29,30 Within the LBM the fluid phases are described by
their discretized single particle distribution functions f si (r,t),
which give the probability of finding a fluid particle of component

Fig. 1 Illustration of the system of a self-diffusiophoretic colloid (sphere)
at a fluid–fluid interface (red, solid line) between two fluids with dynamic
viscosities Z1 and Z2 and reactant mass densities r1 and r2. The blue line
represents the inert region of the colloid surface, while the orange, solid
line represents the catalytic region with opening angle yo. The colloid is
partially wetted by both fluids and its position with respect to the interface
is captured by the contact angle yc. The orientation of the colloid with
respect to the interface is characterized by the angle y between the axis o
of the colloid and a line parallel to the interface (black, solid line). Here the
orientation of the particle corresponds to yo 4 0.

† In this contribution we specialize to the case of a single reaction product. Our
approach can be easily extended to an arbitrary number of them.
‡ In the numerical simulations the values of a, of the range d of the potential W,

and D are taken such that the relevant Damköhler number is DaII ¼
ad
D
’ 10.

§ In our numerical scheme, see below, the boundary condition in eqn (8) will be
accounted for by the explicit microscopic interactions among the two fluid
species.
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s at position r with velocity ci. Our systems consists of two species,
such as s1 = oil and s2 = water, forming two fully separated phases.
Here, we use a so-called D3Q19 lattice with 19 discrete velocities ci,
i = 1,. . .,19, in three dimensions. We measure times in units of the
integration time step Dt and lengths in units of the lattice spacing
Dx. These microscopic auxiliary quantities have no physical meaning
and their values are chosen to be smaller than any other physically
relevant length or time scale. Eventually, it turns out to be convenient
to fix the magnitudes of Dt and Dx to unity and to measure times
and lengths in units of Dt and Dx, respectively. Accordingly, the
actual dimensional values of Dt and Dx in actual units follow from
the smallest length and time scale with physical meaning.¶ The
particle distribution functions f si (r,t) evolve in time due to
advection from the neighboring lattice sites and due to collisions
among particles at the same lattice site. In the following we use
the so-called Bhatnagar–Gross–Krook (BGK) collision operator.31

After some algebra involving the discretization of space, time,
and velocities32 the time evolution of the distribution functions
f si (r,t) follows as

f si ðrþ ciDt; tþ DtÞ � f si ðr; tÞ ¼ �
Dt
ts

f si ðr; tÞ � f s;eqi ðr; tÞ
� �

; (9)

where the rhs of eqn (10) is the BGK collision operator, ts is the
relaxation time of the fluid component s, and f s,eq

i (r,t) is the
local equilibrium distribution function which, in the small Mach
number limit, is given by33

msf s;eqi ðr; tÞ ¼ zir
sðr; tÞ 1þ 1

cs2
ci � �uðr; tÞ þ

1

2cs4
ci � �uðr; tÞð Þ2

�

� 1

2cs2
�u2ðr; tÞ þ 1

6cs6
ci � �uðr; tÞð Þ3

� 1

2cs4
�u2ðr; tÞ ci � �uðr; tÞð Þ

�
;

(10)

where zi are the lattice weights29,30 and ms is the mass of species s.
The relaxation time is related to the kinematic viscosity of the fluid

as ns ¼ ðcss Þ2 ts � Dt
2

� �
, where css ¼

ffiffiffiffiffiffiffiffiffi
kBT

ms

r
is the speed of sound

in the phase dominated by species s. Our numerical approach, in
the present form, requires all species to have the same mass ms = m,
and hence the same speed of sound css = cs. In the following we
choose to fix the lattice time step Dt and the lattice spacing Dx to

unity. In these units, it is common to choose cs ¼
1ffiffiffi
3
p Dx

Dt
as the

lattice speed of sound in terms of the time step Dt and the lattice
spacing Dx.32 Once the distribution functions f s,eq

i (r,t) are known, it
is possible to compute the local mass density of the fluid:

rsðr; tÞ ¼ m
X
i

f si ðr; tÞ; (11)

where ms is the mass of a single particle of species s. The
barycentric velocity of the fluid mixture is

�uðr; tÞ ¼
X
s

rsðr; tÞusðr; tÞ
ts

,X
s

rsðr; tÞ
ts

: (12)

Finally, the velocities of the individual fluid components are
given by

usðr; tÞ ¼ m

rsðr; tÞ
X
i

f si ðr; tÞci: (13)

In order to account for multiple solvent phases we follow the
method introduced by Shan and Chen.33 Within this method
the interaction force density acting among distinct species has
the form

Fsðr; tÞ ¼ �csðr; tÞ
X
s0

X
i

gss0cs0 ðrþ ciDt; tÞci
Dt
Dx
; (14)

where gss0 denotes the interaction strength between the components
s and s0; cs is a dimensionless pseudo-potential, which is a
functional of the mass density. Here, the functional form of cs

is chosen as8

csðr; tÞ ¼ 1� exp �r
sðr; tÞ
rs0

� �
: (15)

where rs0 is a reference density which is related to the bulk
properties of the phase dominated by species s. The force
density in eqn (14) is applied to the fluid by adding a shift to %u:

�u0ðr; tÞ ¼ �uðr; tÞ þ tsFsðr; tÞ
rsðr; tÞ : (16)

Accordingly, in the expression for the equilibrium distribution
functions f s,eq

i (r,t), %u is replaced by %u0 (see eqn (16)). Values
of the interaction strengths gss0 between distinct species, i.e.,
s a s0, which exceed a threshold, eventually lead to their
separation, whereas values of gss0 for s a s0 exceeding the
threshold give rise to the separation of the liquid and the vapor
phases of a certain species.33 In the following we take gss0 = 0.1
and gss = 0 which leads to an interface with a thickness of ca. 5
lattice units and to a surface tension of the order of 0.1 in lattice
units. We note that this value of the surface tension is sufficient
to keep the colloid trapped at the interface. In fact, the typical
velocity, in lattice units, which the active colloid attains in the
present numerical study is v E 10�3 and hence the drag force

Fdrag = 6pZRv is much smaller (taking Z ¼ 1

6
) than the force

induced by the surface tension Fsurf E 2pRg where g = 0.1 is the
magnitude of the surface tension.

In order to study the behavior of a colloid suspended at a
fluid–fluid interface, a scheme is needed for treating objects,
which are large compared with the particles forming the fluids.
The separation of length scales between the mesoscopic colloidal
size and the molecular size of the fluid particles allows one
to keep the coarse-grained description for the fluid (via LBM)

¶ For example, in the case of a single colloid suspended in a Newtonian fluid the
smallest relevant length scale is the size of the colloid and the relevant time scale
is its mobility. In the case of a diffusiophoretic colloid the smallest length and
time scales are set by the characteristic length and time involved in the diffusion
process of the diffusing species, i.e., the range L of the interaction potential W

between the solute and the colloid and the diffusion time across this length, i.e.,
t = L2/D where D is the diffusion coefficient of the diffusing species.

8 The masses of the reactants, the reaction product, and the colloid enter into the
description via their respective equation of motion.
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while simultaneously treating the colloid as a spherical object
characterized completely by its size, position, orientation, and its
linear and angular velocities. The interaction between the colloid
and the fluid gives rise to forces and torques acting on both the
colloid and the fluid. The technical details of the implementation
of the coupling between the colloid and the fluid within LBM are
discussed in ref. 34–38. In the following we shall outline only the
basic features of this method.

The colloid occupies those lattice cells which are inside
the spherical colloid (see Fig. 2). As the colloid moves, the
configuration of lattice cells occupied by the colloid is updated.
Solid impenetrability is accounted for by bouncing back those
contributions to the fluid flow which attempt to invade the
solid boundaries.37,39 This is implemented by updating the
distribution function after the streaming step according to

f si (r,t + Dt) = f si (r � ciDt,t) (17)

for all i, if the lattice site r � ciDt is occupied by fluid particles.
In contrast, if r � ciDt is occupied by the colloid, the fluid
particles are bounced back, i.e., their velocity is flipped:

f si ðr; tþ DtÞ ¼ f si0 ðr; tÞ; (18)

where i0 is defined as the index corresponding to ci0 = �ci. This
procedure leads to a no-slip boundary condition at the surface
of the colloid and to a momentum transfer between the fluid
species s and the colloid, which induces a local force density

F s
BBðr; tÞ ¼

2

Dt
rsðr; tÞci (19)

and a torque density

T sðr; tÞ ¼ rðtÞ �F sðr; tÞ; (20)

where r(t) is the vector pointing from the center of the colloid to the
site where bounce-back occurs. In order to be consistent the above
mentioned bounce-back rule (see eqn (18)) has to be modified by
accounting for the motion of the colloid.37,39 In order to do so, a
correction is added to the fluid distribution functions:37,39

f si ðr; tþ DtÞ ¼ f s
i
0 ðr; tÞ �

1

6
rsðr; tÞusurf ðr; tÞci0

ðDtÞ2
ðDxÞ2

1

ms; (21)

where usurf is the local velocity at the surface of the colloid, r is
the position of the fluid lattice site. (Note that eqn (21) holds

explicitly in the limit Dt - 0 due to eqn (18).) Consequently, the
force density acting on the colloid is modified, too:

F s
BBðr; tÞ ¼

1

Dt
2rsðr; tÞ � 1

6
rsðr; tÞusurfðr; tÞci0

ðDtÞ2
ðDxÞ2

� �
ci0 : (22)

Finally, when the colloid moves it occupies pristine cells at
its front and it releases cells at its back. In the case of newly
occupied cells, the fluid located therein is deleted and its
momentum is transferred to the colloid by adding

F s
oðr; tÞ ¼ �

1

Dt
rsðr; tÞusðr; tÞ (23)

to the rhs of eqn (22). In the case of cells being released by the
colloid, fresh fluid is created at the corresponding sites with
velocity usurf(r,t) and density �rs, where �rs is obtained by aver-
aging the fluid composition in the direct neighborhood:37

�rsðr; tÞ ¼ 1

N

X
i

0
rsðrþ ciDt; tÞ; (24)

where the sum
P
i

0 is restricted to those values of i for which

r + ciDt is a fluid site; N is the number of these sites. In addition,
in order to account for the unknown exact density profile in the
close vicinity of a colloid, we apply a density correction algorithm
as explained in ref. 37 and 38. In order to conserve momentum, a
contribution is added to the force density (eqn (22)):

F s
r ¼

1

Dt
�rsusurfðr; tÞ: (25)

In order to avoid artifacts during the computation of the
Shan–Chen forces acting on the colloid and to tune the wetting
properties of the colloid, the outermost layer of lattice sites
occupied by the colloid is filled with a virtual fluid which is only
used during the computation of the Shan–Chen forces acting in
the direct vicinity of the colloid. Its density is obtained similarly
to eqn (24), but can be tuned by adding an offset Dr to eqn (24),
which controls the wettability of the colloid. Finally, as usual
the Shan–Chen forces are used to compute the force acting on
the colloid:

F ðtÞ ¼
X
r

X
s

F s
BBðr; tÞ þF s

oðr; tÞ þF s
r ðr; tÞ

	 

ðDxÞ3: (26)

Accordingly, by tuning the magnitude of Dr, it is possible to
control the contact angle of the colloid.37,38

B. Dynamics of the reactant and the reaction product

We assume that the two fluids forming the adjacent phases act
as reservoirs of the reactant and of the reaction product such
that the mass density rr of the reactant is regarded as to be
homogeneous in the bulk of both fluid phases. Close to the
interface the mass density of the two fluid phases varies. In the
following we assume that the ratios

Cs ¼ f rsðrÞ
f sðrÞ (27)

Fig. 2 The solid sphere (a) represents the idealized colloid, while the
cubic cells represent the lattice Boltzmann cells (b). Fluid cells are white,
colloid cells are blue, and catalytically active cells are orange. The center of
the cells is indicated by a black dot.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
M

ar
ch

 2
02

0.
 D

ow
nl

oa
de

d 
on

 6
/1

7/
20

25
 4

:4
6:

36
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sm02247c


3540 | Soft Matter, 2020, 16, 3536--3547 This journal is©The Royal Society of Chemistry 2020

of the number densities f rs of the reactant suspended in the
fluid consisting of species s, and those of the fluid phases,

f s ¼
X
i

f si ; (28)

are kept constant throughout both fluid phases. Accordingly,
the mass density of reactants at a given position is defined as:

rrðrÞ ¼ mr
X
s

Csf sðrÞ; (29)

where the sum runs over all fluid species s and mr is the mass
of a reactant molecule. Eqn (29) implies that rr(r) = kmrf r(r)
where k is the number of fluid species. Concerning the inter-
action between the reactant molecules and the colloid, we
assume that the surface of the colloid is covered by a catalyst
with axial symmetry (see Fig. 2(a)). The strength of the chemical
reaction is controlled by the surface activity x, which deter-
mines the rate at which reactant molecules are converted into
solute molecules.

A simple choice of the surface activity x is given by

xðy0Þ ¼ x0

1; if y0o yo � D

0; if y04 yo þ D

yo � y0 þ D
2D

; otherwise:

8>>>><
>>>>:

(30)

The prefactor x0 is the base activity, y0 is the azimuthal angle (see
Fig. 2), yo is the opening angle which defines the size of the catalytic
cap (see Fig. 2(a)), and D is an interpolation length. This corre-
sponds to full activity for angles well within yo, zero activity outside,
and a linear interpolation in between. Without this linear inter-
polation (i.e., for D = 0), small rotations of the colloid may not
change the activity, due to the roughness of the colloid surface.**
Optimally, the value of D should correspond to ca. one lattice cell,
which is accomplished if D E Dx/R, where R is the radius of the
colloid. This is the quantity which we have used in our simulations.

In the following we specialize on the case of a single reaction
product (our approach can be easily extended to an arbitrary
number of them) which is equally soluble in both fluid phases
and which diffuses in both fluid phases with equal diffusion
coefficient. Moreover we focus on the small Péclet limit, in
which the advection contribution to the time evolution of the
density of the reaction product is negligibly small as compared
with the diffusion contribution. Accordingly, the dynamics of
the mass density of the reaction product is decoupled from that
of the two fluid phases. The former appears as an additional
scalar field defined on the LBM lattice, such that a cell at lattice
position r contains a mass density rrp(r):

rrpðrÞ ¼ mrp
X
s

Crps ðrÞf sðrÞ (31)

where, as for the reactant (see eqn (29)), we have introduced the
number density ratios Crps ðrÞ and we have accounted for their
spatial variation. The dynamics of the reaction product is
governed by eqn (1) and (2). However, in numerical simulations

implementing boundary conditions at r -N is challenging. In
order to ensure that rrp(r) reaches a steady state within the
simulation box with periodic boundary conditions along the
three spatial directions, we introduce a homogeneous sink term
with constant decay rate†† w:

@

@t
rrp ¼ D= � =rrp þ brrp=Wð Þ � wrrp (32)

with the boundary condition (identical to eqn (2))

J�n||r�rc|=R = aRrrx(|r � rc| = R), (33)

where we have introduced the sink term w and |r � rc| is the
distance of a fluid cell from the center of mass of the colloid,
located at rc (see Fig. 2). The interaction potential between the
colloid and the reaction product is chosen as

Wðr� rcÞ ¼
ðl � jr� rcjÞF0; if Ro jr� rcjo l;

0; otherwise;

(
(34)

where F0 and l are the strength and the range of the potential,
respectively. In the following we assume l = 4 lattice units and
bF0l = 5 � 10�5(Dx)3 where b is the inverse thermal energy. This
potential has no angular dependence, i.e., it is the same for the
catalytic and the inert side of the colloid surface. Eqn (32) is
solved via a finite-difference scheme on the same grid as the
one used by the LBM. Finally, the potential W, together with
the non-equilibrium mass density profile rrp of the reaction
product, induces a pressure gradient on the fluid phases as25

=PðrÞ ¼ 1

mrp
rrpðrÞ=WðrÞ: (35)

Eqn (35) is applied as an external body force acting on the fluid
nodes of the LBM fluid species. In the discrete difference
scheme, the local flow J of the reaction product, produced by
the chemical reaction at the surface of the colloid, into a fluid
cell at r per time is given by

J(r) = arrX(r)n(r), (36)

where a is the reaction rate, n is the local normal at the colloid
surface pointing towards the fluid phase, rr is the reactant
mass density, and X(r) denotes the activity of the colloid cells
neighboring the fluid cell at r:

XðrÞ ¼
1; if

P
i

0
xðriÞ4 0;

0; otherwise;

8><
>: (37)

where the sum
P
i

0
is performed only over neighboring cells

inside the colloid (see Fig. 2). This recipe prevents fluid cells in
contact with more than one catalyst cell to be exposed to a
larger flux, induced by the discretization of the shape of the

** This ‘‘roughness’’ is due to the discrete nature of the LBM.

†† This term induces an additional decay length L /
ffiffiffiffi
D

w

r
. The contribution of

the sink term to the velocity of the colloid is disregardable provided that L c l
where l is the decay length of the strength of the interaction between the colloid
and the reaction product.
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colloid. Eqn (36) and (37) enforce a constant flux per area even
in the discrete representation of the colloid.

C. Dynamics of the colloid

The dynamics of the colloid is governed by the equation
of motion

m
@2

@t2
rðtÞ ¼ F ðrðtÞÞ �

ð
1

mrp
rrpðrÞrWðrÞd3r; (38)

where m is the mass of the colloid and F ðrðtÞÞ is given by
eqn (26). The last term in eqn (38) stems from the interaction of
the colloid with the reaction product. We emphasize that the
force applied to the colloid (eqn (38)) equals in magnitude the
force applied on the fluid phases and on the solute such that
the total force on the system is zero. This equation is integrated
numerically via a leap-frog scheme.40,41

IV. Results

After validating our numerical scheme against analytical pre-
dictions for the velocity of a self-diffusiophoretic colloid in a
homogeneous fluid42 (see Appendix A), we study the dynamics
of a self-diffusiophoretic colloid adsorbed at a fluid interface.
We perform numerical simulations with a colloid of radius
R = 10Dx. This implies that the particle size corresponds to roughly
four times the interface width. Obviously, this is expected to be
insufficient in order to separate the length scales, and the particles
should be bona fide nanoparticles. However, we found in
numerous previous studies, using the same algorithm, that
the interface width has a surprisingly small influence on the
particle dynamics (see e.g., ref. 37 and 40).

All simulations are initialized by equilibrating the interface
after the colloid has adsorbed; then the chemical reaction at
the surface of the colloid is turned on. In the following, we
analyze the dynamics of the colloid in the case that the
viscosities of the two fluids are equal, Z1 = Z2 = Z, and for

various values of the opening angle yo of the catalytic cap and of
the contact angle yc (see Fig. 1), which characterizes the
adsorption of the colloid at the interface. Concerning the mass
density of the reactant we consider two situations. In the first
one, both fluids have the same mass fraction of reactant
molecules: i.e., their mass fractions are assumed to be equal

Cs1 ¼ Cs2a0: (39)

In the second case one has

Cs1a0; Cs2 ¼ 0; (40)

so that one fluid does not contain any reactant molecules.
Finally, we study two different scenarios: one, in which the
colloid can move freely along the interface, and another one, in
which the lateral colloid position is fixed by an external force.

A. Equal reactant mass fractions

First, we consider the case in which the reactants are suspended
with equal mass fraction in both fluid phases (eqn (39)). In this
case certain symmetries can be identified, depending on the
relative orientation y of the axis of the colloid with respect to the
plane of the interface: (i) the fore-aft symmetry for y = �p/2, i.e.,
if the axis of the colloid is parallel to the normal of the interface.
(ii) For c2 = c1 a 0 the velocity and the density profile of the
reaction product acquire an additional mirror symmetry about
y = 0, i.e., if the axis of the colloid lies within the plane of the
interface.

As a first case, we study the dynamics of a colloid which is
partially covered by catalyst, i.e., here yo = p/4, and has a contact
angle yc = p/2. Fig. 3 shows the orientation y(t) of the colloid as
a function of time for a free colloid (Fig. 3(a)) as well as for a
colloid the center of mass of which is kept at a fixed position by
an external force (Fig. 3(b)). Interestingly, the dynamics in the
two setups are quite similar, in that the catalytic reaction
induces a net torque on the colloid which leads y to approach
a steady state with y(t = N)� yN = 0. We note that, while for the

Fig. 3 Angle y of the orientation of the colloid with respect to the interface (see Fig. 1) as a function of time, normalized by the time t0 it takes for a half-
covered colloid to move a distance which equals its own radius, t0 = R/v0, for the case of a free colloid (panel (a)) and for the case of a fixed colloid (panel
(b)). The velocity v0 is the velocity the very same colloid attains in a homogeneous fluid characterized by the same viscosity (see Appendix A). The lines
correspond to various initial orientations y(t = 0) of the colloid [y(t = 0) = 0, p/8, p/4, 3p/8, p/2] for yo = p/4. In the case of the free colloid, the trajectories
have been smoothed by integrating over a shifting time-window 104Dt wide. The lines are symmetric with respect to y = 0.
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moving colloid yN = 0 is the only steady state, for the fixed
colloid yN = p/2 is also a steady state. This difference is due to
the fact that if the colloid is not fixed, its center of mass will
move also along the direction normal to the interface. Hence,
the distinction between the two cases emphasizes that yN = p/2
is not stable with respect to fluctuations of the position of the
center of mass of the colloid.

Next, we study the dependence of the dynamics of the
colloid on the areal size of the catalytic cap, characterized by
yo, and on the contact angle yc. Fig. 4 shows the stable steady
state orientations yN as a function of the opening angle yo for
various contact angles of a free colloid (Fig. 4(a)) and of a
colloid the center of mass of which is kept fixed (Fig. 4(b)).
Interestingly, both panels of Fig. 4 show that for opening angles
yo a p/2 the steady state orientation of the colloid is yN a p/2,
i.e., the colloid attains a steady translation along the interface,
because the driving force points into the axial direction of the
colloid and thus provides a lateral component. The normal
component of the velocity is compensated by the force induced
by the deformation of the interface. This ensures a steady
distance of the center of mass of the colloid from the interface.
In particular, yN grows upon increasing yo for both yc = 0.55p
(red upward triangles) and yc = 0.6p (green downward trian-
gles). Finally, for yo = p/2, the stable steady state is yN = �p/2
for all contact angles yc which leads to a vanishing velocity
along the interface. We note that the case of contact angle yc =
p/2 (blue circles) is peculiar because in this case the steady state
orientation is yN = 0 which implies maximum velocity along
the interface. This result holds for all opening angles yo o p/2.
For yo = p/2 with yc = p/2 we face numerical difficulties due to
the symmetry of the problem. In fact, for yc = p/2 the center
of mass of the colloid lies at the interface and if the colloid is
half-covered (yo = p/2) the only non-motile state requires y = p/2.
However, when y - p/2, the typical size of the active site being
wetted by one of the two fluid phases becomes comparable to
the lattice constant and, for yc = p/2 and yo = p/2, our discrete
numerical approach would require larger ratios of the colloid
size and the lattice constant which, however, we could not
explore.

In the case in which the colloid can move freely, at steady
state its lateral velocity along the interface depends on both the
contact angle and the opening angle. Fig. 5 shows that for
yc = p/2 the maximum speed is obtained for yo = p/2 and it
equals the one (v0) obtained in a homogeneous fluid. This tells
that, under the condition of equal viscosity among the two fluid
phases, due to the symmetry of the problem, the interface does
not affect the fluid flow and hence the motion of the colloid.
In contrast, Fig. 5 shows that, for yc a p/2, v has a non-
monotonous dependence on the opening angle. Indeed, v
vanishes for yo = 0 (i.e., for a passive colloid) and for yo = p/2,
and it attains a maximum for yo C p/4. This non-monotonous
dependence of v on yo can be understood by relating the data in
Fig. 5 to those shown in Fig. 4(a). Indeed, for yo - 0 at steady
state the axis of the colloid lies in the plane of the interface (i.e.,
y(t = N) - 0), whereas upon increasing yo the steady state
orientation, yN, also grows and so does the steady state
velocity. For even larger values of yo the value of yN increases
until, for yo - p/2, one has yN - p/2 which implies v - 0.

The rotation of the symmetry axis of the colloid we have just
described is rather counter-intuitive, in particular for yc = p/2
and Z1 = Z2. Indeed, the equality of the viscosity of the two fluids
and the lack of accumulation of the reaction product at the
interface enforce the symmetry of the mass density profile of
the reaction product about the symmetry axis of the colloid and
therefore of the local pressure gradients acting on the fluid.
Hence, at first glance, in this scenario one might expect no net
torque. Actually, for this case a simplified analytical model,19

which disregards the fluid flow in the vicinity of the three-phase
contact line, predicts that there is no reorientation of the
colloid at all. In the following, we show that the observed
torque is due to the fact that the mobility is not homogeneous
along the surface of the colloid. Indeed, the boundary conditions
imposed on the fluid velocity by the presence of the interface
lead to an effective local mobility the spatial variation of which

Fig. 4 Steady state angle y(t = N)� yN as a function of the opening angle
yo. Blue circles, red upward triangles, and green downward triangles
correspond to yc = p/2, 0.55p, and 0.6p, respectively. Panels (a) and (b)
correspond to a free and a fixed colloid, respectively. The data are
symmetric with respect to yN = 0 (not shown).

Fig. 5 Lateral velocity v along the interface, normalized by the velocity
v0 = v(yo = p/2) (v0 = 0.00175 in LBM units), of a free Janus colloid (yo = p/2)
in a homogeneous fluid as a function of the opening angle yo for various
contact angles: blue circles, red upward triangles, and green downward
triangles correspond to yc = p/2, 0.55p, and 0.6p, respectively. The blue
line represents the velocity of a free Janus colloid in a homogeneous bulk
fluid as function of yo.
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generates the torque. In order to highlight this relationship, we
determine the net velocity, which a passive colloid attains if it is
pushed by an external local force density fr0(r), localized at r0

near the colloid surface and acting solely on the fluid and being
directed towards the center of the colloid:

fr0ðrÞ ¼ F
rc � r

rc � rj jd r� r0ð Þ; (41)

where d(r � r0) is the Dirac delta function, F is a force, and rc is
the position of the center of mass of the colloid. In these
corresponding simulations, the colloid attains a steady state
in which it rotates with constant angular velocity x. We are
interested only in its component oz(t = N) = ez�x(t = N) along
the z-direction.‡‡ We introduce the dimensionless inverse
hydrodynamic mobility coefficient

gðr0Þ :¼ g0
Roðt ¼ 1Þ

F
; (42)

as the ratio of the angular velocity and the magnitude of the applied
force,§§ where R is the radius of the colloid, g0 = 6pZR is the friction
coefficient of the colloid; g(r0) depends on r0 via o(t = N).

In Fig. 6, the dimensionless inverse mobility coefficient is
shown as a function of the x and y positions in a plane
perpendicular to the interface (black horizontal line in Fig. 6)
and passing through the colloid center of mass. This highlights
the point symmetry of the dimensionless inverse mobility and
that forces closer to the interface give rise to larger torques and
hence higher values of the steady angular velocity oz. In the

small Reynolds number regime, which is valid for the motion of the
present diffusiophoretic colloid, the Navier–Stokes equation reduces
to the (linear) Stokes equation. Hence, the local mobility allows us to
determine the torque on the colloid in z-direction for any given force
density f (r), as long as the force acts on the colloid along the
radial direction. For the case of a self-diffusiophoretic colloid,
the force density distribution, due to phoresis, is given by

fphðrÞ ¼
@UðrÞ
@r

rrpðrÞ
mrp

(see eqn (35)) where here r indicates the

distance from the center of mass of the colloid. Accordingly, the
local mobility allows us to determine the torque tz = s�ez exerted
on the colloid by the density profile of the reaction product:

tz ¼ BL

ðL
�L

ðL
�L

dxdyfphðx; y; 0Þgðx; y; 0Þ; (43)

where B is a dimensional fitting parameter, and L is the size of
the simulation box. Actually, eqn (43) approximates the total
torque in that we are considering solely the contributions to the
torque stemming from the plane perpendicular to the interface
and passing through the center of mass of the colloid (see
Fig. 6). Contributions stemming from the rest of the surface
of the colloid are accounted for by the fitting parameter B.
We emphasize that the same value of the parameter B, i.e.,
B = 5.2Dx, fits well the data for colloids with various opening
angles yo as shown in Fig. 7, 10, 11 and 12. The validity of this
approach will be discussed a posteriori, i.e., by comparing it with
the values extracted from the corresponding lattice Boltzmann
simulations.

Fig. 7 provides a comparison of the torque calculated via
eqn (43) with the torque obtained directly from the lattice
Boltzmann simulations for a colloid with opening angle yo = p/4
and for three contact angles. (For a discussion of these kind of
results for various opening angles see Appendix B.) Interestingly,
Fig. 7(a) shows that for a contact angle yc = p/2 the prediction of
eqn (43) agrees very well with the torque obtained from the
simulations for both a free and a fixed colloid. As expected,
Fig. 7(a) shows that the torque on the colloid is zero for the

steady states characterized by y ¼ 0;�p
2

.

For contact angles yc a p/2 (see Fig. 7(b) and (c)), the torques
on the free and on the fixed colloid are no longer equal. This is
expected, because for these contact angles the lateral motion
along the interface leads to an additional contribution to the
torque.43 This explains the mismatch between the prediction of
eqn (43) and the torque of the free colloid obtained from the
simulations shown in Fig. 7(b) and (c). However, this additional
torque is absent for the fixed colloid. This explains the good
agreement between the prediction of eqn (43) and the torque on
the fixed colloid calculated from the simulations shown in
Fig. 7(b) and (c).

1. Inhomogeneous reactant densities. Up to now, we have
studied the case in which both fluid phases contain reactant
molecules. Here, we consider the system in which one of the two
fluids does not contain the reactant (eqn (40)), yet the product of
the chemical reaction can diffuse, with equal diffusivity, in both
fluid phases. Clearly, in this case the point symmetry of tz(y) at

Fig. 6 Inverse mobility coefficient (red/blue color) g (eqn (42)) as a
function of the position in the x–y plane through the colloid center (black
dot) for a colloid characterized by yc = p/2. The interface lies in the x–z
plane located at y = 0 (black horizontal line). The blue color tells that a
force at this position leads to a negative angular velocity oz o 0, whereas a
force in cells with red color leads to a positive angular velocity oz 4 0. The
inverse mobility coefficient is only shown for positions which are at most
l = 4 lattice units away from the colloid (R o r o R + l), where l is the range
of the interaction potential (see eqn (34)). The blue circle represents the
colloid.

‡‡ Note that in general, the mobility coefficient is a tensor because both the
applied force and the angular velocity are vectors. However, for the self-phoretic
colloid the local forces are always perpendicular to the colloid surface, and we are
interested only in the z-component of the angular velocity. For this purpose the
description of eqn (42) suffices.
§§ Since the force is acting radially, the torque on the colloid is zero.
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y = 0 is broken even for the contact angle yc = p/2, whereas its
mirror-symmetry at yc = �p/2 remains.

Since we have not observed major discrepancies between the
case of a moving colloid and that of a colloid fixed in space, in
the following we focus on the case of a fixed colloid, because it
is computationally easier. If the catalytic cap is fully immersed
in that fluid phase which contains the reactant, the dynamics of
the colloid is identical to that observed if the reactant is
dissolved in both fluid phases. From geometric considerations
(see Fig. 1), it follows that the catalytic cap is exposed to the
fluid without reactant if y Z y1 with

y1 = (yc � p/2) � yo, (44)

and it is fully submerged in the fluid without reactants for
y Z y2 with

y2 = (yc � p/2) + yo. (45)

Accordingly, as long as yo y1 the catalytic cap does not get into
contact with the fluid without reactant and hence the colloid
will behave exactly as in the case in which both fluids contain

the reactant. If y 4 y1, a large gradient of the solute con-
centration occurs close to the interface due to the lack of
reaction in the other fluid phase. This drives the rotation of the
colloid further towards the fluid without reactant, until the catalytic
cap becomes fully submerged in this fluid, i.e., yZ y2. At this point
the system becomes ‘‘passive’’ because there is no longer production
of solute and thus the colloid does not move anymore.

Fig. 8 shows the steady states yN of the colloid as a function
of the opening angle. We remark that Fig. 8 does not show all
stable steady states with y 4 y2, i.e., when the system becomes
passive due to the lack of chemical reactions. Interestingly, the
steady states shown in Fig. 8 are in good agreement with our
simple geometrical estimate (eqn (45)) except for a constant
offset. We speculate that this offset is a numerical artifact
because a small concentration of reactant molecules can occur
in the interface region. (We recall that in the lattice Boltzmann
scheme the fluid–fluid interface has a finite thickness, which in
the present simulations is ca. 5 lattice constants.) In particular,
within the Shan–Chen model the density of the fluid, which
contains the reactant, is not zero everywhere because the two
fluids do not completely demix. Therefore, when the colloid
protrudes far into the fluid without reactant, there is a torque
rotating it back towards the fluid with reactant, in line with the
results from Section IV A. Finally, we note that for a Janus
colloid, i.e., yo = p/2, and with yc 4 p/2 the steady state yN = p/2
is independent of the contact angle, because the Janus colloid
is always in contact with the fluid with reactant.

V. Conclusions

We have presented a novel numerical approach which is
capable of capturing the dynamics of self-phoretic colloids even
in the presence of a fluid interface which affects the boundary
condition of the fluid velocity close to the surface of the colloid.
In particular, we have characterized the dynamics of a self-
diffusiophoretic colloid adsorbed at a fluid–fluid interface for
the case in which the colloid is let free to move as well as when
the colloid center of mass is kept at a constant position by an

Fig. 7 Component tz in the z-direction of the torque on the colloid as a function of the rotation y. Blue (green) solid lines correspond to the LBM measured
torque for a fixed (free) colloid; the error bars indicate the standard error. (Note that for certain values of y the blue, green, and red lines totally overlap and thus
are not visible.) Red solid lines correspond to the torque calculated via eqn (43) for yo = p/4 with (a) yc = 0.5p, (b) yc E 0.55p, and (c) yc E 0.6p. The torque
components are normalized by t0 � t(y = �p/4, yc = p/2) as obtained from eqn (43) with yc = p/2 (t0 = 0.04 in LBM units). The error bars are due to the
discretization of the colloid surface (for both fixed and mobile colloids) and due to the motion normal to the interface (mobile colloid, green lines).

Fig. 8 Steady state angle yN as a function of the opening angle yo.
Symbols are simulation data; blue circles: yc = p/2; red upward triangles:
yc E 0.55p; green downward triangles: yc E 0.6p. The blue, red, and green
lines show the threshold angle y2 (eqn (45)) for the corresponding contact
angle yc as a function of the opening angle yo.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
M

ar
ch

 2
02

0.
 D

ow
nl

oa
de

d 
on

 6
/1

7/
20

25
 4

:4
6:

36
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sm02247c


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 3536--3547 | 3545

external force. We have found that a rotation of the axis of
symmetry of the colloid arises even for fluids with equal viscosity.
In particular, we have found that the steady state orientation
depends on both the opening angle yo of the catalytic cap and the
contact angle yc.

In order to understand the origin of such a reorientation we
have calculated the local mobility by applying locally external,
constant forces on a passive colloid. We have extracted the local
value of the mobility by taking the ratio between the applied
force and the steady-state angular velocity. This local mobility
has been used to determine the effective torque acting on the

self-diffusiophoretic colloid. Interestingly, we have found that,
for yc = p/2, the mobility matrix predicts quite well the effective
torque on a free colloid as well as on a colloid the center of
mass of which is kept spatially fixed. If yc a p/2 we have found
good agreement for the case of the fixed colloid, whereas an
additional torque arises in the case of a mobile colloid. Finally,
we have discussed the case in which only one fluid contains the
reactant. In this case we have found that the stable steady-state
orientation is the one with the cap immersed in the fluid
without reactant so that the colloid becomes inactive.
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Appendix A: validation of the numerical
scheme

In order to validate our numerical scheme we characterize the
dynamics of a self-diffusiophoretic colloid in a homogeneous
bulk fluid. In this case, after an initial transient, the colloid
attains a steady state in which it moves with a constant velocity
v = ezv. We compare the results of simulations performed for
various values of the opening angle yo with analytic results.42

Fig. 9 shows the reduced steady state velocity of the colloid
as a function of the opening angle. As shown in the figure, the
agreement with the analytic results is very good.

Fig. 10 Same as in Fig. 7 for yo = p/2.

Fig. 11 Same as in Fig. 7 for yo = 3p/8.

Fig. 9 The velocity v of a self-diffusiophoretic colloid as a function of the
opening angle yo, normalized by v0 = v(yo = p/2) (see Fig. 5). The symbols are
simulation data whereas the solid line provides the analytical prediction.42
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Appendix B: additional results

In Fig. 7, 10, 11 and 12 the z-component of the torques on self-
diffusiophoretic colloids with opening angles yo = p/4, p/2, 3p/8,
and p/8, respectively, are shown as function of the colloid
rotation for three contact angles yc.

In Fig. 10–12 there is still qualitative agreement between the
measured torque on the fixed colloid and the torque calculated
via eqn (43), although the quantitative agreement is weaker. As
before, the torque on the free colloid and the torque on the
fixed colloid agree very well for all opening angles if the contact
angle is yc = p/2, because in this case the lateral motion does
not induce a torque on the colloid.
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