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Compression-induced anti-nematic order in glassy
and semicrystalline polymers†

Sara Jabbari-Farouji *ab and Damien Vandembroucq c

We provide new insights into the molecular origin of the asymmetry

between uniaxial tensile and compressive deformation of glassy

and semicrystalline polymers using molecular dynamics simulations.

The difference between the two responses strongly depends on the

chain length and is the largest at intermediate chain lengths.

Irrespective of chain length, the intra- and interchain organization

of polymers under extension and compression are remarkably

distinct. The chains align along the tensile axis leading to a global

nematic order of the bonds and end-to-end vectors, whereas

compression reorganizes polymers to lie in planes perpendicular

to the compressive axis resulting in the emergence of an anti-

nematic order and destruction of crystallinity. Regardless of the

initial glassy or semicrystalline structure, the deformed state of

polymers at large strains converge towards the same kind of structure

that only depends on the deformation mode.

The mechanical responses of glassy and semicrystalline polymers
under various loading conditions have been the subject of inten-
sive experimental1–7 and theoretical8–19 investigations. However,
the effect of deformation mode on conformational and micro-
structural rearrangement of polymers, especially in the strain-
hardening regime, still remains elusive.1,6,10,13,20 Gaining chain-level
insights into deformation mechanisms of polymers is experi-
mentally challenging due to the small length scales involved.
Thus, this challenge has been taken over by molecular simulations
that allow a direct access to various intra- and inter-chain statistical
measures during the plastic flow of polymeric solids.9,10,12–15,17,19,21,22

The simulation studies investigating the effect of deformation
mode have mainly focused on glasses.10,15,20 In the case of
semicrystalline polymers, the effect of deformation mode in

conjunction with chain length on the conformational changes
and structural rearrangements remains largely unexplored. The
few available studies are atomistic simulations of semicrystal-
line polymers that are limited to small length scales.13,14 For
instance, molecular simulations investigating the dependence
of deformation mode in semicrystalline polymers focused only
on a layered semicrystalline morphology as part of a larger
spherulite structure.13

Using large-scale molecular dynamics (MD) simulations of a
crystallizable coarse-grained polymer model,23 we investigate
the conformational and microstructural rearrangements of
glassy and semicrystalline polymers of varying chain lengths
during uniaxial tensile and compressive deformations. We find
that the orientational order of chains under compression is
entirely different from that under extension regardless of the
chain length and the underlying structure. The chains align
themselves under extension leading to a net nematic order.
Contrarily, a uniaxial compression constrains the chains to lie
within planes perpendicular to the deformation axis leading to
the emergence of an anti-nematic order akin to the electric-field
induced anti-nematic order observed in charged platelet
suspensions.24 To our knowledge, this is the first report of
compression-induced anti-nematic order in solid-like polymers.

The crystallizable polymer model is a bead-spring chain with
a triple-well bending potential that is obtained from coarse-
graining of the atomistic simulation of polyvinyl alcohol, the
so-called CG-PVA model.23,25 Upon slow cooling of the melt,
chains undergo a crystallization transition and form semicrsytalline
structures consisting of randomly oriented crystallites with 2D
hexagonal order immersed in a network of amorphous strands.26

Short chains transform into polycrystalline structures composed of
extended chain conformations, whereas longer ones form chain-
folded lamella-like structures23 as shown in Fig. 1. For a rapid
quench, polymers undergo a glass transition.17,19 Our prior
investigation of tensile response of both amorphous and semi-
crystalline polymers19 showed that the response of long polymer
glasses is dominated by the entanglement network whereas that
of long semicrystalline polymers is determined by an interplay of
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the two interpenetrated networks of entanglements and tie chains
(amorphous strands connecting the crystalline domains).19 Here,
we focus on the underlying origin of asymmetry in tensile and
compressive deformation of glassy and semicrystalline polymers.

We perform MD simulations using LAMMPS.27 Distances in
the CG-PVA model25,26 are reported in units of s = 0.52 nm, the
bond length is b0 = 0.5s. A 6-9 Lennard-Jones potential is used
to model the non-bonded interactions with the range and
strength sLJ = 0.89s and eLJ = 1.511kBT0 where T0 = 550 K is
the reference temperature.26 The time unit from the conversion
relation of units is t = 1.3 ps. The Lennard-Jones potential is
truncated and shifted at rc = 1.6s. Temperatures T = Treal/T0

and pressures P = Preals
3/e are reported in reduced units.

The equilibrated polymer melts are obtained at T = 1 and
P = 8 equivalent to T0 = 550 K and P0 = 1 bar in atomistic
simulations.23 Glassy and semicrystalline samples of different
chain lengths, N = 5, 20, 50, 300 and 1000, see ESI† 28 for more
details, are obtained by cooling the melts from T = 1 to T = 0.2
at cooling-rates

:
T = �10�3t�1 and

:
T = �10�6 t�1, respectively.

Both glass transition Tg and crystallization Tc temperatures
increase with chain length ranging from Tg E 0.38 and Tc E
0.63 for N = 5 to saturation values of TN

g E 0.56 to TN

c E 0.9 for
N 4 100, see Fig. S1 in ESI.† 28 The polymer gyration radii span
from Rg E 0.7s for N = 5, comparable to monomers size, to
Rg E 15s for N = 1000 c Ne where Ne E 40 is the entanglement
length of semicrystalline polymers.29 We use a local nematic
order parameter to identify ordered and amorphous regions17

which in combination with a cluster analysis allows us to
determine the volume distribution of crystalline domains.17,19

The average linear dimensions of crystallites is in the range
14.5 r Lcrys/s r 48. It varies non-monotonically with N with a
maximum at N = 20 given by Lcrys/sE 48 and the average size of
tie chains increases with N as 5 o Ntie o 30 for 20 r N o 1000,
see ref. 19 and Table S1 in ESI.†

The samples are deformed in the y-direction with a constant
true strain-rate of _e = �10�5t�1 while in the x and z-directions
we impose the same pressure as in the undeformed samples.
We restrict the maximum strain to |emax| = 1.8 to avoid bond
scission monitored by examining the maximum extension on
the covalent bonds. |emax| = 1.8 corresponds to a macroscopic
stretch ratio l� L8/L80 of about 6 (1/6) for extension (compression)
where L80 and L8 are the undeformed and instantaneous box
length in the y direction parallel to the deformation axis. The
volume increase is at most 10% for both glassy and semicrystalline
polymers at |emax|, see Fig. S2 in ESI† 28 and these systems
behave nearly as an incompressible fluid implying that the

stretch ratio in any of the perpendicular directions, x and z,

follows L?
�
L?0 � 1=

ffiffiffi
l
p

.
Fig. 2a and b present the magnitude of stress S versus

magnitude of strain e obtained under compression and extension
for glassy and semicrystalline polymers, respectively. For all the
samples, the elastic regime at small strains is followed by a
plastic flow at larger strains. For the shortest chain length N = 5
with a gyration radius comparable to the monomer size, we
observe a stress plateau beyond the yield point and the compres-
sive and tensile responses of both glassy and semicrystalline
polymers are almost identical. For longer polymers, we observe a
strain-hardening regime, the slope of which increases with the
chain length.19 The dependence of Tg on chain length and finite
persistence length cp E 5s are the key factors for the dependence
of mechanical behavior of glassy polymers on the chain length
even for N 4 Ne.30 For both glassy and semicrystalline polymers,
the compressive stress is larger than the tensile stress. The
compressive elastic moduli and flow stress Sf (roughly estimated
as the maximum value of the stress in the overshoot region)
of polymers with N 4 5 are about 15–20% higher in agreement
with the prior experimental and simulation reports for glassy
polymers.10,20,31,32 This difference can be attributed to a slightly
larger monomer density under compression relative to that under
extension, see Fig. S2 in ESI.† 28 The difference between the two
responses in the strain-hardening regime is a non-monotonic
function of chain length and notably large at intermediate chain
lengths N = 50 and 300. For the longest chain length N = 1000, the
compressive and tensile responses become similar especially if
we plot |S| � |Sf| versus |e|, see Fig. S3 in ESI.† 28

To understand the molecular origin of compressive–tensile
asymmetry, we first inspect the degree of conformational
anisotropy of chains at different stages of deformation. The
chains elongate along the tensile axis whereas their lateral
extents shrink. Under compression, the chains contract in
direction parallel to the deformation axis whereas they stretch
isotropically in planes perpendicular to it. We quantify the
degree of conformational anisotropy A as the ratio of RMS
components of the chain end-to-end vectors R in the parallel and

perpendicular directions, i.e. A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rk2h i=R?2

p
where hR82i �

hRy2i and hR>2i � (hRx2i + hRz2i)/2. In an affine deformation for
which the chains follow the macroscopic deformation, we expect
A = l3/2. Fig. 3a and b show A and 1/A as a function of macroscopic
stretch l and 1/l for glassy and semicrystalline polymers under

Fig. 1 Conformations of CG-PVA polymers with different degrees of
polymerization N in the semicrystalline state at T = 0.2. Fig. 2 The magnitude of true stress in units of eLJ/s3 versus true strain

magnitude from uniaxial compression (solid lines) and tensile (dashed
lines) deformation of (a) glassy and (b) semicrystalline polymers with chain
lengths N = 5, 20, 50, 300 and 1000 as given in the legends.
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tensile and compressive deformations, respectively. We note that
for the longest chain length, Aextension E 1/Acompression and the
anisotropy of conformations follows that of the box, i.e., l3/2.
The conformational anisotropy of short chains is remarkably
smaller than the macroscopic anisotropy because they entail a
lesser number of degrees of freedom to follow the macroscopic
stretching.

Next, we compare the microscopic stretch ratio of the chains
with the macroscopic one l. The effective microscopic stretch

ratio is defined as leff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rk2h i

.
hRk20 i

r
.9 Under an affine uni-

axial deformation, leff = l and the changes in hRa2i are consistent
with a volume conserving uniaxial macroscopic deformation, i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rk2h i
.
hRk20 i

r
¼ R?20

� ��
R?2
� �

. The effective stretch ratio leff

has recently been identified as an important parameter control-
ling the strain hardening behavior of amorphous and semicrys-
talline polymers.9,19 When leff(l) of two samples are similar,
independently of the chain length, their responses in the strain-
hardening regime are also alike. Fig. 3c and d display leff as a
function of the macroscopic stretch l for tensile deformation and
1/leff versus 1/l for compression of glassy and semicrystalline
polymers, respectively. Starting from the same initial configuration,
samples deform more affinely under compression than under
extension. Similar to the results for tensile deformation,19 under
compression polymers in semicrystalline state deform less affinely
than their glassy counterparts. However, the samples of long
polymers N = 1000 exhibit a more affine behavior irrespective of
deformation mode and their underlying structure. The differences
between the leff in extension and 1/leff in compression remarkably
reflect the compressive–tensile asymmetry observed in the stress
responses shown in Fig. 2. The difference between the microscopic

stretches is large when the asymmetry between the two responses
is significant. Particularly, we observe a big contrast between
compressive and tensile deformation of semicrystalline polymers
of N = 50. The chains of this sample are mainly in stretched
conformations with at most one fold leading to a large persistence
segment sp E 20, see Fig. S4 and S5 in ESI.† 28 Hence, under
extension they exhibit a slight degree of unfolding and stretching
and their deformation mainly proceeds via reorientation of
extended chain conformations with the tensile axis. Under compres-
sion, the stretching of the chains in planes perpendicular to the
deformation axis leads to buckling of chains and a greater extent of
chain unfolding. This leads to a notably different behavior of leff

of N = 50 semicrystalline polymers under compression relative
to other chain lengths.

To inspect the conformational changes under deformation,
we compute the components of intrachain bond–bond correlation
functions given by Sa(n) = hbai bai+ni where bai is the component a of
ith unit bond vector bi of a chain and 1 r n r N � 1 is the
curvilinear distance between any two monomers along the chain
backbone. Fig. 4 presents the intrachain bond–bond correlations
of glassy and semicrystalline polymers of N = 1000 in the
directions parallel S8(n) � Sy(n) and perpendicular S>(n) �
(Sx(n) + Sz(n))/2 to the deformation axis at different strain
magnitudes. In undeformed isotropic samples Sa(0) = hba2

i i = 1/3.
For the undeformed semicrystalline polymers, we observe a
minimum at n E 30 reflecting the average length of chain
folds. Under tensile deformation, the parallel correlations S8(n)
increase whereas the perpendicular correlations S>(n) decrease
and the minimum of Sa(n) observed for undeformed semi-
crystalline polymers disappears at large deformations. The
results confirm unfolding of chains and their alignment with
the tensile direction.17,18 On the contrary, under uniaxial
compression the intrachain correlations of both glassy and
semicrystalline polymers shrink in the parallel direction and
grow in the perpendicular direction. Because the chains can

Fig. 3 The degree of conformational anisotropy A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rk2h i= R?2h i

p
for

(a) glassy and (b) semicrystalline polymers under tensile deformations as a
function of macroscopic stretch l = L8/L80 (dashed lines) and 1/A versus 1/l
for the same systems under compression (solid lines). The gray dotted lines
correspond to the box anisotropy described by l3/2. The effective micro-

scopic stretch leff �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rk2h i

.
hRk20 i

r
versus l for (c) glassy and (d) semi-

crystalline polymers under extension (dashed lines) and 1/leff versus 1/l for
the same samples under compression (solid lines). The dotted grey lines
shows the affine limit for which leff = l.

Fig. 4 Anisotropic intrachain bond–bond orientational correlation functions
against the curvilinear distance n along chain backbones at different tensile
and compressive strain magnitudes e for glassy (a and b) and semicrystalline
polymers (c and d) with chain length N = 1000. The dashed lines depict the
intrachain correlations parallel to the deformation axis S8(n) � Sy(n) and the
solid lines correspond to the average intrachain correlations in the perpendi-
cular directions S>(n) � (Sx(n) + Sz(n))/2.
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stretch at any direction perpendicular to the deformation axis,
we observe a lesser degree of chain unfolding in comparison to
extension-induced chain stretching at equal strain magnitudes.

Fig. 4 shows that not only the correlation lengths of the S8(n)
and S>(n) change upon deformation but also their starting
values Sa(0) evolve. These changes are expected, because the
mean squared projections of bond vector components Sa(0) are
related to the eigenvalues of the global nematic tensor of bond

orientation vectors Qbond ¼ 1=2nbond
Pnbond
i¼1

3bi � bi � Ið Þ where

nbond is the total number of bonds in the system. Especially,
the eigenvalue with the largest magnitude Sbond is given by
Sbond = 1/2(3S8(0)� 1). Sbond varies in the range�0.5 r Sbond r 1.
In an isotropic state, the three eigenvalues are null and Sbond = 0.
The degeneracy is lifted as soon as the structure gets anisotropic.
Two extreme cases can be envisaged. When all the bond vectors
are aligned in the same direction, Sbond - 1 leading to a perfect
uniaxial nematic alignment. On the other hand, when all the
bonds are perpendicular to the director, without any preferred
azimuthal direction, a perfect uniaxial anti-nematic order
described by Sbond - �0.5 emerges. The evolution of Sbond is
presented in Fig. 5a and b. Under both compression and
extension, the director of the nematic tensor Qbond is aligned
with the deformation axis. Under extension, reorientation of
bonds with the tensile axis leads to increase of Sbond with strain
and it approaches unity at large e. Under compression, negative
strains, Sbond gradually decreases and becomes more negative.
A negative Sbond is an evidence of anti-nematic order reflecting
a distinct arrangement of bonds under compression and a
notable destruction of initial crystalline order, see Fig. S6 in
ESI.† As the polymeric material is uniaxially compressed, the
chains elongate isotropically in directions perpendicular to the
compressive axis. Consequently, a large fraction of bond vectors
are oriented in planes orthogonal to the deformation axis.

To examine the collective organization of the chains, we
calculate the nematic order tensor associated with the chain

end-to-end orientation vectors R̂i � Ri/Ri obtained as

Qee ¼
1

2nc

Pnc
i¼1

3R̂i � R̂i � I
� �

where nc is the total number of

chains. Likewise, we define See as the eigenvalue of Qee with
the largest magnitude varying in the range �0.5 r See r 1.
Fig. 5c and d show the evolution of See as a function of strain
for glassy and semicrystalline polymers, respectively. We
observe a very similar trend to that of Sbond, nematic and anti-
nematic order under extension and compression, respectively.
However, the absolute values of See are larger than the corres-
ponding ones for Sbond, especially in the compressive regime
where See - �0.5 already at e E �1.5 for N 4 5. The emergent
anti-nematic order suggests that a local buckling mechanism
may be at play under compression as supported by our visual
inspections.28 We observe a non-monotonic behavior of both
Sbond and See as a function of N for semicrystalline polymers
which reflects the initial non-monotonic dependence of crystal-
linity degree on N; see Table S1 (ESI†).

We conclude by highlighting our main findings and suggestions
for future directions. The degree of asymmetry between the tensile
and compressive responses depends on both the underlying
structure (degree of crystallinity) and the chain length. The two
responses become similar for very short N { Ne and long chains
N c Ne. Even when the two responses are similar, the nature of
inter- and intra-chain organization under the two deformation
modes is very distinct. Alignment of chains along the tensile
axis leads to a nematic order of bond and end-to-end vectors,
whereas reorganization of polymers under compression results
in an anti-nematic order. Deformation mode also affects the
crystalline domains differently. During tensile deformation, the
crystalline domains of semicrystalline polymers are fragmented
and reoriented along the tensile axis17,18 and eventually at large
strains the initial hexagonal order of semicrystalline polymers26

is replaced by a nematic order. Under compression the degree of
crystallinity is dramatically reduced as a consequence of anti-
nematic ordering. Notably, at large strains configurations of
semicrystalline and glassy polymers become similar as a result
of chain unfolding and reorientation. Thus, the same kind of
order appears in both glassy and semicrystalline polymers
under identical deformation modes but the degree of ordering
at a given strain depends on the chain length and the underlying
structure. The convergence towards affine limit also depends on
both the underlying structure and deformation mode. The approach
to affine limit occurs quicker under compression, leading to a large
degree of compressive–tensile asymmetry at intermediate chain
lengths. Moreover, the finite persistence length cp E 5b0 seems to
affect the convergence behavior when we compare our results to
those of flexible polymer glasses under compression. The latter
exhibits an affine behavior already for N 4 Ne.

9,10

Finally, we point out that the observed compressive–tensile
asymmetry can not be captured by affine entropic network models
which attribute the strain-hardening to a loss of conformational
entropy of polymers.33 The stress in the strain-hardening regime
predicted by these theories is given by S� Sf = GH(l2� 1/l), where
GH is the strain-hardening modulus. This leads to a weaker stress
response under compression relative to extension at equal strain

Fig. 5 The global nematic order parameter of bonds Sbond for glassy (a) and
semicrystalline (b) polymers of different chain lengths, N, as a function of
strain in both compression (negative strain) and tensile deformation modes.
Likewise, the strain-dependence of the nematic order parameter of chains
end-to-end vector See for glassy (c) and semicrystalline (d) polymers.
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magnitudes. Our findings reinforce the significance of the effective
microscopic stretch leff

9,19 for the description of the strain-
hardening behavior. Nonetheless, the mechanical response is
determined by a complex interplay of intra- and interchain
organization in conjunction with the relevant length scales,
i.e. cp and Ne for glassy polymers and cp, Ne, Lcrys and Ntie for
semicrystalline polymers. As such, the new insights from our
simulations provide the necessary input for development of
physics-based constitutive models for solid-like polymers.
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