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Entropy estimates of a hard sphere system by data
compression of Monte Carlo simulation data

E. F. Walraven and F. A. M. Leermakers 2 *

Data compression algorithms remove redundant information from a file. The extent to which a file size
is reduced is a measure of the entropy. Recently, it has been suggested to use this technique to find the
entropy from a simulation of a physical system. Here, we apply this technique to estimate the entropy
from Monte Carlo simulations of the hard sphere system. Numerical results compare well with the
limited available entropy estimates from the laborious thermodynamic integration method, while this
new algorithm is much faster. Our results show the phase transition by calculation of the entropy for a
large number of densities. A common tangent method is used to find the coexistence densities for the
fluid—solid phase transition. The upper density deviates from the established density from the literature,

rsc.li/soft-matter-journal

Introduction

It is well known that the hard sphere system has a first order
phase transition from a disordered fluid-like organisation
below a volume fraction ¢; ~ 0.494 to a crystalline ordering
above a volume fraction ¢s ~ 0.545. A set of particles that do
not interact until they touch, and then experience an infinitely
strong repulsion, has a temperature independent phase dia-
gram. In other words, the phase transition is purely entropic in
nature. In the region ¢r < ¢ < ¢ the overall system can gain
entropy by having a subset of its particles ordered in a close,
typically FCC, packing so that the remainder of the particles
have more space available to be in the fluid-like disordered
state by increasing the translational entropy. After this transi-
tion was found by computer simulations,' careful experiments
that approximated the hard sphere system confirmed the phase
transition.’

As entropy rules in this system, one would expect that in
computer simulations of the hard sphere system this quantity
should be focused on in large detail. However, entropy esti-
mates from computer simulations of the hard sphere system
are surprisingly rare and have been calculated only for a
handful of densities.”® The simple reason is that the state of
the art method for this, thermodynamic integration, is compu-
tationally tedious and expensive. It requires (for the solid
branch) a series of simulations in between the Einstein crystal
and the hard sphere system, making this method time con-
suming. Alternatives to estimating the entropy from computer
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while the lower density compares very well.

simulation data might improve this situation. Data compres-
sion algorithms may provide such an alternative route.

Data compression algorithms, not to be confused with
physical volume compression, are designed to remove redun-
dant information from a file. They have come to a good level of
maturity and are highly efficient, which is why they are com-
monly used in data storage. The compression ratio, that is the
file size after the compression relative to the original file size, is
known to be related to the Shannon entropy, which is a
measure of the information content in the file. This Shannon
entropy is equivalent to the physical entropy of a system when
the file that is compressed contains the relevant physical
information (conformations, snapshots, etc.) of the system of
interest. Briefly, physical entropy is a measure of repetition and
compression algorithms remove repetitious data, giving a direct
relation between the two.

Recently, Avinery et al. suggested to use this method to
compute the entropy from computer simulations of a physical
system. They tested the method successfully for the energy
ladder, various variants of the 2D Ising model, the Gaussian
chain in two dimensions and a protein-folding problem.” The
general idea is to store physical quantities to a data file, such as
distances or angles for multiple snapshots of a physical system.
The data compression algorithm is then applied to this data
file, reducing its file content based on the repetition within the
initial data. This compression factor is then correlated with the
physical entropy of the system. The method is simplest to imple-
ment if the system has discrete states such as the energy ladder,
because data files are inherently discretized as well. Small sys-
tematic deviations from the known entropy of this system are
attributed to the imperfections of the data compression algo-
rithms. For systems that contain particles in continuous space,
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there is the issue of introducing ‘bins’ to keep the number of
distinguishable states finite. In the latter case, it is clear that one
obtains the entropy subject to a constant. In all cases, the method
requires reference files that contain a representative number of
snapshots for the lowest and largest entropy contents in the
system. The file size after compression of a simulation with
different parameters can then be scaled between the file sizes
corresponding to minimal and maximal entropies to obtain the
physical entropy of the system.

We have performed a series of Monte Carlo simulations for
the hard sphere system. These simulations are relatively simple,
because one only has to check for ‘overlap’ to reject or accept a
translational move. As the hard sphere system is a three-
dimensional and continuous system, to be translated to a one-
dimensional, discrete data file such that it can be used by file
compression algorithms, the data should be handled in such a
way that as little information as possible is lost and that results
are fully converged. Afterwards, using the compression algo-
rithm, the entropy is then measured as a function of volume
fraction (system box sizes or, equivalently, particle sizes).

In the following sections, we first give more details on the
MC simulations, after which we focus on the key steps that lead
to the entropy estimates regarding the compression algorithm
and present the entropy versus volume fraction curve. More-
over, the coexistence densities will be given as calculated by the
new algorithm as a justification for its use in physical systems.
In the Discussion section, we reflect on the accuracy of the
method, especially with regards to the coexistence densities,
and the applicability of data compression as a tool for the
entropy estimates.

Simulation and compression details

Monte Carlo simulations have been carried out for the hard
sphere system consisting of N particles with diameter depend-
ing on the volume fraction ¢ and placed in the unit cube with
periodic boundaries. Initially, the particles are configured
according to an FCC lattice. Each Monte Carlo step (involving
N trials) consists of consecutively displacing per trial 1 particle
randomly in each x, y and z direction limited by a maximal
movement distance such that 40-60% of the moves are
rejected. One rejects a move if the displaced particle overlaps
with any other, otherwise the move is accepted. At first, the
maximal displacement is determined, which is then fixed to
run the rest of the simulation to store relevant data. The typical
length of the simulation to obtain accurate results is in the
order of 10” MC steps.

Data are stored in a binary file, being a very elementary file
type in which pure binary numbers are stored (or values 0-255
per byte) without containing any other redundant information.
This is of great importance in the compression algorithm, since
even the commas in comma-separated value files increase the
entropy by around 20% depending on the system at hand (not
shown). Storing the data is therefore a delicate process and
should be handled carefully. In this section, we present several
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steps in the processing of the physical data from the MC
simulations to the data that are stored in a binary file.

As a general remark, data compression algorithms try to find
as much repetition as possible, but it might not find every piece
of repetition. Therefore, after convergence, the estimated
entropy will always be higher than the true entropy. While
comparing different methods of storing data, one should there-
fore strive for the lowest entropy.

Entropy calculation

As discussed before, entropy is directly related to the compres-
sion ratio ¢. As a scale for the entropy, the two cases of minimal
and maximal entropies need to be generated, giving compres-
sion ratios ¢min and @may, respectively. Typically, in the case of
hard spheres this means we store the positions of the particles
in an FCC configuration for every uncorrelated MC step for the
minimal entropy and generate random coordinates for every
particle and every uncorrelated MC step for the maximal
entropy. The estimate for the correlation time is discussed
below. The incompressibility content is then defined by

n= ® — Prin (1)

- )
Pmax — Pmin

which attains a value between 0 and 1. The entropy can then be
determined using a linear map from # to S as a first order
approximation:

§= nSmax + (1 - n)Smim (2)

where the minimal and maximal entropies for the discretised
hard sphere system are given by

Smin: Oy Smax =DIn ng, (3)

in units of kg, where D is the amount of degrees of freedom and #;
is the number of discretisation bins. Using coordinates relative to
the center of mass or spherical coordinates with respect to the
previous particle in the list, we find that D = 3(N — 1). Therefore,
the entropy for the hard sphere system is given by

S=3(N - 1)ylnn, (4)
with 1 being dependent on the volume fraction ¢.

Discretisation

Each degree of freedom will be discretised using the same
amount of bins 7. If the number of bins is too small, displace-
ments within the system become unnoticeable, resulting in
more repetitious data and an entropy that is too low. In
contrast, using an enormous amount of bins creates a lot of
data and is therefore less optimal in data storage and memory
management.

To determine the optimal amount of bins we run a simula-
tion per volume fraction and discretise using a variable number
of bins up to 65536 (as allowed by using 2 bytes of storage per
degree of freedom). In the end, the differences in entropy,
rather than their absolute values, are important and should
remain constant. Therefore, a guideline for choosing the num-
ber of bins is to find the amount of bins above which the
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Fig.1 The entropy difference relative to maximal entropy for different
amounts of bins at multiple packing fractions, 10® MC steps, 32 particles,
200 as correlation time (see the text) and using the minimum of spherical
coordinates ordered with a Hilbert curve (see the text) or an FCC lattice.

difference between the measured entropy and the maximal
entropy remains constant. The result is given in Fig. 1, depicting
these differences using varying amounts of bins for different
volume fractions. A properly converged estimate should result
in the difference between the measured entropy and the
maximal entropy being constant with respect to an increase
in the amount of bins. Therefore, a guideline for choosing the
number of bins is to find the number above which this
difference plateaus. We find that the maximal amount of bins
using 2 bytes is optimal as differences are constant at least up
to a volume fraction of 0.7, after which changes in the system
can only be detected by having more precise discretisation.
Using 256 bins by storing in a single byte results in unconverged
values within the region of phase coexistence, while utilising
2 bytes results in full convergence in this region. Further
discretisation is therefore unneeded, unless densities near close
packing are to be studied.

Ordering and coordinate systems

The particles in a three-dimensional space need to be repre-
sented in a one-dimensional data file. We therefore have a
choice in the ordering of the particles. The goal is to find as
much repetition in local clusters in the system as possible.
Particles close together in space should be represented by
coordinates that are placed close together in the data file as
well. A space-filling Hilbert curve is known to preserve the
locality and has been used in two-dimensional systems before.”
Here, we utilise the 3D Hilbert curve, ordering particles along
this curve. In this case, only the recursively defined Hilbert
curve after 3 iterations is needed, as the number of points on
this curve exceeds the number of particles in our system.
Moving along the vertices of this curve, a particle is added to
the list if it is contained in the subcube surrounding this vertex
and because it is a space-filling curve, all particles in the
simulation box will be ordered this way. Initially, particles are
ordered following the generation of the FCC lattice. We have
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observed that ordering using the Hilbert curve improved the
entropy in the fluid regime, since this curve introduces more
locality. In contrast, in the crystalline region we find that it does
not improve the entropy as the initial ordering is already local.
Each measurement is therefore taken to be the lowest of these
two orderings.

Now there is still the question of which coordinate system to
use. The data could be stored using the naive x, y and z
coordinates, but the translational entropy within a simulation
box with periodic boundaries should be excluded. A way to
remove the collective translational degree of freedom is to use
Cartesian coordinates with respect to the centre of mass.
However, the use of spherical coordinates gave slightly better
results: in this case the translational freedom is excluded by
storing coordinates relative to the previous particle in the
ordered list with the first particle being set at the origin.
Spherical coordinates consistently result in a lower entropy as
compared to other coordinate systems. Hence, what is stored in
the data file are the spherical coordinates of particles in
relation to the previous particle in the ordering.

Overhead

Data compression algorithms generate overhead, which for our
purpose is unnecessary data. This is a general problem due to
data compression and does not only hold for the hard sphere
system. Typically, lossless algorithms are in use, such as LZMA
and DEFLATE, which ensure that the original file content can
be regenerated. Then, upon removal of redundant information,
the algorithm needs to reintroduce bits as a reference to an
earlier occurrence of the data. The latter contributes to the
overhead in the compressed files, which influences the com-
pression ratio and therefore such data compression algorithms
are not per se optimal for our purpose. Moreover, the 8-bit
representation of each number contains leading and trailing
zeroes, giving rise to unneeded information, e.g., the six zeroes
in front of the representation of 2: 00000010. However, one can
implement a strategy to correct for this. When storing different
values of ng in a file, the expected compression ratio will
converge to log,(1n,)/8 in the limit of large file sizes. The over-
head factor r(ng) is then defined by the fraction that the
compression ratio of the compressed random file with ng
different values is above the expected compression ratio. This
value can then be used to correct for a file with physical
information by decreasing the obtained compression ratio ¢
by r(ns). Note, however, that the overhead depends on the
specific algorithm. We have used the DEFLATE algorithm
implemented in MATLAB through the zip() command. The
overhead will differ from the presented overhead values for
other compression algorithms. The overhead for using 2 bytes
per value as calculated for the zip() implementation in MATLAB
is given in Fig. 2.

Correlation time

Due to the nature of Monte Carlo simulations, ‘temporal’
correlations might be present in the data. To circumvent this
unnecessary correlation in the stored data, we determine the
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Fig. 2 Percentage overhead relative to the expected compression file size

at a varying number of different values stored in files of size 107 bytes using
2 bytes per value for the zip() implementation in MATLAB.

correlation ‘time’ for the simulation, ie., how long temporal
correlations exist in the MC trajectory. It is important to wait
until this correlation time has passed before a new data point is
stored into the file. To this end, we have ran simulations using
a fixed number of MC steps between sample storages and call
this number the imposed correlation time. For a given correla-
tion time, we have evaluated the entropy by data compression.
The optimal correlation time is then estimated from the
‘saturation’ point: storing data with a lower frequency did no
longer affect the entropy. Examples for this procedure are
shown in Fig. 3 for a system of 32 particles at volume fractions
between 0.3 and 0.6. As can be seen, especially for the low
volume fractions, the entropy per particle is roughly constant.
In other words, the result does not strongly depend on the
presented range of frequencies of storages (range of imposed
correlation time), which means that the optimal correlation
time in these cases may be as low as approximately 10 MC
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Fig. 3 The estimate for the entropy versus imposed correlation time
(number of MC steps per sample storage). Number of particles N = 32
using 2 bytes per value with, as an example, number of bins ng = 5000 and
10° total MC steps.
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steps. The optimal correlation time seems to be an increasing
function of the density. This is better seen for lower imposed
correlation times than shown in Fig. 3. For ¢ = 0.55, we might
already have a two or three-fold increase. That is why an
optimal correlation time of order 100 was typically used for
the data production (cf the caption of Fig. 4).

Results

Using the file compression algorithm as described in the
previous section, the entropies against volume fraction curves
have been calculated for various system sizes as well as an
extrapolated curve to infinite system size. For 32 particles and
the extrapolation, the entropy per particle curve against volume
fraction is given in Fig. 4a. Error bars have not been included in
the figure as these are smaller than the symbols used, except
within the region of phase coexistence, where the error is

26 . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

¢
(a) Entropy against volume fraction curve for the smallest
system size and extrapolated to infinite system size.
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(b) Entropy extrapolation using the different system sizes
given various volume fractions.
Fig. 4 Entropy per particle for system sizes consisting of 32, 108 and 256
particles as well as an extrapolation to an infinite system size using 65 530 bins,

correlation times of, respectively, 100, 200 and 400 MC steps and the
minimum entropy of ordering using a Hilbert curve or an FCC lattice.
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slightly larger due to a system sometimes behaving as a solid or
as a fluid. The extrapolation has been performed at each
volume fraction using system sizes of 32, 108 and 256 particles
with S/N scaling linearly with 1/N. Various extrapolation curves
are shown in Fig. 4b. The accuracy of the extrapolated entropy
relies on the accuracy of each of the points. In fact, we have just
3 system sizes to estimate the value for N — co. This is not
much and we should note that with increasing N, simulations
need to be longer in order to get results that have comparable
accuracies.

The values of the coexistence densities have been deter-
mined by the common tangent method on the entropy per
volume versus volume fraction curve as this corresponds to
equal chemical potential and pressure. As the entropy per
volume is a steeply increasing function of the particle volume
fraction, the quality of the common tangent is not easily
recognised. That is why the common tangent is subtracted
from the entropy per unit volume curve. This shifted entropy
per volume curve now has two equally high local maxima: one
at the fluid and one at the solid binodal densities. An example
for N = 32 is presented in Fig. 5. The error bars in the solid
branch are indicated, which represent the statistical fluctua-
tions of 20 independent ‘measurements’ per density and tend
to grow slightly with increasing density. The estimated coex-
istence densities on the fluid and solid branches (for N — )
are given by ¢¢ = 0.49(7) and ¢, = 0.57(5), respectively.

Discussion and conclusion

The entropy for a couple of volume fractions has been com-
puted in a previous study by thermodynamic integration® to
which our results can be compared, see Table 1. As we know the
entropy up to an additive constant, we focus on entropy

3.55

S/V —24.314¢

3451 ]

L L L L L L

0.48 0.5 052 054 056 0.58 0.6

Fig. 5 Entropy per volume, shifted such that the common tangent is a
horizontal line, against volume fraction for the hard sphere system con-
sisting of 32 particles by using 65530 bins, a correlation time of 100 MC
steps and the minimum taken by ordering using a Hilbert curve or an FCC
lattice. The data points near the fluid and solid binodal are fitted by a cubic
polynomial to pinpoint the binodal values. Error bars are 1 standard
deviation for 20 independent measurements.

0.62
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Table 1 Entropy differences for N — oo as compared to the literature®
with volume fractions ¢; = 0.544993, ¢, = 0.575828 and ¢z = 0.602139

A¢ ASlit/l\] AScompr/l\,
$1— ¢3 1.32 1.15+0.02
$1— P2 0.67 0.60 +0.02
¢ — P3 0.64 0.55 4 0.02

differences. The entropy as computed by the compression
algorithm is always higher than the true entropy and this
overestimate may be larger with increasing volume fraction.
This suggests that differences in entropy using the new algo-
rithm are smaller than the true differences, which might
explain why we have found smaller differences than the ones
from the literature.

Above we have shown that the file compression method used
to estimate the entropy leads to a wider two-phase region for
the hard sphere system than currently found in the literature.
In particular, our data suggest a higher value for the upper
binodal value, while the lower binodal value compares very well
with the literature. Experimental estimates for this upper
binodal value have relied on the observation of an interface
between a fluid and a solid phase. This interface disappears
when the binodal value is reached. Even in micro-gravity experi-
ments, the upper binodal was found to be close to ¢ = 0.545.%
Playing the role of devil’s advocate, one could argue that in the
formation of a solid phase, grain boundaries and imperfections
exist which take long to anneal. This might result in a (temporal)
too low density of the solid phase. In such a scenario, the
interface between the fluid and solid phase disappears at a too
low overall particle density. However, possible kinetic traps that
might have prevented the solid phase to find its proper density
have rarely been discussed. Theoretical estimates of the upper
limit rely on a more laborious process where the entropy is
estimated by thermodynamic integration. Subsequently, one
then should compute the pressure for various densities and find
the density at which the pressure in the solid phase equals that
in the fluid. Such projects have been performed multiple times
and resulted in similar upper binodal values of ¢ = 0.545 from
which our result differs.

In the search for an explanation of our excessively large two-
phase region, we should recall that the compression algorithm
will always slightly overestimate the entropy. As for the relevant
binodal, it is necessary to consider the thermodynamic limit
and, therefore, our estimate for the width of the two-phase
region must also include ‘extrapolation’ errors. Systematic
errors in the entropy estimates depending on density may lead
to the erroneous placement of the binodal values. Finally, as
shown in Fig. 5, the fitted curve used to find the local maximum
might also have influenced the estimate of the upper binodal
value. Excluding a few points in the two-phase region and at
very high densities might lead to a shift of the estimated
binodal to a slightly lower value. With this in mind, we should
judge the quality of our result for the upper binodal value. The
differences in entropy change between our results and the ones
from the literature in Table 1 do not appear to be large enough
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to explain the large disparity in the estimated binodal values.
However, it is generally known that small changes in the actual
values may influence the positioning of binodal points greatly.
At this stage of developments to estimate the entropy from file
compression, one should be cautious to draw too strong con-
clusions about the position of the binodal. It remains of
interest to understand why the entropy compression algorithm
gave such a wide two-phase coexistence result and insights into
the causes may lead to further improvements of the compres-
sion method.

Although the upper binodal value does not match with the
previously found results from other methods, we still argue that
this entropy estimation method using compression algorithms
has high potential. It is extremely quick and easy to implement,
and the method can be used to measure the entropy during a
single simulation, in a similar way as we can measure, e.g., the
energy or some correlation functions. Such an entropy measuring
tool may be used in yet unexplored terrain. For example, by
inspection of the compressed file one can find out where in the
system a lot of compressions could be realised and where not.
Physically, this means that one can trace the region in a system
where relatively high or relatively low entropy densities exist. Hence,
we can obtain entropy information with spatial resolution. When
simulations are done for systems that are out of equilibrium, one
can try to quantify the entropy production® with spatial resolution.
Such results cannot be generated by the classical thermodynamic
integration method.

Finally, we note that the entropy estimation by file compres-
sion can also be applied to experimental data. For example, one
can nowadays find the coordinates of particles by microscopy
as a function of time. By storing these coordinates in a file
similarly as is done in a simulation, one can find estimates of
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the entropy by the file compression strategy. Knowing the
entropy as a function of time (and space) may lead to improved
insights in the way a system evolves towards equilibrium.
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