
rsc.li/soft-matter-journal
Registered charity number: 207890

As featured in:
  Highlighting research from the Institute of Physical 
Chemistry of the Polish Academy of Sciences and 
the California Institute of Technology. 

 Diffusion and flow in complex liquids 

 DNA and proteins in water act as obstacles for a nanoparticle 
that moves in such a fluid. The apparent viscosity 
experienced by the nanoparticle significantly changes with 
the nanoparticle size. The goal of our research is to unify 
the description of nanoparticle diffusion in biological and 
industrial complex fluids. 

 

See Karol Makuch, 
Robert Hołyst  et al ., 
 Soft Matter , 2020,  16 , 114.

Soft Matter

 PAPER 
 Zhongqiang Yang  et al . 
 Spatially arranging interfacial droplets at the oil–solid 
interface 

ISSN 1744-6848

rsc.li/soft-matter-journal

Volume 16
Number 1
7 January 2020
Pages 1–278



114 | Soft Matter, 2020, 16, 114--124 This journal is©The Royal Society of Chemistry 2020

Cite this: SoftMatter, 2020,

16, 114

Diffusion and flow in complex liquids†

Karol Makuch, *ab Robert Hołyst, *a Tomasz Kalwarczyk, a Piotr Garstecki a

and John F. Bradyb

Thermal motion of particles and molecules in liquids underlies many chemical and biological processes.

Liquids, especially in biology, are complex due to structure at multiple relevant length scales. While

diffusion in homogeneous simple liquids is well understood through the Stokes–Einstein relation, this

equation fails completely in describing diffusion in complex media. Modeling, understanding, engineering

and controlling processes at the nanoscale, most importantly inside living cells, requires a theoretical

framework for the description of viscous response to allow predictions of diffusion rates in complex

fluids. Here we use a general framework with the viscosity Z(k) described by a function of wave vector in

reciprocal space. We introduce a formulation that allows one to relate the rotational and translational

diffusion coefficients and determine the viscosity Z(k) directly from experiments. We apply our theory to

provide a database for rotational diffusion coefficients of proteins/protein complexes in the bacterium

E. coli. We also provide a database for the diffusion coefficient of proteins sliding along major grooves

of DNA in E. coli. These parameters allow predictions of rate constants for association of proteins. In

addition to constituting a theoretical framework for description of diffusion of probes and viscosity in

complex fluids, the formulation that we propose should decrease substantially the cost of numerical

simulations of transport in complex media by replacing the simulation of individual crowding particles

with a continuous medium characterized by a wave-length dependent viscosity Z(k).

1 Introduction

While all living—and many chemical systems of interest—dwell
in liquid environments, hydrodynamics alone do not suffice to
describe and predict all processes. This is because hydro-
dynamics assume that in the absence of external forces, a
particle immersed in a liquid remains at rest. In reality thermal
vibrations cause molecules and small particles to constantly
move via erratic Brownian motion. The Brownian motion of
an individual particle in a simple liquid has been described
by Einstein and Smoluchowski.1,2 The diffusive motion of a
particle can be described by its translation, the change of its
position R(t), and its rotation, the change of its orientation û(t).
The translational diffusion coefficient Dtr(a) is measured from
the mean-square displacement h(R(t) � R(0))2i of the particle
of interest, where t is time and the average h� � �i is taken
over possible trajectories of the nanoparticle. For sufficiently
long times3 the mean-square displacement of a single nano-
particle of hydrodynamic radius a increases linearly with time,

h(R(t) � R(0))2i B 6Dtr(a)t. Similarly linear dependence can be
found for the mean square displacement of rotational degrees
of freedom of the nanoparticle, h(û(t) � û(0))2i B 4Drot(a)t,
where Drot(a) is the rotational diffusion coefficient.4

For simple liquids comprising small molecules such as water,
the diffusion coefficients are related to the solvent viscosity,
particle size, and thermal energy kBT by the Stokes–Einstein
equation, Dtr(a) = kBT/6pZ0a, which is the standard in physics
for the analysis of diffusion in liquids. The rotational diffusion
coefficient follows from the relation Drot(a) = kBT/8pZ0a3. In
simple liquids the ratio of the diffusion coefficients, Dtr(a)/
Drot(a) = 4a2/3, depends solely on the hydrodynamic radius of
the nanoparticle.

In incompressible simple fluids the only coefficient that in
practice characterizes their flow properties is the shear viscosity.5

In complex fluids, supramolecular particles introduce additional
length and time scales. These other molecules and particles act
as obstacles altering the motion of the diffusing nanoparticle.
The diffusion coefficient defined by the mean square displace-
ment of the probe diffusing in a complex liquid becomes time-
dependent, and may no longer be proportional to the inverse of
the particle radius.

If the tracer particle is much larger than all of the length
scales that characterize the complex fluid, then the scaling of the
diffusivity with size is the same as in the Stokes–Einstein formula.
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Additional time scales are taken into account by a frequency
dependence of the diffusion coefficient, D(o), in the generalized
Stokes–Einstein relation, D(o) = kBT/(6paZ(o)) with a frequency-
dependent bulk viscosity. This formula is the foundation of
microrheological experiments.6,7 However, when a probe
becomes small this formula has known shortcomings.8,9 For
example, Gisler and Weitz noticed that for 3 mm tracer particles
in a suspension of 20 mm long F-actin filaments, the frequency-
dependent Stokes–Einstein relation is no longer valid.10 In this
article we focus on the zero-frequency limit, which is equivalent to
the observation of the mean square displacement for long times,
but for probe sizes that sample the microstuctural length scales.

In this long time limit, different scaling of the diffusion
coefficient with particle size is also observed in other complex
fluids.11–17 Deviation from the Stokes–Einstein description can
be significant. For example, a few orders of magnitude estimates
have appeared in biological complex liquids inside E. coli cell
cytoplasm16 and inside HeLa cell.17 E. coli is a model system for
microbiologists and computational biophysicists18 and HeLa
is a model system of human cancer cells. Experiments on
diffusion of probes in polymer solutions also show huge dis-
crepancies from the Stokes–Einstein description.20 Moreover in
complex liquids the ratio of the translational and the rotational
diffusion coefficients Dtr(a)/Drot(a) depends on the particular
type of the complex liquid and cannot be described by, Dtr(a)/
Drot(a) = 4a2/3, which holds for simple liquids.19 Experiments
such as these need a theoretical framework that explains and
predicts the rates of diffusion. Such a theory is needed for
understanding and engineering processes at the nanoscale not
only in industrial complex fluids, but also in biological systems
where diffusive motion lies at the heart of life processes.
Diffusion of probes has been studied with different simplified
theoretical approaches:21 e.g., scaling theory,22 approaches
based on a particular structure of a complex liquid23 or developed
for simple fluids,24 or for non-Brownian suspensions.25,26

In this paper we use the framework of Brownian dynamics
described by the generalized Smoluchowski equation27 to
introduce expressions for translational and rotational diffusion
coefficients in complex liquids. This framework takes into
account different length scales in these complex liquids. In a
cell interior the length scales are spanned by sizes of, for
example, several hundred nanometers for actin filaments, a
few nanometers for proteins, and a nanometer or less for small
molecules and water. We include the effects of the structure of
the liquid by using a generalized viscosity that is a function of
the wave vector, Z(k).28 On sufficiently small scales, all liquids
are characterized by a wave-vector dependent shear viscosity.5

This quantity has been determined in numerical simulations by
the Green–Kubo formula or by calculation of the decay of the
transverse current autocorrelation function for different simple
liquids and polymer fluids.29–33 The wave-vector dependent
viscosity can be defined through the relation between stress and
shear rate for sinusoidal velocity fields. As suggested by Wyart and
de Gennes,28 it can be measured by applying a spatially sinusoidal
shear rate, qvx/qz � _g sin kz and measuring the corresponding
shear stress, sxz = s sin kz, from the relation, s = Z(k)_g.

We demonstrate that, surprisingly, the whole spectrum of
possible physical behaviors of various complex liquids can be
captured by this single key quantity—the generalized viscosity
function. We start from the Smoluchowski dynamics and discuss
a general expression for the translational diffusion coefficient of
a probe particle. It is based on rigorous results from the
literature, but we reformulate relevant equations to emphasize
the role of the wave-vector dependent viscosity. Using these
rigorous expressions we introduce an approximation that allows
us to obtain a formula for the diffusivity of the probe in terms of
the wave-vector dependent viscosity. We also invert this relation
to obtain the wave-vector dependent viscosity in terms of
diffusivities of probes of different sizes. To our knowledge, this
is the first time the wave-vector dependent viscosity is expressed
in terms of the probe diffusivities. This approximate formula
constitutes a new framework to measure the wave-vector dependent
viscosity in terms of diffusivities that are experimentally available for
different complex liquids. In a similar manner we derive an
approximate expression for the rotational diffusion coefficient. By
utilizing the translational and the rotational case, we also derive a
relation between the translational and the rotational diffusion
coefficients of the probes. This relation appears to be universal as
it does not depend on the complex fluid. We use this relation to test
our phenomenological framework. Using the above formulas we
discuss the viscosity function and the translational and the rotational
diffusion rates using literature data on micellar solutions, polymer
solutions, and in cytoplasm of E. coli and HeLa cell. These examples
show how our framework captures orders of magnitude deviations
from the Stokes–Einstein formula in a single expression. As an
application of our theory we provide a database for the rotational
diffusion coefficients and the diffusion coefficients of the sliding of
proteins along major grooves of DNA in E. coli.

2 Translational diffusion

We consider complex liquids that can be described by Smoluchowski
dynamics. The Smoluchowski dynamics are stochastic and
a reduced description of the motion of macromolecules in
solution.27 Macromolecules are modelled by interacting beads.
The Smoluchowski description includes the effects of Brownian
motion, interactions of the beads through the solution (hydro-
dynamic interactions) and direct—such as van der Waals—forces
between macromolecules. Because the interactions among the
beads are to some extent arbitrary, the Smoluchowski equation
can model a wide class of complex systems, e.g., suspensions of
spherical particles, a complex liquid of polymer chains, suspen-
sions of rod-like particles, or more complicated complex fluids
made of multiple types of macromolecules which model a cell
cytoplasm.18 The Smoluchowski description is valid on the
Smoluchowski time scale, which is the characteristic time for
the beads to change their velocities many times probing nearly a
Maxwelian distribution. We give the detail description of the
Smoluchowski dynamics in Appendix A.

Treating one of the beads as a probe particle, we determine
the translational diffusion coefficient of the probe moving in
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such a complex fluid from the generalized Einstein relation,
Dtr(a) = kBT/z(a),34 by calculating the friction coefficient, z(a).
This is defined via the linear relation, F = z(a)hUi, between the
average probe velocity, hUi, and a drag force acting on the
probe, F. Therefore, calculation of the friction coefficient
requires solution of the Smoluchowski equation when a small
force acts on the probe particle.

Similar situations have been considered, e.g., by Felderhof
and Jones,34 and also recently by Szymczak and Cichocki.35 In
their treatments they assumed that a small external force acts
on all macromolecules. In the Appendix B we discuss how their
analysis should be modified to the case when the external force
acts only on one macromolecule, that is a probe particle in our
case. Below we describe the most essential conclusions which
we draw from their analysis (see the Appendix B for a more
detailed description). In particular, the average velocity field,
hv(r)i, around the probe particle under action of an external
force, F, on the particle is given as follows,

vðrÞh i ¼
ð
d3r0Geff r� r0ð Þf eff r0ð Þ; (1)

feff(r) = Tirr(r)F. (2)

The average velocity field is represented via the effective
Green function, written in Fourier space, Ĝeff kð Þ ¼Ð
d3rGeffðrÞ exp �ikr½ �, by,

Ĝeff ðkÞ ¼
1

k2ZðkÞð1� k̂k̂Þ; (3)

and the effective force density, feff(r0). The effective Green
function depends solely on properties of the complex liquid
through its shear wave-vector dependent viscosity Z(k). In
eqn (2), the kernel, Tirr(r), determines the effective force density
which appears as a result of the force F acting on the probe. To give
an example of the situation in which such forces appear, consider
two non-Brownian spherical particles and an external force F
acting on one of the particles. Due to motion of the fluid around
the particles they mutually affect their motion changing the
distribution of forces on their surfaces. This example shows that
the force F on the first particle induces local forces acting on the
surface of the second particle via the fluid. In a general case, the
effective force density includes effects of Brownian motion and
hydrodynamic and electrostatic interactions between the probe
particle and macromolecules in the surrounding complex liquid.

More details are given in Appendix B, where we also show
that Newton’s third law implies that the total effective force
must be equal to the external force F, therefore,ð

d3rTirrðrÞ ¼ 1: (4)

Eqn (1) and (2) are obtained within linear response regime.
Therefore, the only assumptions needed to derive them from
the Smoluchowski equation are that the external force F acting
on the probe slightly disturbs the homogeneous and isotropic
complex liquid from equilibrium. It is satisfied for any complex
liquid which can be modeled by the Smoluchowski equation.

The average velocity field around the probe particle given
by (1) must be consistent with the hydrodynamic boundary
conditions which underlie the Smoluchowski dynamics.4 We
consider stick boundary conditions and a rigid spherical particle,

v(r)||r|=a = U. (5)

The above boundary condition implies that

1

4pa2

ð
d3rd rj j � að Þv rð Þ ¼ U; (6)

where d(x) is the Dirac delta function in one dimension.
Combining the above equation with the average velocity field
in (1) and (2) leads to relation between applied force F and
velocity of the particle U in the form, F = z(a)U, with the friction
coefficient, z(a), given by

1

zðaÞ ¼
1

4pa2

ð
d3rd rj j � að Þ

ð
d3r0Geff r� r0ð ÞTirr r0ð Þ: (7)

The friction coefficient can be determined in experiments
either by measurements of velocity of the particle under action
of a small drag force from the formula F = z(a)U, or by
measurements of the rate of diffusion of a particle from the
generalized Einstein relation, Dtr(a) = kBT/z(a).34 Measurements
of the friction (or diffusion) coefficient show that the hydro-
dynamic radius of the probe particle is crucial. An example of
such data is presented in Fig. 1 which shows measurements by
Szymański et al.14 They measured diffusion coefficients of
different probe particles in aqueous micellar solution of hex-
aethylene glycol monododecyl ether in phosphate buffer. Fig. 1
shows the friction coefficient zmic(a)/(6pZ0a) normalized by the
friction in the buffer reconstructed from their experimental
data for a complex liquid with macroscopic viscosity Zmacro =
500Z0. Their experiments covered the full range of sizes of the
probe particles. On the one hand the friction of the smallest
probe particles is consistent with the viscosity of water. On the
other hand the biggest probe particles experienced the macro-
scopic viscosity of the complex liquid. The probe size seems to
be a factor which determines the friction of particles in these
experiments.

Modelling the probes by spherical particles of hydrodynamic
radii equal to the sizes of the probes we can interpret these
results using eqn (7). Here, the hydrodynamic radius enters in
two ways: by the hydrodynamic boundary condition with the
Dirac delta function and by the kernel of the effective force
density Tirr. If the hydrodynamic radius is a quantity determining
diffusivity of different probes, it leaves a possibility that the

integral
Ð
d3r0Geff r� r0ð ÞTirr r0ð Þ in eqn (7) for r on the surface of

a particle, in a negligible way, depends on interactions of the
probe with surrounding macromolecules. Motivated by this
observation and keeping in mind that Tirr must be isotropic
and satisfy Newton’s third law, given by eqn (4), we introduce
the following approximation

Tirr(r) E d(r)1. (8)

It assumes that the effective force density is distributed on the
center of the probe. This approximation has phenomenological
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character and below we show its consequences and test them
against experimental data. We expect that the above approxi-
mation is reasonable for a probe which does not strongly disturb
the structure of surrounding complex fluid. In the opposite case
of strong interactions between a probe and surrounding macro-
molecules we expect that this approximation is invalid. For
example, when a probe particle attracts surrounding macromo-
lecules so strongly that the probe, with the macromolecules
nearby, forms a big conglomerate. In this case we expect that
the effective force density is distributed at the border of the
conglomerate which may be far from the probe particle.

We then apply the above phenomenological approximation
in formula (7) to obtain the following expression for the friction
coefficient

zðaÞ ¼ 3p2
ð1
0

dk
j0ðkaÞ
ZðkÞ

� ��1
; (9)

where j0(x) = sin x/x is the zeroth order spherical Bessel function
and appears as a result of the Fourier space representation of
the Dirac delta function from eqn (7) as follows, 4pa2j0ðakÞ ¼Ð
d3rd rj j � að Þ exp �ikr½ �. We call formula (9) the Stokes’ law in

complex liquids. Using the following property of the spherical

Bessel function,
Ð1
0 daa2j0ðkaÞj0ðqaÞ ¼ pd k� qð Þ

�
2k2
� �

, we can
invert the Stokes’ law in complex liquids to obtain,

ZðkÞ ¼ 1

6pk2

ð1
0

daa2
j0ðakÞ
zðaÞ

� ��1
: (10)

The original Stokes’ law in simple liquids is recovered when we
use z(a) = 6pZmacroa, which then gives Z(k) = Zmacro. This result is
not straightforward because the integrand

Ð1
0
daj0ðkaÞa (which

appears after utilizing z(a) = 6pZmacroa) is defined only in a
distributional sense. Therefore we use a regularization procedure

in (10) as follows,
Ð1
0 daj0ðkaÞa ¼ liml!0

Ð1
0 daj0ðkaÞae�la ¼ 1=k2,

which gives Z(k) = Zmacro, as expected for friction z(a) = 6pZmacroa.
Because of the need for the regularization procedure we also give
the following equivalent form of the inverse Stokes’ law (10),

ZðkÞ ¼ Zmacro

1þ k2
Ð1
0 daj0ðkaÞa

6pZmacroa

zðaÞ � 1

� �: (11)

The macroscopic viscosity is defined by Zmacro = lima-Nz(a)/6pa,
which is the viscosity experienced by the largest particles.

The inverse Stokes’ law in complex liquids given by (10) provides
an experimental procedure to determine the wave-vector dependent

Fig. 1 (a) Data points show normalized friction coefficient, zmic(a)/6pZ0a, of different probe particles in a solution of hexaethylene glycol monododecyl
ether in phosphate buffer reconstructed for the effective viscosity Zeff = 500Z0 from Fig. 4b in ref. 14. The continuous line is the fitting formula log[zmic(a)/
(6pZ0a)] = (1 + gmice�a/amic)Zmacro/Z0 with parameters, gmic = �0.904 and amic = 4.455 nm. Figure (b): normalized friction coefficient, zEC(a)/6pZ0a, in
E. coli cell cytoplasm from the literature data summarized in Table 1 of ref. 36. The continuous line corresponds to the phenomenological fit zEC(a) =
6pZ0a exp[(Reff(a)/xEC)aEC], with Reff(a)�2 = REC

�2 + a�2 and the fitting parameters xEC = 0.51 nm, REC = 42 nm, and aEC = 0.53. (c and d) The wave-vector-
dependent viscosity calculated from formula (11) from the fits of the friction coefficients presented in corresponding left panels.
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viscosity Z(k). The equation contains the integral over radius of a
probe particle with corresponding friction coefficient z(a). There-
fore, to determine Z(k) we should measure friction coefficients of
probe particles of different sizes in the complex liquid. We use data
of Szymanski et al.14 from Fig. 1a to show how the procedure of the
determination of the wave-vector dependent viscosity works.

We first fit their experimental data with the following fitting
formula, log[zmic(a)/(6pZ0a)] = (1 + gmice�a/amic)Zmacro/Z0 and the
fitting parameters gmic = �0.904 and amic = 4.455 nm, which is
shown in Fig. 1. The fit interpolates the experimental data for
any radius of the probe, which is needed in the inverse Stokes’
law (11) to obtain the wave-vector dependent viscosity. We use
the above fit for the friction coefficient zmic(a) in eqn (11) and
numerically evaluate the integral. As a result we obtain the
wave-vector dependent viscosity presented in Fig. 1c.

Diffusion of probe particles of different sizes has also been
studied in biological systems. The literature data for diffusion
inside E. coli cell cytoplasm have been combined in ref. 36 and
are presented in Fig. 1b, along with the fitting formula (see
caption for details). We use the analytical fit in the inverse
Stokes’ law (11) to determine the wave-vector dependent viscosity
of E. coli cell cytoplasm. The result is presented in Fig. 1d. Here
we assumed that from the perspective of long-time diffusion the
cell cytoplasm can be treated as a fluid described by a wave-vector
dependent viscosity and ignore life processes inside the cell. We also
treat the probes as spherical particles. It is also worth mentioning
that, as in the ref. 36, we assume that there is a saturation of the
normalized friction in the curve of Fig. 1b for large hydrodynamic
radii. In a similar way we determine the wave-vector dependent
viscosity of HeLa cell cytoplasm in Fig. 2 and of aqueous solutions of
polyethylene glycols of different molecular weight in the ESI.†

3 Rotational diffusion and translation

We use the same approach as before to predict the rotational
friction coefficient of the probe particle, zrot(a), which is defined

as the relation between the torque, T, and the angular velocity,
X: T = zrot(a)X. In this case the average velocity field around the

rotating probe particle is given by vðrÞh i¼
Ð
d3r0Geff r�r0ð ÞTirr

rot r
0ð ÞT.35

Again, we apply the stick boundary condition, v(r̂a) = X� r̂a and use
the following phenomenological approximation for Tirr

rot,

Tirr
rot r

0ð Þ
� �

ij
� 3

8pb3
d rj j � bð Þeijkr̂k; (12)

with summation over repeating Cartesian indices i, j, k and Levi-
Civita symbol eijk. We assume that the effective force density is
focused in the center of the particle so we will take the limit b - 0 in

eqn (12). The total effective torque is preserved,
Ð
d3rr� TirrðrÞ ¼ 1,

which corresponds to Newton’s third law. These equations lead to
the following Stokes’ law in complex liquids for rotational motion,

zrotðaÞ ¼ �4p2a
d

da

ð1
0

dk
j0ðakÞ
ZðkÞ

� ��1
: (13)

Combination of the Stokes’ law for rotational motion (13)
with the inverse Stokes’ law for translation (9) leads to the
following formula

1

zrotðaÞ
¼ � 3

4a

d

da

1

zðaÞ: (14)

Rotational diffusion coefficients calculated from the above
equation for E. coli cell cytoplasm are presented in Fig. 3. In
the ESI† there are also rotational diffusion coefficients obtained
with the relation (14) for aqueous solutions of polyethylene
glycols, aqueous micellar solutions and HeLa cell. Both sides of
eqn (14) are measurable and below we give several tests of this
equation for various complex liquids.

McGuffee and Elcock40 performed Brownian dynamics (BD)
simulations of protein diffusion in solution of various proteins
designed to resemble the crowding of the cytoplasm of an
E. coli cell. The authors performed simulations of long-time
translational and short-time rotational diffusion of proteins
using two models: one with steric interactions only, and the full

Fig. 2 Figure (a) shows normalized friction coefficient, z(a)/6pZ0a, in HeLa cell cytoplasm calculated by phenomenological fit zHeLa(a) = 6pZ0a exp[(Reff(a)/
xHeLa)

aHeLa], with Reff(a)�2 = RHeLa
�2 + a�2 and the following parameters xHeLa = 5 nm, RHeLa = 86 nm, and aHeLa = 0.49 for HeLa.17 The points following the curve

correspond to the literature data used in reference17 supplemented by experimental data from.37–39 Insets represents the cell interior observed at different
length-scales. In the left inset the exemplary proteins and the fragment of actin filament (7 nm in diameter) are visible. The right inset depicts actin filaments and
microtubules (B24 nm in diameter). (b) Wave-vector-dependent viscosity calculated from formula (11) for friction coefficient presented in panel (a).
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model including steric, electrostatic and short-range attractive
hydrophobic interactions. In our previous work36 we used the
translational diffusion data of McGuffee and Elcock40 and
introduced a fit, zsteric/full(a) = 6pZ0a exp[(Reff(a)/xsteric/full)

asteric/

full], with Reff(a)�2 = Rsteric/full
�2 + a�2 to calculate the long-time

translational friction zsteric/full(a)z0 ratio for both models; here
z0 = 6pZ0a. The model parameters were equal to xsteric = 3.6 nm,
Rsteric = 17 nm, asteric = 0.59, xfull = 0.2 nm, Rfull = 20 nm, afull =
0.32. Here we use that phenomenological fit in the formula (14)
to find zrot(a)/z0,rot ratio with z0,rot = 8pZ0a3, and compare our
prediction with the short-time rotational diffusion data of
McGuffee and Elcock.40 Predictions made according to
eqn (14) give the long-time rotational friction. Comparison of
the data revealed that short-time friction from BD was system-
atically shifted by a factor of 2/3 with respect to the predicted
values of zrot(a)/z0,rot. Data are shown in Fig. 4.

We additionally applied eqn (14) to predict rotational friction
experienced by the globular protein—aldolase—in solutions of
poly(ethylene glycol) (PEG). In our previous work41 we obtained
the model of long-time translational friction z(a,c) in solutions
with different concentrations c of PEG (see caption of Fig. 5 for
details). We use this model in eqn (14) to predict the long-time
rotational friction zrot(aaldolase,c)/z0,rot ratio. In Fig. 5 we compare
the short-time friction experienced by aldolase in the polymer
solutions obtained by means of fluorescence correlation spectro-
scopy (FCS) with the predicted values of short-time rotational
friction (the long-time friction obtained from eqn (14) and reduced
by the factor of 2/3).

In both of the analyzed types of complex liquids the measured
short-time rotational friction is given by 2/3 of the long-time
rotational friction predicted by eqn (14). This relation between
short and long-time diffusion—the factor 3/2—is only a rough
approximation. In the limit of low concentrations the 2/3 factor

should approach 1. Nevertheless, the agreement of our prediction
with the simulated and experimental values is pronounced.

Fig. 3 Translational and rotational diffusion coefficients inside E. coli cell
cytoplasm as a function of the hydrodynamic radius of the probe particle.
Continuous blue line: natural logarithm of the inverse of the normalized
translational diffusion coefficient, D0/D = zEC(a)/6pZ0a, with translational
friction coefficient zEC(a) described in the caption of Fig. 1b. Continuous
orange line: natural logarithm of the inverse of normalized rotational
diffusion coefficient, D0/D = zrot

EC(a)/8pZ0a3 with zrot
EC(a) calculated from

the formula (14) with zEC(a) as an input.

Fig. 4 Comparison of simulated40 and predicted data of relative rotational
friction zrot(a)/z0,rot. The circles correspond to the short-time friction
obtained from the BD simulations by McGuffee and Elcock.40 Dotted lines
correspond to the predicted values of the long-time rotational friction
predicted on the basis of long-time translational friction using eqn (14).
Solid lines were obtained by shifting the corresponding long-time friction
values by the factor of 2/3 to match the simulated short-time data.

Fig. 5 The relative short-time rotational friction zrot(aaldolase,c)/z0,rot

experienced by the aldolase diffusing in the poly(ethylene glycol) solutions
obtained by means of fluorescence correlation spectroscopy (FCS); circles.
Experimental data are compared with the predictions made for two
concentration regimes—non-entangled and entangled. The prediction
(solid lines) were made on the basis of eqn (14) reduced by the factor of
2/3 and with translational friction from the ref. 41 as follows z(aaldolase,c) =
6pZ0aaldolase exp[g(Reff(aaldolase)/x(c))aRT]; here Reff

�2(aaldolase) = RPEG
�2 +

aaldolase
�2, x(c) = Rg(c/c*)�0.75, c* = 3M/(4pRg

3NA), M = 24 695 g mol�1

denotes average molecular weight of the polymer, NA is the Avogadro
constant, Rg = 7.6 nm is the gyration radius of polymer, RPEG = 4.6 nm
denotes hydrodynamic radius of the polymer, R is the gas constant, T =
298 K is absolute temperature, g = 3.7 kJ mol�1, aaldolase = 4.5 nm, a equals
to 0.78 and

ffiffiffiffiffiffiffiffi
5=3

p
for entangled and non-entangled regime, respectively.

The long-time rotational friction is shown as dotted lines. Following the
work of Wisniewska et al.41 the crossover between both regimes was
assumed at Reff(aaldolase)/x(c) = 1.
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4 Application to biological systems

We provide two practical applications of our predictions. For
example, descriptions of protein–protein association rates
require information about both translational and rotational
diffusion coefficients of reactants.42 Based on eqn (14) and the
model describing the z(a)/z0 ratio for cytoplasm of E. coli we
provide a database of rotational diffusion coefficients for all
proteins and their possible oligomers; see Table S1 from the ESI.†

Another example, also related to the diffusion in the cyto-
plasm of E. coli, is the motion of the transcription factors along
a DNA strand described by the model of Blainey et al.43 The
model was introduced to describe experiments on interactions of
DNA with proteins.44,45 According to the model, the transcription
factor during the search of the target DNA sequence performs three
types of motion: three dimensional translation, rotational and
sliding. Therefore all three types of friction need to be included in
calculations of the effective diffusion coefficient D1 describing one
dimensional sliding of protein along DNA. Tabaka et al.46 calculated
the D1 values for all transcription factors in E. coli using the constant
value of rotational friction assuming that it was ten times higher
than the friction of pure solvent. Our study shows that the rotational
friction is not a constant and is dependent on the size of particles in
motion. We therefore recalculated the values of D1 provided by
Tabaka et al.46 (new data are given in Table S2 from the ESI†). We
compared the predicted values of D1 with those provided by Tabaka
et al.46 (D1(Zrot = const.)). We found that the D1/D1(Zrot = const.) ratio
takes values from 0.87 to 1.41, with median equal to 1.11.

5 Summary and conclusions

We did not find more experimental or numerical simulation
data in the literature to systematically test the relation (14)
between translational and rotational friction. The available data
presented in Fig. 4 and 5 validate formula (14) because they show
that this relation unifies roughly one hundred different friction
coefficients taken from numerical simulations and experiments.
Proper tests of the relation require comparing the rotational and
translational friction of particles of similar hydrodynamic radii to
calculate the derivative in formula (14) for the same complex
liquid. Moreover, the frictions should be determined on the same
time-scales. This should be readily achievable in numerical simu-
lations. In experiments on friction or diffusion of probe particles in
complex liquids it is easier to focus on one probe particle in
different complex liquids. Different complex liquids can be
obtained, e.g., by taking different concentration of polymers in
polymer solution. To change the size of the probe particles in the
same complex liquid is more challenging and often requires
different experimental techniques for different probes.14

Experiments with probes of different sizes are also necessary
in our method to determine a wave-vector dependent viscosity.

Our theoretical framework quantitatively captures diffusion in
complex liquids. To the best of our knowledge, we offer the first
framework to measure the viscosity function and to predict diffusiv-
ities of various probes in complex media. This is also the first time
the viscosity function of complex liquids has been determined from

experimental data and a relation between the translational and
rotational diffusion coefficients in complex liquids has been given.
Our framework allows predictions of a viscosity function, transla-
tional diffusion and rotational diffusion as a function of probe size
when one of these functions is known. We used the theory to provide
a database for rotational diffusion and sliding along a DNA strand in
E. coli, which gives parameters necessary for a quantitative descrip-
tion of protein association rates.42

Another effect which modifies nanoparticle diffusion is
related to its interactions (e.g., electrostatics) with surrounding
macromolecules.47,48 This effect can be included in the governing
equations used in this article but was neglected in our phenomen-
ological assumptions. It thus remains an open question to include
the interactions within the presented formalism. Knowledge about
the wave-vector dependent viscosity opens a new door in simulations
of complex liquids. Numerical simulations are very challenging
because of multiple-sized objects and their complicated, long-
range hydrodynamic interactions. Instead of simulations of many
multicomponent objects such as proteins in a liquid, it is tempting
to simulate only one or a few multicomponent proteins but
immersed in a liquid with a wave-vector-dependent viscosity
determined by our method. This approach can be achieved by
modification of the Green function in the hydrodynamic equa-
tions. In this situation Z(k) will represent the liquid and other
surrounding macromolecules. We hope that our theoretical
approach can be generalized to the case of diffusion of probe
particles of different shapes. That would allow diffusivity pre-
dictions of, e.g., rod-like particles, in a complex liquid with the
wave-vector dependent viscosity measured by our method. Another
possible application would be to predict Stokesian flow of
complex fluids in micro and especially nano-fluidic systems
where flow is affected by small length-scales.

Conflicts of interest

There are no conflicts to declare.

Appendix A: Smoluchowski dynamics

Within the Smoluchowski dynamics,27 we model all macromolecules
by N spherical beads, with interparticle potential forces, Fint

i (X), and
the external forces, Ej(Rj), acting on the beads. The forces depend on
the configuration of the particles, X � R1,. . .,RN. The macro-
molecules are immersed in a solution with ambient velocity field,
v0(r). In the generalized Smoluchowski description of complex
liquids, the evolution of the probability distribution of configuration,
P(X,t), is described by the generalized Smoluchowski equation,

@

@t
PðX ; tÞ ¼

XN
i;j¼1

@

@Ri
� mttij ðXÞ

� kBT
@

@Rj
þ Fint

j ðXÞ þ Ej Rj

� �� �
P X ; tð Þ

þ
XN
i¼1

@

@Ri
�
ð
d3rCt

i X ; rð Þ � v0ðrÞP X; tð Þ;

(15)
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with configuration dependent Smoluchowski flow velocity in the
whole complex liquid,49

v r;Xð Þ ¼ v0ðrÞ þ
ð
d3r0G r� r0ð Þf r0;Xð Þ; (16)

given by the Smoluchowski force density,

f r;Xð Þ ¼
XN
i¼1

XN
j¼1

~C
t

ijðr;XÞ Fint
j ðXÞ þ Ej Rj

� �
þ FB

j ðXÞ
h i

�
ð
d3r0Ẑ r; r0;Xð Þv0 r0ð Þ

(17)

and the thermodynamic, Brownian forces, FB
j (X) = �kBTq/

qRj ln P(X,t).
In the above equations, the matrix, mtt

ij(X), and the kernels, Ct
i

(X;r), G(r� r0), C̃t
ij(r;X), and, Ẑij(r,r0;X), are purely hydrodynamical

quantities. They are defined for N beads immersed in an
incompressible and Newtonian fluid described by the stationary
Stokes equations,50 �rp(r) + Z0Dv(r) = 0, and r�v(r) = 0, which
determine fluid pressure, p(r), and the fluid velocity field, v(r).
The beads are immersed in the fluid with initial velocity field,
v0(r). We assume that there is no external torque, but there are
external forces acting on the beads, Fhyd

j . We also assume no-slip
boundary conditions on their surfaces. Presence of the beads
and the external forces modify the ambient flow, v0(r), and lead
to the velocity field, v(r). This velocity field must be found
by solving the Stokes equations in the situation described above.
It is a difficult task,50 but for our purpose we need to know
that the velocity field in the whole space may be represented
by the Green function of the Stokes equations as follows,

vðrÞ ¼ v0ðrÞ þ
Ð
d3r0G r� r0ð Þ

PN
i¼1

f hydi r0;Xð Þ; where, fhyd
i (r,X), is

the hydrodynamic force density acting on fluid on the surface
of the ith bead.35 The Green function in Fourier space,

ĜðkÞ ¼
Ð
d3r exp �ikr½ �GðrÞ, is given by the Oseen tensor,

ĜðkÞ ¼ 1

k2Z0
1� k̂k̂

 �

: (18)

The above representation of the velocity field in terms of the
Green function shifts the problem of calculating, v(r), to the task
of finding the hydrodynamic force densities, f hyd

i (r,X).
Because the Stokes equations are linear, the hydrodynamic

force density must also be linear in external forces acting on the
particles, Fj, and in the ambient velocity field, v0(r),

f hydi r;Xð Þ ¼
XN
j¼1

~C
t

ijðr;XÞF
hyd
j �

XN
j¼1

ð
d3r0Ẑij r; r

0;Xð Þv0 r0ð Þ:

(19)

The above expression is a definition of the matrix, C̃t
ij(r;X), and

the matrix kernel, Ẑij(r,r0;X). The velocities of the particles are
also linear in the external forces and the ambient flow,

Ui ¼
XN
j¼1

ltt
ij ðXÞF

hyd
j þ

XN
j¼1

ð
d3rCt

ij X ; rð Þ � v0ðrÞ: (20)

which defines the mobility matrix, ltt
ij(X), and the kernel, Ct

ij

(X;r). In the generalized Smoluchowski equation we use the

kernel, Ct
iðX ; rÞ �

PN
j¼1

Ct
ijðX ; rÞ. We closely follow the notation of

Szymczak and Cichocki,35 where they describe those quantities
in detail.

Appendix B: linear response theory for
Smoluchowski dynamics

We consider motion of a probe particle in the system described
by the Smoluchowski eqn (15) under action of a small external
force on the probe. A proper tool in this situation is linear
response theory, which has already been applied to the case of
the Smoluchowski equation.34,51 A particularly useful result in
the context of our work was derived by Szymczak and Cichocki.35

The difference between their and our case lies in the external
force, that in their case acts on all particles, while in our case it
acts only on the probe. Before discussing our case, in the next
paragraph we summarize those elements of their work that we
found particularly useful for our analysis.

Szymczak and Cichocki use the Smoluchowski eqn (15).
Assuming that the external force field, E(r,t), which determines
external forces, Ej (Rj) = E(Rj,t), and the ambient flow, v0(r,t), are
small, they apply linear response theory to predict evolution of
the probability distribution function, P(X,t), for the configuration
of the interacting Brownian beads. Initially, for time, t0 = �N,
the system is in equilibrium, P(X,t0) = Peq(X), then the time
dependent force field, E(r,t), acting on the beads and the ambient
flow, v0(r,t), appear. The distribution function, P(X,t) = Peq(X) +
dP(X,t), deviates from equilibrium and evolves according to
the Smoluchowski equation. Neglecting in the Smoluchowski
equation the terms that are quadratic in dP(X,t), E(r,t), or v0(r,t),
Szymczak and Cichocki perform rigorous analysis within this
linear response assumption. They obtain expression for the
average Smoluchowski force density (17) in the following form,

f r;Xð Þh it ¼
ð
d3r0

ðt
�1

dt 0TfE r; r0; t� t 0ð ÞE r0; t 0ð Þ

þ
ð
d3r0

ðt
�1

dt 0Tfv r; r0; t� t 0ð Þv0 r0; t 0ð Þ:
(21)

It has a form that is typical to the linear response theory. The
response of the system is given by response kernels, here
denoted by TfE and Tfv, which linearly take into account the
‘history’ of the ‘external forces’. Szymczak and Cichocki also
obtain statistical expressions for the response kernels TfE and
Tfv, the details of which are not relevant here. We will need the
general form of the TfE(r,r0,t � t0) kernel, that is,

TfE r; r0; t� t 0ð Þ ¼
XN
j¼1

OfE r;X ; t� t 0ð Þ½ �jd r0 � Rj

� �* +
eq

: (22)

The index j is the index of the particle on which the external
force acts. The kernels TfE and Tfv along with OfE(r,X,t � t0) can
be inferred from the formulae (9.14)–(9.17) in ref. 35. There is
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also analysis of TfE and Tfv in the language of diagrams. It leads
to identification of two classes of diagrams: irreducible and
reducible diagrams, that allows to represent the above response
kernels by,

TfE ¼ 1� Tirr
fvG

� ��1
Tirr
fE;

Tfv ¼ 1� Tirr
fvG

� ��1
Tirr
fv :

(23)

The above formulae should be understood as a series of con-
volutions in the following sense, e.g.,

GTirr
fE

� �
r; r; t� t 0ð Þ ¼

ð
d3r1

ðt
t 0
dt1G r; r1; t� t1ð ÞTirr

fE r1; r
0; t1 � t 0ð Þ;

(24)

where we use the following extended definition of the Oseen
tensor, G(r,r0,t � t0) = d(t � t0)G(r,r0), with the Dirac delta
function. Formulas (23) can be treated as definitions of the
irreducible kernels, Tirr

fv , and Tirr
fE .

Using the above expressions by Szymczak and Cichocki,
below we calculate the average velocity field for the case with
vanishing ambient velocity field, v0(r) = 0. By averaging the
velocity field (16) over the probability distribution at time t and
utilizing the formula (21) we obtain,

v r;Xð Þh it ¼
ð
d3r0

ðt
�1

dt 0
ð
d3r1

ðt
t 0
dt1G r; r1; t� t1ð Þ

� TfE r1; r
0; t1 � t 0ð ÞE r0; t 0ð Þ:

(25)

Using expression (23) in the above equation we additionally get,

v r;Xð Þh it ¼
ð
d3r0

ðt
�1

dt 0
ð
d3r1

ðt
t 0
dt1Geff r; r1; t� t1ð Þ

� Tirr
fE r1; r

0; t1 � t 0ð ÞE r0; t 0ð Þ;
(26)

with the effective Green function Geff(r,r0,t � t0) defined by,

Geff = G(1 � Tirr
fv G)�1. (27)

It is called the effective Green function, because it gives the
average velocity field of a complex fluid in terms of the force
density acting on the fluid, f0. For a simple fluid it is given by
the Green function as follows,

v0 r; tð Þ ¼
ð
d3r0G r� r0ð Þf 0 r0; tð Þ; (28)

To obtain the average velocity field for a complex liquid we
average eqn (16) and utilize eqn (21), (23), (27) and (28) for the
case of no external forces, E = 0, which leads to the following
expression,

v r;Xð Þh it ¼
ð
d3r0

ðt
�1

dt 0Geff r; r0; t� t 0ð Þf 0 r0; t 0ð Þ: (29)

We return to the case when the force acts on the probe only.
Calculation of the average velocity field around the probe
requires only minor change of Szymczak and Cichocki’s
approach. Assuming that the probe is the particle with the
index 1, it is sufficient to repeat their analysis leaving in

the formula (22) only term with j = 1. Therefore in our problem
the force density is given by,

f r;Xð Þh it ¼
ð
d3r0

ðt
�1

dt 0TfE1 r; r0; t� t 0ð ÞE r0; t 0ð Þ;

TfE1 r; r0; t� t 0ð Þ � OfE r;X ; t� t 0ð Þ½ �1d r0 � R1ð Þ
� 


eq
:

(30)

Moreover we would like to know what is the average velocity field
around the probe particle. For given configuration it is defined by,

v1(r,X) � v(r � R1,X). (31)

In terms of the force density, according to eqn (16), it can be
given by

v1ðr;XÞ ¼
ð
d3r0G r� R1 � r0ð Þf r0;Xð Þ: (32)

Changing the integration variable, r0- r0 + R1, and averaging of the
above equation over the probability distribution at time t gives,

v1 r;Xð Þh it ¼
ð
d3r0G r� r0ð Þ f r0 þ R1;Xð Þh it: (33)

The Smoluchowski force density h f (r0 + R1,X)it can be calculated
from eqn (30) by replacing r - r + R1 under the average, which gives,

f rþ R1;Xð Þh it ¼
ð
d3r0

ðt
�1

dt 0TfE1 rþ r0; r0; t� t 0ð ÞEðr0; t 0Þ;

(34)

where we used the fact that in eqn (30) we can use r0 = R1, because of
the Dirac delta function. The above expression can be further
analyzed as it is in Szymczak and Cichocki’s paper. Therefore, we
can represent the kernel, TfE1, in terms of its irreducible part,

TfE1 = [1 � Tirr
fv G]�1Tirr

fE1. (35)

Moreover, as follows from their analysis, the probe particle
appears only in Tirr

fE1, not in Tirr
fv . Similarly to expressions (25)

and (26), for the external force acting only on the probe we also
get two equivalent expressions for the average velocity field
around the probe,

v1 r;Xð Þh it ¼
ð
d3r0

ðt
�1

dt 0
ð
d3r1

ðt
t 0
dt1G r; r1; t� t1ð Þ

� TfE1 r1; r
0; t1 � t 0ð ÞE r0; t 0ð Þ;

(36)

and

v1 r;Xð Þh it ¼
ð
d3r0

ðt
�1

dt 0
ð
d3r1

ðt
t 0
dt1Geff r; r1; t� t1ð Þ

� Tirr
fE1 r1; r

0; t1 � t 0ð ÞE r0; t 0ð Þ:
(37)

The above analysis can be generalized to the case of beads of
different sizes. Because of a wide applicability of the Smoluchowski
equation for modeling of different complex fluids, eqn (36) and (37)
give important insight into the mechanism of dragging a probe
through a complex liquid. Both expressions for the average
velocity field, (36) and (37), are equivalent. However, they give
two different interpretations of the situation when a probe is
dragged by the external force in a complex fluid. According to
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eqn (36), the external force induces force density given by,

f r;Xð Þh it ¼
Ð
d3r0

Ð t
�1dt

0TfE1 r; r0; t� t 0ð ÞE r0; t 0ð Þ, which acts on
the solution—because it is followed by the Oseen tensor
which propagates the velocity field in the solution. On the other
hand, the interpretation of eqn (37) is that the external force
on the probe induces effective force density defined by,

f eff r; tð Þ ¼
Ð
d3r0

Ð t
�1dt

0Tirr
fE1 r; r0; t� t 0ð ÞE r0; t 0ð Þ, which acts on

the complex liquid—because it is followed by the effective Green
function, Geff. It is worth emphasizing the local character of the
induced effective force density. Contrary to the kernel TfE1, the
irreducible kernel Tirr

fE1, is a local quantity which means that its

integral,
Ð
d3r Tirr

fE1 r; r0; t� t 0ð Þ
�� ��, is finite. The long range char-

acter of the kernel TfE1(r,r0,t� t0) produces force densities acting
on the solution far from the probe, because it can be shown
that,

Ð
d3r TfE1 r; r0; t� t 0ð Þj j ¼ 1. The effective force density form

around the probe a local ‘cloud’, contrary to a much wider
‘cloud’ of the force density.

The effective force density preserves Newton’s third law in
the following sense,ð

d3rTirr
fE1 r; r0; t� t 0ð Þ ¼ 1d t� t 0ð Þ (38)

where 1 is a unit 3 � 3 matrix. It means that the total effective
induced force acting on the complex liquid is equal to the external
force acting on the probe. This is consistent with Szymczak and

Cichocki’s analysis of the integral
Ð
d3rTirr

fE r; r0; t� t 0ð Þ given by
formulas (13.11)–(13.23) in the ref. 35.

In our paper we confine ourselves to the case of constant
force acting on the probe particle, E(r,t) = F, in homogeneous,
isotropic and incompressible complex fluid. In this case the
formula (37) is reduced to eqn (1) and (2) with

TirrðrÞ ¼
ð
d3r0

ð1
0

dtTirr
fE1 rþ r0; r0; tð Þ; (39)

and

Geff r� r0ð Þ �
ð1
0

dtGeff r; r0; tð Þ: (40)

For a homogeneous fluid the effective Green function must
depend on the difference of positional variables, Geff(r� r0, t� t0) =
Geff(r,r0,t � t0). Moreover, for isotropic complex fluid, because the
flow is incompressible, the effective Green function must also
be isotropic and incompressible. It follows that the above time-
integrated effective Green function is given in Fourier space by
eqn (3). Eqn (38) and (39) imply that preservation of Newton’s
third law by Tirr is represented by eqn (4).
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