
This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 8893--8903 | 8893

Cite this: SoftMatter, 2020,

16, 8893

Unravelling the role of phoretic and hydrodynamic
interactions in active colloidal suspensions

Andrea Scagliarini *ab and Ignacio Pagonabarraga cde

Active fluids comprise a variety of systems composed of elements immersed in a fluid environment

which can convert some form of energy into directed motion; as such they are intrinsically out-of-

equilibrium in the absence of any external force. A fundamental problem in the physics of active matter

concerns the understanding of how the characteristics of autonomous propulsion and agent–agent

interactions determine the collective dynamics of the system. We study numerically the suspensions of

self-propelled diffusiophoretic colloids, in (quasi)-2d configurations, accounting for both dynamically

resolved solute-mediated phoretic interactions and solvent-mediated hydrodynamic interactions. Our

results show that the system displays different scenarios at changing the colloid–solute affinity and it

develops a cluster phase in the chemoattractive case. We study the statistics of cluster sizes and cluster

morphologies for different magnitudes of colloidal activity. Finally, we provide evidences that hydro-

dynamics plays a relevant role in the aggregation kinetics and cluster morphology, significantly hindering

cluster growth.

1 Introduction

Collective behaviour is widespread in Nature: fish schools,
insects swarms, bacterial colonies, and plankton blooms are
but a few examples. Collective phenomena in active matter
are characterised by long-ranged correlations, large density
fluctuations,1,2 complex pattern-formation,3 and non-equilibrium
changes of state, such as a flocking,4–6 clustering,7 or mobility
induced phase separation.8,9 Answering key questions on how
individuals interact and communicate goes even beyond the
fundamental goal of unravelling the physical mechanisms at the
basis of self-organisation in living systems. This will help in the
design of micro- and nano-scale self-propelled objects,10–17 with
the aim of generating motion in miniaturised devices and develop-
ping biomimetic environments.18–21 Although most of these
natural and artificial particles move in a fluid medium, the role
played by particle-motion induced hydrodynamic correlations
has been essentially overlooked so far. Here we present a
numerical study on a suspension of non-Brownian colloids

which move responding to gradients of a self-generated concen-
tration field;22–25 the latter determines, dynamically by diffusion
and advection, the means of interaction/communication among the
active particles. In analogy to typical experimental setups,9,26–29 we
consider the dynamics of a layer of self-propelled colloids (SPCs) on
a flat wall, under the action of gravity, embedded in a liquid
medium. We find that the system develops two distinct dynamic
regimes, forming large scale clusters when the interaction of
the colloidal particles with solute is of ‘‘chemoattractive’’ type.
We characterise the transition between the two observed non-
equilibrium regimes and focus on the morphology and
dynamics of the cluster phase. With respect to previous studies,
we quantitatively single out, for the first time, the impact of
solvent hydrodynamics on the collective dynamics of suspensions
of active self-diffusiophoretic Janus colloids.

2 Theory and numerical model
2.1 Hydrodynamic model for the solvent–solute mixture

The 3d Navier–Stokes equations for the fluid velocity field u

@tuþr � ðuuÞ ¼ �
1

rf
rPþ nr2u (1)

are numerically evolved by means of the lattice Boltzmann
(LB) method.30,31 The dynamics of the solute concentration
field C is described by an advection–diffusion–reaction
equation

qtC + r�(uC) = Dr2C + QC � kdC, (2)

a IAC-CNR, Isituto per le Applicazioni del Calcolo ‘‘Mauro Picone’’,

Via dei Taurini 19, 00185 Rome, Italy. E-mail: andrea.scagliarini@cnr.it
b INFN, Sezione Roma ‘‘Tor Vergata’’, via della Ricerca Scientifica 1, 00133 Roma,

Italy
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which is integrated numerically by means of a finite difference
scheme.32–36 In eqn (1), rf is the fluid density (assumed to be
constant, since the flow regime is close to incompressible, the
maximum Mach number being Ma E 10�2), P is the pressure
field, and n is the kinematic viscosity.

In eqn (2), D is the solute diffusivity and QC is a source field
that represents the production of solute by the colloidal activity
and it is localised at particle surfaces, i.e. it has the form

QCðx; tÞ ¼
XN
i¼1

d x� XiðtÞj j � Rð ÞÞa xðiÞs

� �
; (3)

where the sum runs over all colloids (of radius R), whose
positions are Xi(t). The function a(x(i)

s ) is a prescribed activity
profile over the surface (see Fig. 1 and the discussion in the
next section).

The local sink term �kdC models the degradation of pro-
ducts at rate kd (with associated characteristic screening length

‘d ¼
ffiffiffiffiffi
D

kd

r
). The velocities attained in our simulations are such

that the typical particle Reynolds Re = VpR/n and Péclet
Pe = VpR/D numbers are always smaller than 10�1 (Vp is the
self-propulsion speed), thus making the advection terms in
eqn (1) and (2) negligible. The fluid is confined along the
z-direction by two parallel walls, at which a no-slip boundary
condition is imposed on the velocity field and a zero-flux
condition applies for the equation for C. Periodic boundary
conditions apply in the x and y directions. The boundary
conditions at the particle surfaces need a deeper description
that will be provided hereafter.

2.2 Particle–solute coupling: self-diffusiophoresis

According to the theory of colloidal phoresis,37 a non-homogeneous
concentration field C around a solid particle causes a pressure
imbalance that, in turn, induces a flow within the solid–liquid
interfacial layer. Such flow appears, on macroscopic length scales, as
an effective slip boundary condition for the velocity. The interfacial

layer thickness being much smaller than the typical particle size
allows a lubrication theory analysis, which leads to the following
effective slip velocity for the fluid velocity u at the particle surface S:

vs = m(xs)(1 � n̂ # n̂)�rC, (4)

where n̂ is the normal to the surface in xs and m(xs) is the
phoretic mobility, xs A S, which contains the molecular details
of the colloid–solute interaction. For uniform phoretic mobility
m(xs) � m0, particles gain a net propulsion velocity Vp B �m0rC,
i.e. they perform positive diffusiophoresis for negative m0

(‘‘chemoattractive’’ colloids) and negative diffusiophoresis for
positive m0 (‘‘chemorepulsive’’ colloids).

Self-diffusiophoresis is realised by letting each particle
produce solute C according to the prescribed activity profile
a(xs). Although we may deal, in principle, with arbitrarily
patchy38 (yet axisymmetric) active colloids, in the present study
we will specialise in the case of Janus-like particles,39 that
produce solute at a constant rate per unit surface a0, homo-
geneously over only one hemisphere, i.e.:

a xsð Þ ¼
a0 if m̂ � n̂ � 0

0 if m̂ � n̂4 0;

(
(5)

m̂ being the particle characteristic unit vector (see the sketch in
Fig. 1). An isolated free Janus SPC with the activity profile (5)
and uniform phoretic mobility m0 performs a rectilinear motion
with constant speed Vp = |m0|a0/(4D).22,23,40

2.3 Particle dynamics

SPCs are described as solid spheres of radius R, mass M and

moment of inertia I ¼ 2

5
MR2. The boundary condition for the

velocity field at the particle surfaces is implemented via the
bounce-back-on-links scheme for LB probability densities.41–44

Details of the method and on how to introduce in it the
concentration-dependent effective slip velocity (4) are given in
the Appendix.

The Lagrangian dynamics for the position X(i) and velocity
V(i) of the centre of mass of the i-th SPC (i = 1, 2,. . ., N), and for
its intrinsic orientation m̂(i) and angular velocity O(i), is
described by the following equations of motion:

:
X(i) = V(i) (6)

_VðiÞ ¼ 1

M
F

_̂mðiÞ ¼ OðiÞ ^ m̂ðiÞ

_OðiÞ ¼ 1

I
T:

The total force and torque acting on the particle read:

F = Fh � zF�V � GF�O � Fp (7)

T = Th � zT�V � GT�O � Tp, (8)

where zF and zT are the friction matrices. Fh and Th are the force
and torque exerted by the fluid on the particle, respectively, and

Fig. 1 Sketch of a spherical self-phoretic colloid of radius R. X is the
position of the centre of mass, m̂ is the particle characteristic vector, based
on which we set the activity profile: a(xs) = a0 in the bottom hemisphere
(m̂�n̂ o 0) and a(xs) = 0 on top (m̂�n̂ 4 0).
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depend on the global configuration of the velocity field u, thus
also including hydrodynamic interactions; whereas, Fp and Tp

depend on the solute field configuration C and mediate phoretic
interactions.

Eqn (6) are solved numerically, time-marching first the
positions and orientations vector by means of a forward-Euler
scheme, and then the velocities and angular velocities by
means of an implicit (backward-Euler) update.

2.4 Numerical details

We have performed numerical simulations of suspensions with
N = 6400 SPCs of radius R = 2.5 lattice spacings (a value which is
relatively small, such to allow simulations of many particle
systems, but large enough to keep deviations from the expected
physical behaviour, in terms, e.g., of the drag coefficient, below
10%42,45), on lattices of 1024 � 1024 � 24 grid points (E410R �
410R � 10R) at a fixed area fraction f E 0.12. The values, in
lattice Boltzmann units (lbu), of the parameters used in the
simulations are summarised in Table 1. Particles are subjected
to a gravity force Fb strong enough to prevent them from leaving
the bottom wall (the limit fall velocity being five times larger
than the self-propulsion speed corresponding to the maximum

phoretic mobility considered, i.e.
Fb

6pnrfR
� 5

m0j ja0
4D

). A soft-core

particle–particle repulsion is introduced to prevent overlapping
(further details on the treatment of close-to-contact particles
are provided in the Appendix).

The simulations are initialised with fluid velocity and
concentration fields null everywhere and particles randomly
distributed on the surface of the bottom wall, with random
in-plane orientations and velocities equal to zero. We let each
simulation run for 2 � 106 time steps, corresponding to
approximately Trun E 1200–5800t, where the characteristic
time t is the time an isolated particle takes to displace by one
radius, i.e. t = R/Vp, and it varies in the range of E 350–1700 lbu
(depending on the value of |m0|). It is worth noticing that, the
typical experimental values of size and propulsion speed of SPCs
are, respectively, on the order of few mm and few mm s�1,14,46,47

such that t B 1 s. This means that our run lengths are
comparable with the duration of experiments which typically
lasts few tens of minutes.9,26

3 Results and discussion
3.1 Dynamic scenarios controlled by the phoretic mobility

A number of experimental and numerical/theoretical studies
on self-propelled particles in (quasi)-2d have given indication
of the emergence of clustering,9,26–28,48–50 however the nature
of the mechanisms determining the formation of aggregates
lacks a consensual agreement and seems to be strongly
system-dependent (see also ref. 16 for a recent review).
In our simulations solvent and solute hydrodynamics is fully
resolved, from the far field down to the distances on the order
of the particle size (below which it is regularised by the
lubrication interaction). We deal with spherical particles,
which rules out the possibility of alignment-induced collective
motion; instead, chemical production and diffusion mediate
an effective interaction, analogously to the experimental
system studied in ref. 26 and 28. While in the experiments it
was surmised that active colloids experienced an attractive
interaction, here we can tune the affinity of the particles for
the solute via the phoretic mobility m0, which can be regarded
as an effective charge,51 i.e. positive/negative values induce
repulsive/attractive interactions, respectively. Indeed, while for
m0 o 0 our simulations confirm the formation of clusters, for
m0 4 0 such cluster phase disappears, with the average cluster size
going to zero. Incidentally, let us remark that, in some respect,
suspensions of SPCs may recall other systems of interacting micro-
swimmers, as, for instance, attractive squirmers;52 there are however
at least two major differences: for SPCs, unlike squirmers, the
characteristic self-propulsion speed is constant only for an isolated
swimmer, but in general it depends on the concentration field; the
second and probably the most important one, from the point of view
of collective dynamics, is that while in the case of squirmers particle–
particle interactions are frozen (i.e. dictated by the interaction
potential once for all), in a SPC suspension phoretic interactions
are mediated by the solute field and are, therefore, dynamical, in the
sense that they depend on the local (in space and time) field
configuration. In other words, phoretic interactions are not pairwise
additive but change as a function of the global dynamics and, as
such, they give rise to a collective behaviour that is genuinely out-of-
equilibrium. In what follows, the phoretic mobility will be expressed
as m� m0/|m*|, where |m*| is the absolute phoretic mobility for which
an isolated particle of radius R would have unitary Péclet number. To
address the impact of the chemical affinity on the collective
dynamics quantitatively, we have performed a Voronoi tessellation
analysis of the particle space configurations.†53,54

The bottom insets of Fig. 2 show the Voronoi diagrams for
both the repulsive and cluster-forming regimes; as clearly
visible to the naked eye, the geometries of the Voronoi cells
for chemoattractive and chemorepellent active colloids are
distinctively different. The standard deviation of the cell area

distribution sS2ðtÞ � 1

N �S2

PN
i¼1

Si � �Sð Þ2 (normalised by the

Table 1 Parameters of the simulations and corresponding numerical
values (in lbu)

Parameter Symbol Value

Simulation box size Lx � Ly � Lz 1024 � 1024 � 24
Fluid kinematic viscosity n 0.167
Fluid density rf 1.0
Solute diffusivity D 0.087
Particle radius R 2.5
Volume fraction f 0.12
Surface activity a0 0.005
Phoretic mobility |m0| 0.1–0.5
Gravity force Fb 0.25
Characteristic time t 345–1725
Run length Trun 2 � 106

† We follow the standard procedure of embedding each particle in a d-dimen-
sional cell whose i-th edge (face) is set to be equally distant from the reference
particle and its i-th nearest neighbour.
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square of the mean value �S) turns out to be a good indicator to
distinguish the two types of dynamics. In the top inset of Fig. 2
we plot sS

2(t), as a function of time, for two cases with different
sign of the phoretic mobility. In the attractive case,
m o 0, cluster formation induces the appearance of very small
(and large) cells and, hence, the surface fluctuations grow and
eventually saturate at long times. For positive m, instead, colloids
repel each other and tend to reach an optimal covering of the space,
implying that sS

2(t) attains a (lower) value which remains constant

in time. Correspondingly, the dependence of s2
ðSSÞ
S (the time

average of sS2ðtÞ over the steady state) on m discriminates between
the two regimes: it is high for negatively large m, decreases as m
approaches zero and then remains low and constant for m 4 0.

We will focus, in what follows, on the chemoattractive case,
but before moving on we stress that the phase diagram for
chemorepulsive self-phoretic colloids, as recently shown theo-
retically and numerically,55,56 is indeed rather complex and
deserves further investigation.

3.2 Cluster statistics and morphology

We first characterise the cluster size distribution of chemo-
attractive SPCs, varying the colloid/solute coupling intensity, |m|.
We identify clusters according to a distance criterion. Two parti-
cles share a bond if their centres are at a distance equal to or less
than a cutoff apart,‡ and we define clusters as groups of particles
connected to each other through a bond. We compute probability
density functions (PDFs) of cluster sizes over the steady state of
each run. Fig. 3 shows such PDFs, which can be in all cases fitted
to an exponential, P(n) p e�n/nc, over a wide range of sizes n.

The characteristic value nc and the mean size �n ¼ 1

Nclus

PNclus

i¼1
ni

increase linearly with |m| (see the inset of Fig. 3), hence with the

velocity of an isolated particle, in agreement with experimental
and numerical observations.9,26,50 The global attractor for the
SPC dynamics is a set

S ¼
[Nclus

i¼1
Ci;

where Ci is the region of plane occupied by the i-th cluster of
area Ai and containing ni SPCs. Correspondingly, the colloid
number density reads

rðxÞ ¼
ri ¼ ni=Ai if x 2 Ci

0 otherwise;

(

Since the colloid density fluctuations can be expressed as sr
2 =

h(r(x)� hri)2i (where h(. . .)i denotes a surface average), we can write

sr2 /
1

jDj

ðð
rðxÞ2dxdy ¼ 1

jDj
XNclus

i¼1
ri

2AiP nið Þ ¼
1

jDj
XNclus

i¼1

ni
2

Ai
P nið Þ;

(9)

where |D| is the measure of the whole plane. The number of
particles in a cluster n is known to scale with the cluster gyration

radius Rg as n � Rdf
g , df being the fractal (Hausdorff) dimension;57,58

ni and Ai are, then, related by Ai B Rg
2 B n2/df. Plugging the latter

relation and P(n) B e�n/nc into (9), and approximating the sum with
the integral, we finally get:

sr2 � sr0
2ð1þ ajmjÞz dfð Þ; z dfð Þ ¼

3df � 2

df
; (10)

where sr0
2 stands for the fluctuations of an inactive (non-phoretic)

particle and a is a phenomenological parameter; to derive (10) we
have also used the relation nc B |m|§ (see the inset of Fig. 3).

Fig. 2 Main panel: Steady state standard deviation of Voronoi cell areas as
a function of the ‘‘coupling constant’’ (the phoretic mobility) m. Top inset:
sS

2(t) vs. time for two cases with positive and negative m. Bottom insets:
Snapshots of the colloid distributions and relative Voronoi diagrams in the
attractive, m = �0.11 (left), and repulsive, m = +0.11 (right), case, respectively.

Fig. 3 Main panel: PDFs of cluster sizes for three values of the phoretic
mobility: m = �0.16 ( ), m = �0.11 ( ) and m = �0.08 ( ); the dashed lines
represent the exponential fit which are drawn to guide the eye. Inset:
Characteristic (nc, ) and mean ( %n, ) cluster sizes as a function of |m| p Vp,
the intrisic SPC velocity (the dashed line indicates a linear relation).

‡ We set such cutoff to the value of L = 2R + h, h being the soft-sphere range of
interaction (see Appendix).

§ In principle there can be a dependence on m also of the fractal dimension df; we
assume here, however, that the change in m affects only the characteristic cluster
size and not its ‘‘compactness’’ (or fractality).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
A

ug
us

t 2
02

0.
 D

ow
nl

oa
de

d 
on

 8
/1

5/
20

24
 1

1:
29

:5
7 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sm01831f


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 8893--8903 | 8897

Fig. 4 shows the quantitative agreement of the predicted power
law, with the correct scaling exponent, with the numerical
observations.

3.3 Role of hydrodynamic interactions

Self-propelled colloids interact through both the chemicals they
produce and the flows they induce. Understanding the relative
magnitude and competition between these two sources of dynamic
interactions remains challenging. The model put forward allows us
to switch off the hydrodynamic interactions (HI), setting the fluid
velocity to zero at each time step, yet keeping the self-phoretic
mechanism and the correct translational and rotational hydro-
dynamic friction (see Appendix for more details). Interestingly,
our study reveals that although different dynamic scenarios at
changing the sign of the phoretic mobility are preserved even
without HI (being mainly determined by the chemical inter-
action), HI have a profound effect on the kinetics of formation
and morphology of the observed aggregates. In the absence of
particle induced flows in the solvent, attractive SPCs (mo 0) show
an enhanced tendency to form clusters, as it appears in figure
Fig. 5, where we compare the time evolution of the mean cluster
size %n(t), with and without HI (no-HI). In the no-HI case, clusters
coarsen, with %n(t) growing in time as t1/2 (top right inset), as
for domains in the spinodal decomposition of fluid mixtures
in two dimensions.75 The same behaviour (%n(t) B t1/2) has been
observed, indeed, in simulations of self-propelled Brownian
particles interacting via a shifted-truncated Lennard–Jones
potential.49,52 With HI, instead, coarsening is arrested, as
observed in experiments.26 Simulations have suggested that in
suspensions of attractive squirmers the emergence of continuous
or arrested coarsening is selected depending on the form and
intensity of the active stress (the coefficient B2 in the squirmer

terminology);52 self-phoretic Janus colloids behave, in this respect,
as squirmers with B2 = 0,59 for which, indeed, arrested coarsening
was observed.52 Due to the non stationarity of the coarsening
process, steady state PDFs of cluster sizes cannot be computed in
the no-HI simulations. Nevertheless, we observe that istantaneous
cluster size distributions F(n,t) (i.e. the number of clusters of size n
at time t) tend to assume a self-preserving scaling form F(n,t) B
n�2f (n/%n(t)), as it happens in the classical colloidal aggregation
phenomenon for mass-conserving systems.60 This is shown in the
top left inset of Fig. 5, where we plot n2F(n,t) vs. n/%n(t) and see that
all sets of points for different t’s in the coarsening regime where
%n B t1/2, within error bars, collapse onto each other. The state-
ment on the different dynamics, with and without HI, is corro-
borated by the inspection of the radial distribution functions
(RDFs)61 (indicated as gHI(r,t) and gno-HI(r,t), respectively), defined
as the probability of finding a particle between the distances r and
r + dr from a reference particle (and averaged over all particles), i.e.

gðr; tÞ ¼ 1

rNN

XN
i¼1

XN
j ¼ 1
jai

d r � jXjðtÞ þ XiðtÞ
� �

; (11)

where rN is the particle number density and d(x) is the Dirac’s
delta. RDFs at different times are shown in Fig. 6: without HI
(middle panel) the peaks are higher and decay more slowly,
associated with the development of clusters larger than those
formed when hydrodynamics is active. Besides, clusters appear
substantially more compact, as appreciated in the snapshots
(insets) and quantified by the measurement of a larger fractal
dimension (d(HI)

f E 1.4 and d(no-HI)
f E 1.8, see Fig. 4). Hydro-

dynamics then hinders the colloidal aggregation process.
Several complex mechanisms can be conjectured to cause this
phenomenon: dynamically induced effective repulsion among
particles, fluid flow generated disturbances in the chemical
field distribution, etc. An effect, that we could clearly identify, is

Fig. 4 Main panel: Deviation of the steady state SPC density fluctuations

sr
2 from the value for inactive particles sr0

2, normalised as s2 ¼
sr2 � sr0

2

sr0
2 � hri2,

vs. the coupling strength |m| from LB (squares) and the phenomenological
derivation (dashed line), eqn (10), with fractal dimension df = 1.4, as
measured in the simulations. Inset: Mean gyration radius of clusters vs.
number of particles with ( ) and without ( ) HI. The two dashed lines
represent the power law Rg B n1/df (df = 1.8 for no-HI).

Fig. 5 Main panel: Mean cluster size %n vs. time from simulations with (HI)
and without (no-HI) hydrodynamic interactions (the values for the HI case
are magnified by a factor two, for the sake of clarity of visualisation). Left
inset: Cluster size distributions for m = �0.16 and no-HI, at various times
t A [1500t; 3000t] during the coarsening process. Right inset: log–log plot
of %n vs. t, without HI, highlighting the scaling t1/2 in the coarsening process.
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an enhanced tendency of SPCs to be oriented off-plane, when
HI are present, not only when they hit a cluster (as, e.g., in the
mechanism proposed in ref. 62) but also for isolated particles.
This may be attributed to fluid motion close to the wall, giving
rise to hydrodynamic torques that rotate the particles. Actually
the roto-translational dynamics of self-diffusiophoretic colloids,
at and close to interfaces, is an intricate problem:63–65 in highly

confined situations, one might indeed expect even the opposite
trend (clusterisation enhancement);62 the argument maintains,
therefore, a qualitative character. Nevertheless, Fig. 6 (bottom
panel) provides a quantitative insight into the picture. There,
we show the PDF of the degree of alignment of the particle
orientation with the bounding solid wall, m8

2 = mx
2 + my

2. When
HI are present, indeed, the peak of the PDF around m8

2 B 0
is more pronounced, i.e. there is a larger fraction of colloids
pointing out of the plane. Accordingly, the self-propulsion speed
is effectively reduced, thus limiting the in-plane mobility and
diminisihing the capability of particles to gather and clusterise.
Before concluding, we would like to remind that it is still
an open question whether Janus particles can really have
a homogeneous phoretic mobility; if the opposite is true,
inhomogeneous m(r) gives rise, in response to gradients of
the concentration field, to chemical torques that can lead,
themselves, to clustering inhibition.66,67,68 With hydrodynamic
interactions, the dynamics is, of course, even more complicated,
due to the competition of these effects, and it is the subject of
ongoing research.

4 Conclusions

To conclude, we have used a mesoscopic numerical model
of fully resolved spherical active colloids, propelled by self-
generated gradients of a scalar field (e.g. a chemical product)
where the self-induced hydrodynamic flows can be accounted
for. We have identified the role of the phoretic mobility
as the key controlling parameter that determines two distinct
dynamic regimes and the onset of a cluster phase. By means of
a Voronoi tessellation we have characterised the cluster state
finding that the probability distribution of sizes decays expo-
nentially with a mean size growing linearly with the particle
activity, in agreement with experimental results.9,26 We have
quantified the profound effect of hydrodynamics, which
inhibits clustering for negative phoretic mobilities. We have
identified the interplay between induced flows and particle
reorientation as a possible explanation for the strong slowing
down of cluster coarsening, however, it remains an open question,
whether fluid–wall interactions dominate over particle–particle
hydrodynamic correlations, which needs deeper analysis. This
study shows that our novel numerical method is powerful and
has some unique features, namely the explicit description of
chemical signalling, through the production and diffusion of a
solute concentration field and the solvent hydrodynamics,
to simulate realistic systems. Moreover, it opens the way to
address the dynamics of self-propelled colloids in general
geometries and also for stronger activity (larger Pe), both in
isotropic and unforced situations, where aggregation can lead
to the formation of active colloidal gels, or under gravity as in
the experimental sedimentation setup.

Conflicts of interest

There are no conflicts to declare.

Fig. 6 Top panel: RDFs for m = �0.16 at three different times and
corresponding snapshots of the colloid distribution, indicating cluster
formation, in a sub-system of size 256 � 256, located in the center of
the box. Also the repulsive case m = +0.16 (pink *) is reported for
comparison. Middle panel: Same as in the top panel but without hydro-
dynamic interactions. Bottom panel: PDFs of m8

2, the square magnitude
projection onto the {x,y}-plane of the colloid orientations, from simula-
tions with (HI) and without (no-HI) hydrodynamics.
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5 Appendix
5.1 The lattice Boltzmann method (LBM)

The fundamental quantities, in the LBM, are the discrete single
particle probability density functions (pdfs), fl(x,t), defined in such
a way that fl(x,t)Dx3 is the probability of finding a fluid particle (of
unit mass) in a small volume Dx3, centred at x, at time t, moving
with the velocity cl; the index l runs over the set of discrete lattice
velocities (nineteen in our case).31,69 The evolution equation for the
fl’s is the so called lattice BGK–Boltzmann equation:70

fl xþ clDt; tþ Dtð Þ � flðx; tÞ ¼ �
Dt
tLB

flðx; tÞ � f
ðeqÞ
l ðx; tÞ

� �
;

(12)

where Dx and Dt are the lattice spacing and time step, respectively,
and tLB is the relaxation time. Algorithmically, eqn (12) consists of
two steps: (i) streaming, where the pdfs move (‘‘stream’’) over the
lattice and (ii) collisions, which induce relaxation on the local
equilibrium distribution functions, f (eq)

l (x,t). The latters depend on
space and time only through their prescribed dependence on the
hydrodynamic fields, density r(x,t) and velocity u(x,t). We adopt,
for the f (eq)

l ’s, a standard second order polynomial form,30 that is:

f
ðeqÞ
l ðx; tÞ ¼ wlr 1þ u � cl

cs2
þ 1

2

u � clð Þ2

cs4
� 1

2

u2

cs2

 !
; (13)

where wl and cs are constants (the lattice weights and speed of
sound) characteristic of the particular lattice geometry and velocity
scheme. The density and velocity fields are expressed, in terms of
fl’s, as:

r ¼
X18
l¼0

fl u ¼ 1

r

X18
l¼0

flcl : (14)

In the small Knudsen and Mach numbers limits, eqn (12)–(14)
represent a numerical solver (second order accurate in space and
time69,71) for the incompressible Navier–Stokes equations.

5.2 Fluid–solid coupling

Coupling the solvent dynamics with that of the suspended
particles requires tackling a boundary condition at the solid–
fluid interface. A solid particle is discretized on the lattice,
so that its surface crosses the links between neighbouring
lattice nodes. Let us assign a generic link the label j ( j = 1,. . .,
Nlinks) and denote the associated outer and inner node as xo

and xi = xo + cljDt, where clj is the corresponding lattice velocity
(lj = 1,. . ., 18).¶ If a no-slip condition were to be enforced at the
solid surface, the boundary probability density functions would
be updated as follows:

flj0 xo; tþ Dtð Þ ¼ flj xo; tð Þ; (15)

where the index lj
0 is such that clj

0 ¼ �clj and flj is the post-

collisional distribution. However, the boundary velocity at a
given location on the particle surface will be in general non-
zero (due to slip and/or particle motion). Rule (15) must be,
then, modified accordingly as:41,42,44

flj0 xo; tþ Dtð Þ ¼ flj xo; tð Þ �
2wljr0u

ð jÞ
s � clj

cs2
; (16)

where r0 is the mean fluid density and u( j)
s , the velocity at the

particle surface location x
ð jÞ
s ¼ xo þ

1

2
cljDt (the position of the

boundary node is assumed to be in the middle of the link),
depends on the particle linear V and angular O velocities and
on the (local) slip velocity v( j)

s as

u( j)
s = V + O4 (x( j)

s � X) + v( j)
s , (17)

where X is the position of the particle centre of mass. The
boundary conditions (16) and (17) induce a local fluid–particle
momentum exchange (the total momentum being conserved)
which entails a force at the boundary node x( j)

s

Fð jÞs xð jÞs ; tþ 1

2
Dt

� �
¼ Dx3

Dt
2flj xo; tð Þ �

2wljr0u
ð jÞ
s � clj

cs2

" #
clj : (18)

The total force and torque acting on the particle are, then,
given by:

F ¼
X
j

Fð jÞs T ¼
X
j

xð jÞs � X
� �

^ Fð jÞs

h i
; (19)

where the sum runs over all links constituting the particle
surface. Let us notice that, because of (17) and (18), both force
and torque can be split into four terms:44

F = Fh � zF�V � GF�O � Fp (20)

T = Th � zT�V � GT�O � Tp; (21)

The expressions of Fh and Th are as follows:

Fh ¼
Dx3

Dt

X
j

2flj xo; tð Þclj ; (22)

Th ¼
Dx3

Dt

X
j

2flj xo; tð Þ xð jÞs � X
� �

^ clj

� �
: (23)

The latter equations provide the force and torque exerted by the
fluid on the particle and as such they mediate also the hydro-
dynamic interactions. The friction matrices

zF ¼
2r0Dx

3

cs2Dt

X
j

wlj clj clj ; (24)

and

GT ¼
2r0Dx

3

cs2Dt

X
j

wlj xð jÞs � X
� �

^ clj

� �
xð jÞs � X
� �

^ clj

� �
;

(25)

¶ lj is a dummy index, in the sense that it is slaved to j. We introduced it just to
clarify that it runs on a different set of possible values (the lattice velocity set,
i.e. lj = 1,. . ., 18), whereas j runs over the number of links around the particles
( j = 1,. . ., Nlinks), but for each link j there is only one lj. In other words, it
represents a sort of map that associates a given link to a certain lattice velocity
vector.
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are diagonal, whereas

GF ¼
2r0Dx

3

cs2Dt

X
j

wlj clj xð jÞs � X
� �

^ clj

� �
; (26)

zT ¼
2r0Dx

3

cs2Dt

X
j

wlj xð jÞs � X
� �

^ clj

� �
clj ; (27)

are null (apart from discretisation effects, coming from surface
irregularities, which can be reduced by increasing the particle
radius). In what we call the ‘no-HI’ case (without hydrodynamic
interactions) the effect of the fluid enters, then, in the drag terms
�zF�V and�GT�O. The phoretic force Fp and torque Tp are given by:

Fp ¼
2r0Dx

3

cs2Dt

X
j

wlj clj � vð jÞs
� �

clj ; (28)

Tp ¼
2r0Dx

3

cs2Dt

X
j

wlj clj � vð jÞs
� �

xð jÞs � X
� �

^ clj

� �
: (29)

In order to get a better insight into the effect of these terms on
the particle dynamics, we first consider the case of an axisym-
metric configuration of the chemical field C(x) around the
particle. This is the case, for instance, of the active Janus self-
diffusiophoretic colloid we considered. The sum in (28), which
runs over all links (or, equivalently, over all boundary nodes),
can be split into two sums: a sum over the subset Ixo of links
connecting a certain fluid node xo, proximal to the particle
surface, to the corresponding solid nodes inside the particle,

Ixo = {b|cb�n̂ o 0}, (30)

and a sum over all such ‘outer’ fluid nodes, i.e.X
j

wlj clj � vð jÞs
� �

cj ¼
X
xo

X
b2Ixo

wb cb � vs xoð Þð Þcb: (31)

The particle surface is endowed with a spherical coordinate system,
such that the generic point xo can be associated to the usual polar
and azimuthal angles, (y, f), with respect to the symmetry axis
identified by the particle director m̂ (defined in the main text). For

n̂ ¼

sin y cosf

sin y sinf

cos y

0
BBB@

1
CCCA t̂1 ¼

� cos y cosf

� cos y sinf

sin y

0
BBB@

1
CCCA t̂2 ¼

sinf

� cosf

0

0
BBB@

1
CCCA

(32)

the triple of orthonormal vectors corresponding to the normal and
the two tangential directions to the surface in xo,8 the following
decomposition cb = (cb�n̂)n̂ + (cb�t̂1)t̂1 + (cb�t̂2)t̂2 obviously holds for
the lattice velocities, with b A I(y,f) (we will use for xo its spherical
coordinates from now on). We recall that the effective slip velocity,
vs p (1 � n̂ # n̂)rC, is, by definition, tangent to the surface,
therefore:

cb�vs = vs,1(h)(cb�t̂1) + vs,2(h)(cb�t̂2), (33)

where vs,1(h) and vs,2(h) are the components of vs along the two
tangent directions (polar and azimuthal), which depend only
on h owing to the axisymmetric character of the field C(h).
Using (31) and (33), the force (28) can be rewritten as:

Fp ¼ A
X

h

vs;1ðhÞ
X

/

X
b2Iðh;/Þ

wbcb cb � t̂1ð Þ

2
4

þ
X

h

vs;2ðhÞ
X

/

X
b2Iðh;/Þ

wbcb cb � t̂2ð Þ

3
5;

(34)

where A ¼ 2r0Dx
3

cs2Dt
. Let us note, now, a property of the set of

links: given xo = (y, f) on the sphere, and its associated I(y,f),
there will be a xo

0 = (y0, f0) (with y0 = y0 and f0 = f + p) such that
for every b A I(y,f) there exists a b0 A I(y0,f0) fulfilling

c
k
b0 ¼ c

k
b c?b0 ¼ �c?b ; (35)

where the superscripts ‘‘8’’ and ‘‘>’’ stand for the directions,
respectively, parallel and orthogonal to the symmetry axis m̂.
Such property follows from the definition of I(y,f), eqn (30):
since, by symmetry, upon the shift f - f + p the normal to the
surface n̂ changes as n08 = n8 and n0> = �n> (see (32)), in order
to preserve the condition cb0�n̂0 o 0, the velocities have to

transform as in (35). Analogously, t
0k
1 ¼ t

k
1, t 0?1 ¼ �t?1 and t2

0 =
�t2. Therefore, in (34), upon summing on f (i.e. on nodes all
around the particle at a fixed latitude y), only the component
parallel to m̂ survives and reduces to:

Fkp ¼ A
X
y

X
f

X
b2Iðy;fÞ

wb c
k
b

� �20
@

1
Avs;1ðyÞtk1 ¼ A

X
y

ayvs;1ðyÞtk1;

(36)

if the particle is large enough (R/Dx c 1), so to minimise the
discretisation errors, the coefficients are ay p 2pR sin y, such
that the sum in (36) approximates the integral over the polar
angle. So, basically, for a solute distribution around the particle
which is axisymmetric, the bounce-back-on-links algorithm
yields a phoretic force which is proportional to the surface
integral of the effective slip velocity, i.e.:

Fp /
ðð

S
vsdx: (37)

It is easy to verify, by similar symmetry arguments, that the
torque in (29) is Tp = 0. In the general case it is not so
straightforward to estimate such forces; however, we can grasp
qualitatively what happens. We can always decompose the
solute field C(x) around a (Janus) particle as the sum of the
self-generated field (which is axisymmetric) and a background
field (which will not be, in general, axisymmetric), C(x) =
Caxisymm(x) + Cbackground(x). If we now assume that the back-
ground field does not vary significantly on the scale of the
particle size (that is hC2i1/2/||rC(X)|| c R), we can approximate
it as C(x) E C(X) + rC|X�(x � X). To leading order, then, the
phoretic force Fp will also split into a self-propulsion

8 The components are given with respect to the reference system constituted by
the particle symmetry axis m̂ and two directions orthogonal to it, that, without
loss of generality, can be identified with z, and (x, y), respectively.
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contribution and in a term F̃p p rC|X; the latter represents a
sort of chemotactic drift towards regions of high or low solute,
depending on the sign of the phoretic mobility.

5.3 Switching off hydrodynamics

When assessing the dynamics where no hydrodynamic inter-
actions are present (see Section 3.3), we set the fluid velocity
field u(x,t) to zero everywhere. Consequently, the equation for
the solute field C(x,t) reduces to a diffusion equation and the
force Fh and torque Th are null. To understand this latter point,
we have to first notice that what enters in the expressions (22)
and (23) are the post-collisional distribution functions. For
tLB = Dt (as it is in all our simulations), these coincide exactly
with the equilibrium distributions, eqn (13), with u � 0, that is
fl(x,t) = wlr, 8l. This implies:

Fh / r
X
j

wlj clj Th / r
X
j

wlj xð jÞs � X
� �

^ clj

� �
; (38)

which, by symmetry, vanish (again, apart from small errors
due to surface discretization) when summed over all boundary
link velocities around the sphere. Let us remark that setting
the fluid velocity to zero does not directly affect** the expres-
sion for the phoretic force, eqn (28), therefore the self-
propulsion and phoretic interactions survive the operation of
switching-off hydrodynamics. In this way we can decouple, in
our mesoscopic framework, physical phenomena occurring
at well separated scales: the fluid dynamic processes localised
(on molecular scales) close to the particle (and effectively
accounted for in the solute-field-dependent slip velocity) from
macroscopic flows in the solvent (and associated hydrodynamic
interactions).

5.4 Particles close to contact: lubrication corrections and
short-range repulsion

For particles close to contact, lubrication corrections are intro-
duced: the forces and torques acting on two particles approaching
each other are calculated, in terms of particle velocities and
angular velocities, according to a grand-resistance-matrix
formulation.44,45,72 In particular, the lubrication correction takes
the form of the difference between the lubrication force at a
surface separation h and the force at a given cut-off separation
hc; for two particles of radii R1 and R2 (the particle–wall interaction
corresponds to the limit R2 - N) this reads:44

FlubðhÞ ¼
�6pZ R1

2R2
2

R1 þ R2ð Þ2
1

h
� 1

hc

� �
V12 � r̂12 if h � hc

0 if h4 hc

8>><
>>:

(39)

where r12 = X1 � X2 � r12r̂12 is the particle centre–centre distance
vector and h = r12 � R1 � R2; the cutoff distance is chosen to be
hc = 0.67 lattice units, which is an optimal value to get good
agreement with lubrication theory calculations, as shown in
ref. 44. Lubrication forces may not be enough, though, to prevent

particle overlap (as recognised also in ref. 73 and 74), especially
when the particle density is large (even just locally, as, for instance,
inside clusters). Therefore, we add also a short-range soft-sphere
repulsion modelled by the force Fss p ((hss

c /h)3 � 1)r̂12, with cutoff
(coinciding with the soft-sphere radius) hss

c = 2hc.

5.5 Numerical tests

In this section we present results from simulations of simple
test cases in order to check to which extent our method agree,
qualitatively and/or quantitatively, with the theoretical predic-
tions. Firstly, we consider a single SPC with constant phoretic
mobility, m(xs) � m0 4 0, and a Janus activity profile

a xsð Þ ¼
a0 if m̂ � n̂ � 0

0 if m̂ � n̂4 0
;

(
(40)

moving in a fully periodic tridimensional box. If the box side is
much larger than the particle radius, such a particle is expected
to perform a uniform rectilinear motion with speed23

Vp ¼
m0j ja0
4D

: (41)

In Fig. 7 we report the coordinates of the position and the
three velocity components (in lattice Boltzmann units) for an
SPC of radius R = 2.5Dx in a cubic box of side L = 32Dx, initially
located in X(0) = (L/2, L/2, L/2) with orientation m̂(0) = (0, 0, 1):

Fig. 7 Kinematics of a single self-phoretic Janus colloid in a periodic box:
particle position (top panel) X(t) = (x(t), y(t), z(t)) and velocity V(t) = (Vx(t),
Vy(t), Vz(t)) (bottom panel) vs. time (all quantities here are expressed in
lattice Boltzmann units).** It affects it, of course, indirectly, since the dynamics of C(x,t) differs.
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the plot suggests that indeed the particle moves in a straight
line, with director (0, 0, 1), at a constant speed (the oscillations
are due to recomputation of the set of links, hence of the
discretised surface, as the particle moves across the lattice),
albeit about half of the theoretical value. Such a quantitative
disagreement is not too surprising, given the small size of the
particle. The quality of the numerical result improves, in fact,
significantly with the resolution. This is shown in Fig. 8, where
we plot the steady state z-component of the velocity, Vz, normalised
by the expected Vp, eqn (41), as a function of the radius (the ratio
R/L E 0.08 is kept fixed over various runs). We see that the
numerics (red dots) approximate better and better the theoretical
prediction as the particle radius is increased, and eventually tend
to converge to the value of B1.1 (i.e. the measured Vz is about 10%
larger than Vp). This residual mismatch might be due to the fact
that, as R grows, the Péclet number, Pe, approaches unity, whereas
the prediction (41) is valid when Pe is strictly zero. For a smaller
Pe E 0.1 we find, indeed, a better agreement for the largest radius
(blue square in Fig. 8), for which Vz/Vp E 1.04.

In the multi-particle case we decided to pay the price of a
worse agreement with the single particle theoretical speed and
adopted a smaller radius such to be able to simulate statisti-
cally significant systems at an affordable computational cost.
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