

CORRECTION

View Article Online
View Journal | View IssueCite this: *Chem. Sci.*, 2020, **11**, 6923

Correction: Transforming colloidal Cs_4PbBr_6 nanocrystals with poly(maleic anhydride-*alt*-1-octadecene) into stable CsPbBr_3 perovskite emitters through intermediate heterostructures

Dmitry Baranov, ^{*a} Gianvito Caputo, ^a Luca Goldoni, ^b Zhiya Dang, ^a Riccardo Scarfiello, ^c Luca De Trizio, ^a Alberto Portone, ^d Filippo Fabbri, ^d Andrea Camposeo, ^d Dario Pisignano ^{de} and Liberato Manna ^{*a}

Correction for 'Transforming colloidal Cs_4PbBr_6 nanocrystals with poly(maleic anhydride-*alt*-1-octadecene) into stable CsPbBr_3 perovskite emitters through intermediate heterostructures' by Dmitry Baranov *et al.*, *Chem. Sci.*, 2020, **11**, 3986–3995, DOI: 10.1039/D0SC00738B.

DOI: 10.1039/d0sc90125c

rsc.li/chemical-science

After the publication of our manuscript, an inquiry from a reader pointed out an earlier publication that was not cited in the context of prior art relevant to our study. We thank the reader for their interest in our work. Prompted by the inquiry, we thought it would be appropriate to acknowledge a few earlier and relevant publications that escaped our attention.

De Matteis *et al.*¹ have reported room temperature excitation–emission maps (photoluminescence maps) of powders containing a mixture of Cs_4PbBr_6 and CsPbBr_3 compounds (Fig. 9 and 10 in ref. 1). The photoluminescence maps show a dip at around ~ 314 nm in the excitation spectrum of the CsPbBr_3 compound emitting at ~ 520 nm. The dip matches the wavelength of the electronic absorption in Cs_4PbBr_6 . In a similar vein, Shin *et al.*² have reported room temperature photoluminescence maps of $\text{CsBr}/\text{PbBr}_2$ co-evaporated thin films containing a mixture of CsPbBr_3 and Cs_4PbBr_6 compounds. In a photoluminescence map shown in Fig. 5b of ref. 2, the emission of the CsPbBr_3 compound at ~ 517 nm is quenched at the excitation wavelength of ~ 318 nm, consistent with absorption by Cs_4PbBr_6 . Both De Matteis *et al.*¹ and Shin *et al.*² observed an additional room temperature UV emission at ~ 375 nm and ~ 360 nm, respectively, from the mixed CsPbBr_3 – Cs_4PbBr_6 samples and assigned it to Cs_4PbBr_6 .

The room temperature photoluminescence maps of Cs_4PbBr_6 – CsPbBr_3 heterostructured nanocrystals studied in our work (Fig. 4a)³ show a qualitatively similar dip in the intensity of ~ 504 nm emission from CsPbBr_3 when excited at ~ 314 nm, the absorption wavelength of Cs_4PbBr_6 . In contrast to the above-mentioned observations, Cs_4PbBr_6 – CsPbBr_3 heterostructured nanocrystals were not emissive in UV at room temperature but showed a weak ~ 376 nm emission from Cs_4PbBr_6 only when cooled down to ~ 35 K (Fig. 4b).³ The three studies share similar photoluminescence measurements and chemical formulas of the studied compounds. However, the synthetic origins and structures of the samples, together with discussions of the observed phenomena, are different in the three studies.

Krieg *et al.*⁴ have reported effective colloidal stabilization of CsPbBr_3 nanocrystals over a wide range of concentrations, from 400 mg ml^{−1} to 4×10^{-6} mg ml^{−1} of inorganic content in toluene (Fig. 2 in ref. 4) by means of lecithin, a naturally occurring zwitterionic ligand. The lecithin-stabilized nanocrystals have been reported to be stable against multiple rounds of washing, *i.e.*, precipitation–redisposition with an antisolvent. The poly(maleic anhydride-*alt*-1-octadecene) compound (PMAO) used in our work to transform Cs_4PbBr_6 nanocrystals into CsPbBr_3 nanocrystals yielded colloids of PMAO-capped CsPbBr_3 nanocrystals which survive several rounds of washing and are stable in the concentration range of ~ 26 mg ml^{−1} to $\sim 1 \times 10^{-4}$ mg ml^{−1} (Fig. S32). It is notable that both lecithin and PMAO increase the colloidal stability of CsPbBr_3 nanocrystals despite an apparently different surface binding chemistry and a different way of being introduced into the nanocrystal preparation.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a*Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy. E-mail: dmitry.baranov@iit.it; liberato.manna@iit.it*

^b*Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy*

^c*CNR NANOTEC, Institute of Nanotechnology, c/o Campus Ecotecne, via Monteroni, 73100 Lecce, Italy*

^d*NEST, Istituto Nanoscience-CNR, Piazza S. Silvestro 12, I-56127 Pisa, Italy*

^e*Dipartimento di Fisica "Enrico Fermi", Università di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy*

References

- 1 F. De Matteis, F. Vitale, S. Privitera, E. Ciotta, R. Pizzoferrato, A. Generosi, B. Paci, L. Di Mario, J. S. Pelli Cresi and F. Martelli, Optical Characterization of Cesium Lead Bromide Perovskites, *Crystals*, 2019, **9**(6), 280.
- 2 M. Shin, S.-W. Nam, A. Sadhanala, R. Shivanna, M. Anaya, A. Jiménez-Solano, H. Yoon, S. Jeon, S. D. Stranks, R. L. Z. Hoye and B. Shin, Understanding the Origin of Ultrasharp Sub-bandgap Luminescence from Zero-Dimensional Inorganic Perovskite Cs_4PbBr_6 , *ACS Appl. Energy Mater.*, 2020, **3**(1), 192–199.
- 3 D. Baranov, G. Caputo, L. Goldoni, Z. Dang, R. Scarfiello, L. De Trizio, A. Portone, F. Fabbri, A. Camposeo, D. Pisignano and L. Manna, Transforming colloidal Cs_4PbBr_6 nanocrystals with poly(maleic anhydride-alt-1-octadecene) into stable CsPbBr_3 perovskite emitters through intermediate heterostructures, *Chem. Sci.*, 2020, **11**(15), 3986–3995.
- 4 F. Krieg, Q. K. Ong, M. Burian, G. Raino, D. Naumenko, H. Amenitsch, A. Suess, M. J. Grotevent, F. Krumeich, M. I. Bodnarchuk, I. Shorubalko, F. Stellacci and M. V. Kovalenko, Stable Ultraconcentrated and Ultradilute Colloids of CsPbX_3 ($\text{X} = \text{Cl, Br}$) Nanocrystals Using Natural Lecithin as a Capping Ligand, *J. Am. Chem. Soc.*, 2019, **141**(50), 19839–19849.

