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sis and immunological evaluation
of entirely carbohydrate conjugate Globo H-PS A1†

Samir Ghosh,‡ Kevin R. Trabbic,‡ Mengchao Shi, Sharmeen Nishat, Pradheep Eradi,
Kristopher A. Kleski and Peter R. Andreana *

An anticancer, entirely carbohydrate conjugate, Globo H-polysaccharide A1 (Globo H-PS A1), was

chemically prepared and immunologically evaluated in C57BL/6 mice. Tumor associated carbohydrate

antigen Globo H hexasaccharide was synthesized in an overall 7.8% yield employing a convergent [3 + 3]

strategy that revealed an anomeric aminooxy group used for conjugation to oxidized PS A1 via an oxime

linkage. Globo H-PS A1, formulated with adjuvants monophosphoryl lipid A and TiterMax® Gold. After

immunization an antigen specific immune response was observed in ELISA with anti-Globo H IgG/IgM

antibodies. Specificity of the corresponding antibodies was determined by FACS showing cell surface

binding to Globo H-positive cancer cell lines MCF-7 and OVCAR-5. The anti-Globo H antibodies also

exhibited complement-dependent cellular cytotoxicity against MCF-7 and OVCAR-5 cells.
Introduction

Aberrant glycosylation is one of the characteristic events
observed during carcinogenesis.1–3 It is the result of drastic
alterations of glycotransferases and glycosidases eventually
leading to the overexpression of antigenic oligomers on tumor
cell membranes that are termed tumor associated carbohydrate
antigens (TACAs). TACAs have been found on many different
types of cancer cells and malignant tissues, however, negligible
amounts are detected on healthy tissue. This phenotypical
difference opens a therapeutic window for the development of
anticancer vaccines through harnessing the power of human
immunity to induce TACA-specic immune responses and
hence generate antibodies and effector cells to potentially
eradicate cancer cells and/or halt tumor progression.4 Many
studies have shown that properly presented TACAs in an
immunogenic construct can induce specic T cell dependent
immune responses and give rise to high affinity anti-TACA
antibodies.5–10 Generally, TACAs are incapable of triggering
adaptive immunity alone due to their weak immunogenic
nature. In order to circumvent this obstacle, TACAs have been
covalently conjugated to immunogenic carriers, thus, the
conjugates as a whole, can be processed by antigen presenting
cells (APCs) and induce the desired immune response.11,12 To
date, there are several types of carriers that have been applied
toward developing cancer vaccines;13,14 the most prevalent
hemistry and Biochemistry, 2801 West
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carriers have been proteinaceous. For example, KLH,15–17

CRM197 (ref. 18, 19) and TT20 TACA-conjugates have been
extensively studied and proven capable of TACA-specic anti-
body (Ab) production and tumor cell cytotoxicity.

Several anti-TACA monoclonal antibodies (mAbs) were
developed and applied for clinical practice. The anti-GD2 Ab,
unituxin, was granted FDA approval in 2015 for the treatment of
neuroblastomas.21,22 There are several anti-TACA mAbs in pre-
clinical/clinical trial for example mAbs to GD3,23,24 GM2,25

fucosyl-GM1,26 Lewis Y,27,28 Tn,29,30 STn31,32 and TF.33 The TACAs
are viable targets for immunotherapy, however, developing
a qualied therapeutic anti-TACA mAb for specic types of
cancer can be extremely challenging. First, generation of strong
immune responses against the TACA component of conjugates
is essential for the design of TACA vaccines, thus selection of
carriers and conjugation methods are critical. Second, aer
vaccination a pool of polyclonal antibodies are obtained which
can bind various epitopes; for example, the carbohydrate anti-
gens and/or the fragments of antigen carrier.34 Some antibodies
lack the ability to bind to natural TACAs that display on the
surface of tumor cells; only limited to recognize clustered/
multivalent display of glycans.30 Therefore, identifying a mAb
that possess both high specicity and affinity against TACAs can
be especially difficult. Furthermore, therapeutic mAbs should
be capable of inducing effector functions, which induce
antibody-dependent cellular cytotoxicity (ADCC) and
complement-dependent cytotoxicity (CDC). In some case good
affinity and specicity do not render good effector functions,
which are resultant of the lack of interactions with the Fc with
Fc receptors, or the failed recruitment of complement.35

However, the imperfections of TACA-protein conjugates have
also been unmasked and hindered success in clinical trials as
This journal is © The Royal Society of Chemistry 2020
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a direct result of the “epitope suppression” effect which nega-
tively affects immunization efficacy.36–39 Additionally, less
chemically well-dened conjugation methods can lead to
inconsistencies in chemical composition from batch-to-batch
samples.40 The non-protein carrier approach, therefore, can be
an attractive alternative towards cancer vaccine development
and to this end, our group has been dedicated to developing
TACA specic immunity employing an entirely carbohydrate
conjugate strategy utilizing bacterial polysaccharide PS A1 from
Bacteroides fragilis (ATCC 25285/NCTC 9343) as the immune
stimulating “carrier” (Fig. 1).41,42 PS A1 possesses unique
immunological properties in comparison to protein counter-
parts. This capsular zwitterionic polysaccharide (ZPS) has been
involved in immunological studies that have indicated pro-
cessing by APCs and activated CD4+ T cells through the major
histocompatibility complex II (MHCII) dependent pathway.43–45

The efficacy of PS A1 as an immunogenic “carrier” was rst
evaluated and validated through our studies with TACA-PS A1
constructs including Tn-PS A1,46,47 TF-PS A1,48,49 STn-PS A1 (ref.
50) and GM3-PS A1 (ref. 51) (Fig. 1a) in which all conjugates
were able to induce specic adaptive immunity (target ID),
production of high affinity IgG antibodies (target specicity)
and tumor cell lysis (function).29

Globo H (1 and 2) is a TACA overexpressed on a variety of
tumor cells but scarcely found on healthy tissue.52 The Globo H-
PS A1 (3) construct is a continuing effort in our research group
aimed at generating TACA-specic adaptive immunity and by-
passing immunological challenges with protein carriers.
Globo H (1 and 2) is a hexasaccharide glycan with a ceramide
lipid attached at the reducing end and it is anchored endoge-
nously on the outer membrane of tumor cells.53 A murine anti-
Globo H mAb MBr1 was developed, identied Globo H as
a biomarker for human breast cancer54 and subsequent
Fig. 1 (a) TACA-PS A1 glycoconjugate strategy; (b) chemical structure
of native Globo H (1); (c) chemical structure of aminooxy Globo H (2);
(d) Globo H-PS A1 conjugate (3).

This journal is © The Royal Society of Chemistry 2020
immunohistology studies revealed that abnormally high levels
of Globo H were detected on various tumor specimens,
including small-cell lung, prostate, pancreas, gastric, and
ovarian cancers.55–57 In clinical practice, overexpression of
Globo H is correlated to a poor prognosis of cancer patients.58,59

One possible reason is the binding of Globo H to translin-
associated factor X (TRAX) promotes angiogenesis, which is
a key factor for the rapid progression of cancer.60 Globo H has
therefore become one of the most attractive carbohydrate-based
targets for cancer vaccine development.61–63 Previous epitope
mapping studies of the anti-Globo H mAb MBr1 indicated that
the terminal tetrasaccharide (residue CDEF) is the minimal
antigenic structure for Globo H recognition;64,65 the structural
rigidity is crucial for MBr1 binding.66,67 The pursuit of higher Ag
epitope specicity encouraged us to develop a chemically well-
dened immunogenic glycoconjugate that carries Globo H
hexasaccharide glycan with the specic aim of generating
highly specic Abs that can bind to Globo H antigens on tumor
cells. Our previous studies of TACA-PS A1 conjugates have
driven our interests to synthesize the important aminooxy
Globo H (2) motif, which when conjugated to oxidized PS A1,
renders a semisynthetic Globo H-PS A1 (3) construct. Further-
more, we have carefully designed immunological evaluation
studies of Globo H-PS A1 as a vaccine candidate in combatting
breast and ovarian cancers.

Results and discussion
Chemical synthesis of aminooxy-Globo H antigen

The hexasaccharide structure of Globo-H antigen (Fuca(1/2)
Galb(1/3)GalNAcb(1/3)Gala(1/4)Galb(1/4)Glcb(1)) has
garnered a substantial amount of interest from the synthetic
community over the years. The rst chemical synthesis of
Globo-H was reported in 1995 where a convergent [3 + 3]
strategy was employed.68 To date, several other synthetic routes
and strategies have been developed, even for analogs, which
have led to improved overall yields, large scale production and
improved stereoselectivity.69 For example, linear pre-activation
one-pot strategy,70 two-directional strategy,71 solid-phase
synthesis72 and chemo-enzymatic synthesis73 have all rendered
Globo H for further biological analysis.

Based on literature precedents, we designed a strategy for
aminooxy Globo H (2) as illustrated in Scheme 1. The [3 + 3] (5
(DEF) + 6 (ABC)) glycosylation, as one of the most critical steps
in constructing the glycosidic skeleton, would be accom-
plished using the trichloroacetimidate Schmidt strategy and
give rise to fully protected hexasaccharide 4. The trisaccharide
donor 5 and acceptor 6, were chosen because of their ease of
preparation. Building block 10 (AB) would incorporate an O-
succinimidyl group at the reducing end to later reveal an
aminooxy group that would allow for the formation of the
stable conjugate via an oxime link. The involvement of an O-
succinimidyl group plays a key role for the successful imple-
mentation of this strategy because the O-succinimidyl can
withstand the requisite strong acidic conditions of the [3 + 3]
and AB + C glycosylation as noted from our previous work.49–51

In the later stages of synthesis, the O-succinimidyl can be
Chem. Sci., 2020, 11, 13052–13059 | 13053
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Scheme 1 Retrosynthetic analysis of aminooxy Globo H (2).

Scheme 2 Synthesis of aminooxy Globo H (2). (a) NIS, TMSOTf,
CH2Cl2, 4 Å molecular sieves,�30 �C, 30min, 73%; (b) NaOMe/MeOH,
40 �C, 12 h, 81%; (c) 9, NIS, TMSOTf, CH2Cl2/Et2O (1 : 1), 4 Å molecular
sieves, �30 �C, 30 min, 70% (a anomer), a : b ¼ 20 : 1; (d) (1) 1,3-
propanedithiol, Et3N, CH2Cl2/MeOH (1 : 1), reflux 12 h; (2) TrocCl,
NaHCO3, THF, 3 h (92% over two steps); (e) (1) CAN, CH3CN/H2O
(4 : 1), rt, 3 h; (2) TCA, DBU, CH2Cl2, 0 �C, 1 h, (92% over two steps); (f)
NIS, TMSOTf, CH2Cl2/Et2O (4 : 1), 4 Å molecular sieves, 0 �C, 1 h, 66%
(a only); (g) PdCl2, CH2Cl2 : MeOH (4 : 1), 3 h, rt, 86%; (h) TMSOTf,
CH2Cl2, 4 Å molecular sieves, �30 �C, 45 min, 39% (b only); (i) Zn,
THF : AcOH : Ac2O (3 : 2 : 1), 0 �C to rt; (j) 10% Pd/C, H2, MeOH, rt, 3 h;
(k) NH2NH2$H2O, H2O/MeOH (1 : 1), rt, 12 h (57% over three steps).
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selectively removed by simple treatment with hydrazine
hydrate in the form of a Gabriel reaction.

Therefore, our synthesis commenced with preparing trisac-
charide donor 5 using monosaccharide intermediates 7,74 8,75

and 971,76 (Scheme 1). They were assembled in a linear sequence
given rise to trisaccharide 13 (Scheme 2). The synthesis of
trisaccharide 5 was quite concise and efficient, requiring only
ve transformations starting from the coupling of acceptor 7
and donor 8. Therefore, the glycosylation of D and E was
accomplished under a NIS/TMSOTf promoter system and the
designed 20-OAc group was set in place to exert a neighboring
group participation effect that ensured exclusive formation of
the b-anomer. When subjected to Zemplén deacetylation
conditions, disaccharide 12 was afforded with a single hydroxyl
group at the C20 position. The DEF trisaccharide 13 was then
prepared by selective fucosylation using fucosyl donor 9 under
the same NIS/TMSOTf activation conditions mentioned previ-
ously in 70% yield with an a : b ratio of 20 : 1. The choice of
solvents, for the fucosylation, can affect the stereoselective
outcome of the reaction; use of dichloromethane (DCM) gave us
only a 1 : 1 mixture of a/b anomers, however, use of a DCM/
diethyl ether (1 : 1, v/v) mixed solvent system dramatically
improved the a selectivity and subsequent yield. The a selec-
tivity was conrmed by examining the coupling constant of the
fucosyl anomeric proton (J ¼ 3.8 Hz at d ¼ 5.68). One reason for
the high selectivity of this reaction might be due to diethyl ether
exhibiting a stabilization effect on the oxocarbenium ion in
such a way where the b-face is hindered and nucleophilic attack
13054 | Chem. Sci., 2020, 11, 13052–13059
on the a-face is favorable.77–82 With the trisaccharide in hand,
the C20 azido group was converted to a primary amine in the
presence of 1,3-propanedithiol and subsequently capped with
a Troc protecting group giving rise to 13. The Troc group was
chosen to act as a directing moiety for neighboring group
participation in anticipation for the 1,3 glycosylation. The p-
methoxyphenyl (PMP) group at the reducing end of 13 was then
selectively removed by oxidation with ceric ammonium nitrate
(CAN) to yield a hemiacetal intermediate, which was subse-
quently converted to the Schmidt trichloroacetimidate donor 5
(Scheme S3†) in preparation for the convergent [3 + 3]
coupling.83,84

One of the major hurdles in our synthetic efforts was to
produce the ABC acceptor 6 (Scheme 2). This trisaccharide
This journal is © The Royal Society of Chemistry 2020
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Fig. 2 Determining IgG/IgM antibody titers induced by Globo H-PS A1
+ SAS (red), Globo H-PS A1 + TMG (blue) and Globo H-PS A1 (green).
The error bars represent standard deviation (SD) of two triplicate tests.
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component can be retro-synthetically analyzed from a lactose
building block 10 containing the desired O-succinimidyl group
and a hydroxyl at the C40 position reacting with building block
11 (C). Therefore, building blocks 1085 and 1186were synthesized
as per literature protocols. The glycosyl acceptor 10 and donor
11 were assembled using NIS/TMSOTf activation to afford the
desired trisaccharide 14 in quantitative a-selectivity and in 66%
yield. The formation of an a(1/4) glycosidic bond was
conrmed by the anomeric proton coupling constant (J¼ 3.2 Hz
d ¼ 5.04). The allyl ether in compound 14 was then readily
removed with palladium(II) chloride to furnish the desired
trisaccharide acceptor 6. With trisaccharide moieties 5 and 6 in
hand, we focused our synthetic efforts toward the decisive [3 + 3]
glycosylation (Scheme 2). Schmidt donor 5 was mixed with
acceptor 6 in the presence of TMSOTf, which, led to the
formation of the anticipated hexasaccharide 4 in exclusive b-
selectivity in �40% yield. Global deprotection of 4 commenced
with in situ N-Troc deprotection/acetylation utilizing activated
zinc in a mixture of THF : AcOH : Ac2O (v/v/v ¼ 3 : 2 : 1) to
remove the N-Troc group and concomitantly introduce the N-
acetyl group.87 The remaining benzyl and benzylidene groups
were then removed with palladium catalyzed hydrogenolysis at
room temperature.88 Upon the completion of hydrogenolysis,
the resulting residue was directly subjected to a Gabriel-type
hydrazine hydrate reaction for the removal of the succinimide
giving rise to the aminooxy motif51 (Scheme S4†) in 57% over
three steps. Fully deprotected and puried aminooxy Globo-H
(2) was obtained aer conducting a size exclusion column
quickly followed by lyophilization. The overall calculated yield
of 2 was 7.8% starting from intermediate 7 and achieved in
a combined 11 steps. By implementing this synthetic route,
within a relative short period of time, a sufficient amount of
fully protected hexasaccharide 4 can be readily prepared and
provide Globo H analogs and other probes for furthering
various preclinical studies.

Preparation of Globo H-PS A1 conjugate through oxime bond

Toward the goal of evaluating our Globo H-PS A1 concept, we
conjugated compound 2 to “carrier” polysaccharide PS A1
giving rise to an entirely carbohydrate construct 3 as our
immunogen. The rst step of the conjugation protocol involved
a sodium periodate mediated selective vicinal diol oxidation of
Scheme 3 Preparation of Globo H-PS A1 (3) immunogen from PS A1 and
1.5 h; (b) 2, 0.1 M NaOAc buffer pH ¼ 5.0, rt, 18 h.

This journal is © The Royal Society of Chemistry 2020
naturally isolated PS A1 giving an aldehyde functional handle
(Scheme 3). The aldehyde was in turn reacted with aminooxy 2
under amild acidic sodium acetate buffer (pH¼ 5.0) to form the
oxime bond and yield Globo H-PS A1 (3). Puried 3 was ob-
tained by ltration through a 10 kDa molecular weight cutoff
centrifugal concentrator and the puried product was lyophi-
lized rendering a white porous solid.50,51,84 Globo H-PS A1 was
characterized using 1H NMR spectrum at 60 �C. The indicative
signals were inclusive of an oxime moiety (d ¼ 7.46–7.47,
doublet), an N-acetyl peak (d ¼ 2.32), and the presence of the
fucosyl C50 methyl (d ¼ 1.49–1.50, doublet). The relative ratio of
Globo H : PS A1 was determined to be 1 : 2.75 based on the
integration of the fucosyl C50 methyl and PS A1 methyl peaks,
which gave us an approximate 40 Globo Hmolecules to every PS
A1 molecule used.
Immunological evaluation: Ab response against Globo H-PS
A1 conjugate

The immunological evaluation of Globo H-PS A1 (3)
commenced with the immunization of Jax C57BL/6 mice. As
shown in Fig. 2, the production and specicity of anti-Globo H
aminooxy Globo H (2). (a) NaIO4, 0.1 M NaOAc buffer pH¼ 5.0, dark, rt,

Chem. Sci., 2020, 11, 13052–13059 | 13055
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Fig. 3 FACS analysis of IgG binding against Globo H positive tumor
cells, (a) MCF-7 and (b) OVCAR-5.
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antibodies was determined by serological assays. One formu-
lation consisted of Globo H-PS A1 plus Sigma Adjuvant System®
(SAS). SAS can prime the system for Ab production and partic-
ularly aides in a robust IgG response that was observed in our
studies.89 Another group of mice was concomitantly vaccinated
with Globo H-PS A1 plus TiterMax® Gold (TMG) and showed
a moderate level of Ab production. A control group of mice, with
no administered adjuvant, gave an immune response albeit at
lower levels of Ab production against Globo H given the same
incubation period in the mouse. Based on the serological assay
results, the IgG/IgM ratio suggests that immunoglobulin iso-
type switching occurred during the trials and demonstrates that
T cells play a role in generating anti-Globo H antibodies.90–93

The serological assays also revealed an interesting nding in
that the anti-serum had rather high titers of anti-Gb3 antibodies
(Fig. S1†). Since Gb3 is a biosynthetic precursor of Globo H,94,95

it is plausible that Globo Hmight exhibit cross reactivity toward
Gb3. Additionally, in the antigen presenting cells, the depoly-
merization of Globo H-PS A1 might possibly trigger the release
of a large amount of reactive oxygen species (ROS)96 potentially
leading to fragmented Globo H as Gb3-like glycans.

The presence of the Fuca(1/2)Gal glycosidic bond and L-
fucose in Globo H-PS A1 are possible conventions for generating
undesirable cross reactivity against blood group A (BGA) and
blood group B (BGB) antigens. Anti-serum from Globo-H-PS A1
vaccinations were screened for binding to BGA and BGB anti-
gens at 1 : 200 dilution (Fig. S2†). It was observed that anti-sera
from Globo H-PS A1 (both SAS and TMG groups) showed
negligible IgG/IgM binding to either BGA or BGB. This result
suggests that vaccination using the Globo H-PS A1 construct
would be unlikely to cause cytotoxicity towards red blood cells.
The cross-reactivity test results clearly suggested the specicity
of antigenic epitope recognition of the raised Ab was indeed
achieved.
Antibody binding to the Globo H positive cancer cell surface

Fluorescence-activated cell sorting (FACS) was then utilized to
study the immunological potential of Globo H-PS A1 as
a vaccine designed to target the Globo H antigens on human
tumor cell membranes (Fig. 3). Human breast cancer cell line
MCF-7 and ovarian cancer cell line OVCAR-5 are known to
overexpress Globo H on their surface.2 The anti-sera from Globo
H-PS A1 plus SAS/TMG groups were selected for the IgG surface
binding experiments. Cancer cell lines treated with anti-PS A1
serum were used as serological controls, and cells treated
exclusively with secondary FITC-labeled anti-IgG were used as
Ab isotype controls. The FACS study indicated both anti-sera
(Globo H-PS A1 + SAS and Globo H-PS A1 + TMG) exhibited
very strong binding to MCF-7 and OVCAR-5 lines. For the anti-
serum obtained from Globo H-PS A1 + TMG group, 84% and
83% positive shis were observed on MCF-7 and OVCAR-5
respectively. The Globo H-PS A1 + SAS group showed 94%
positive for MCF-7, as well as 81% positive for the OVACR-5 cell
lines.

Production of highly specic anti-Globo H IgGs as noted
from the FACS results in combination with serological assays.
13056 | Chem. Sci., 2020, 11, 13052–13059
These data, when combined, offer critical evidence for isotype
switching and T cell dependent immune responses. There is
a distinct difference of Ab titers between Globo H-PS A1 + SAS
group and Globo H-PS A1 + TMG group, however the cancer cell
surface reactivity of anti-Globo H IgGs that was raised from both
formulations compare favorably to each other. This interesting
titer observation, to a large extent, is most likely because of
different adjuvants; the monophosphoryl lipid A is the active
component of SAS and has been proven to act as an agonist for
TLR-4 as well as an efficient immunostimulant. On the other
hand, TMG, which is noted to be a benign adjuvant and efficient
on the delivery of biomacromolecules, is less toxic and less
potent compared to SAS. The difference on the Ab titers only
reects the potency difference of these two adjuvants.89,97 More
importantly both adjuvants can assist the Globo H-PS A1
immunogen to induce adaptive immunity and generate high
affinity IgGs; studies were done in C57BL/6 mice.
Antibody-mediated complement-dependent cytotoxicity
(CDC)

The antibodies raised from Globo H-PS A1 + SAS group immu-
nizations exhibited strong binding to the naturally occurring
Globo H. As a result, anti-sera obtained from this group was
selected for further testing using a complement dependent
cytotoxicity (CDC) assay.98,99 Antibody-mediated cytolysis is of
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Lysis of Globo H positive cancer cells through antibody
mediated complement-dependent cytotoxicity (CDC). The cytotox-
icity was determined using an LDH assay. Data shown are mean values
of two parallel triplicate tests, where *P < 0.05 and **P < 0.1 were
obtained using a Student's t-test. The error bars represent standard
deviation (SD) of two triplicate tests.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
O

ct
ob

er
 2

02
0.

 D
ow

nl
oa

de
d 

on
 7

/2
9/

20
25

 5
:5

5:
06

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
great signicance when determining the potential therapeutic
value of Globo H-PS A1 conjugate and CDC was measured
against cancer cell lines MCF-7 and OVCAR-5 as well as non-
tumorigenic cell line MCF-10A as the control. The substance
control was setup with the exclusive treatment of rabbit
complement. The percent of cell lysis was determined by
a lactate dehydrogenase (LDH) assay (Roche Applied Science)
without further optimization (Fig. 4). LDH assay results revealed
there was signicant cytotoxicity against MCF-7 and OVCAR-5
cells upon the treatment with anti-sera Globo H-PS A1 + SAS.
For MCF-7, a reasonably good CDC effect was observed with
a 47% net cell lysis rate in comparision with the control,
whereas for OVCAR-5 only a moderate CDC effect was found
with a 24% net cell lysis rate recorded. There was no statistically
signicant cytotoxicity observed with MCF-10A cells due to the
absence of surface Globo H antigens. Collectively, it was noted
that anti-Globo-H-PS A1 sera exhibited good to moderate cyto-
toxicity against human breast and ovarian tumor cell lines and
no cytotoxicity to the normal cell line was observed.

Conclusions

Herein, we have described the chemical synthesis of aminooxy
Globo H (2), the preparation of Globo H-PS A1 conjugate (3) and
the corresponding immunological evaluation as a potential
cancer vaccine candidate. A convergent [3 + 3] synthetic strategy
was developed for 2, which started from building block 7 and
took 12 steps to obtain 2 in an overall 7.8% yield. The aminooxy
glycan 2was conjugated to oxidized PS A1 with an oxime linkage
to afford Globo H-PS A1 (3). The formulations of Globo H-PS A1
+ SAS and Globo H-PS A1 + TMG were able to induce high
affinity anti-Globo H antibodies when C57BL/6 mice were
immunized as indicated by ELISA. FACS studies further
conrmed binding events with Globo H expressing MCF-7 and
This journal is © The Royal Society of Chemistry 2020
OVCAR-5 cancer cell lines. The combined results of ELISA and
FACS demonstrated excellent specicity and delity of anti-
bodies raised against the Globo H-PS A1 immunogen using SAS
or TMG as the adjuvant for targeting the native Globo H antigen
even when BGA and BGB glycans were used in the study.
Additionally, an in vitro LDH assay indicated that anti-Globo H
antibodies were able to generate complement-dependent cyto-
toxicity and lead to tumor cell lysis, meanwhile showing negli-
gible toxicity toward normal cells. The test results from the
mentioned experiments suggest the efficacy and potential of
Globo H-PS A1 as cancer vaccine candidate. Further studies are
currently underway to investigate tumor challenge mouse
models and the immunological mechanisms behind it.
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