Coligand role in the NHC nickel catalyzed C–F bond activation: investigations on the insertion of bis(NHC) nickel into the C–F bond of hexafluorobenzene†

Maximilian W. Kuntze-Fechner, a Hendrik Verplancke, b, D Lukas Tendera, a Martin Diefenbach, b Ivo Krummenacher, a,c Holger Braunschweig, a,c Todd B. Marder, a,b Max C. Holthausen a,c and Udo Radius a,c,b,*

The reaction of [Ni(Mes2Im)2] (1) (Mes2Im = 1,3-dimesityl-imidazolin-2-ylidene) with polyfluorinated arenes as well as mechanistic investigations concerning the insertion of 1 and [Ni(iPr2Im)2] (1ipr) (iPr2Im = 1,3-diisopropyl-imidazolin-2-ylidene) into the C–F bond of C6F6 is reported. The reaction of 1 with different fluoroaromatics leads to formation of the nickel fluoroaryl fluoride complexes trans-[Ni(Mes2Im)2(F)(ArF)] (ArF = 4-CF3-C6F4 2, C6F6 3, 2,3,5,6-C4F4N 4, 2,3,5,6-C4F4H 5 2,3,5-C6F2H3 6, 3,5-C6F2H7 7) in fair to good yields with the exception of the formation of the pentafluorophenyl complex 3 (less than 20%). Radical species and other diamagnetic side products were detected for the reaction of 1 with C6F6, in line with a radical pathway for the C–F bond activation step using 1. The difluoride complex trans-[Ni(Mes2Im)2(F)2] (9), the bis(aryl) complex trans-[Ni(Mes2Im)2(C6F4ArF)] (15), the structurally characterized nickel(l) complex trans-[Ni(Mes2Im)2(C6F6)] (11) and the metal radical trans-[Ni(Mes2Im)2(F)] (12) were identified. Complex 11, and related [Ni(Mes2Im)2(2,3,5,6-C4F4H)3] (13) and [Ni(Mes2Im)2(2,3,5-C6F2H3)3] (14), were synthesized independently by reaction of trans-[Ni(Mes2Im)2(F)(ArF)] with PhSiH3. Simple electron transfer from 1 to C6F6 was excluded, as the redox potentials of the reaction partners do not match and [Ni(Mes2Im)2]+, which was prepared independently, was not detected. DFT calculations were performed on the insertion of [Ni(iPr2Im)2] (1ipr) and [Ni(Mes2Im)2] (1) into the C–F bond of C6F6. For 1ipr, concerted and NHC-assisted pathways were identified as having the lowest kinetic barriers, whereas for 1, a radical mechanism with fluoride abstraction and an NHC-assisted pathway are both associated with almost the same kinetic barrier.

Introduction

Fluorinated organic compounds have exceptional properties that are being exploited in many applications including materials, pharmaceuticals and agrochemicals. The development of methods to introduce fluorinated aromatic building blocks selectively into organic molecules is thus of fundamental interest in many areas of chemical research. One strategy for such transformations is the selective activation and subsequent functionalization of C–F bonds of readily available fluoroorganic compounds such as fluoroaromatics. The challenge here is the selective cleavage of very stable C–F bonds. We have recently established a protocol for the transformation of commercially available fluoroaromatics via a selective C–F defluoroborylation process to obtain polyfluorinated aryboronic esters, which may be further used in late stage functionalization, for example in Suzuki–Miyaura cross-coupling reactions. Defluoroborylation of polyfluoroaromatics can be achieved by a thermal [Ni(Mes2Im)]-catalyzed (Mes2Im = 1,3-dimesityl-imidazolin-2-ylidene) transformation of polyfluoroboronic acid pinacol esters into fluoroaryl boronic acid pinacol esters via C–F bond activation and transmetalation with bis(pinacolato) diboron (B2pin2) as the boron source (see Scheme 1). Various arenes with different degrees of fluorination were converted into their corresponding boronate esters in this way. One particularly interesting finding of our study was that activation of the C–F bond by the nickel(0) complex is fast at ambient temperature. This step yields the oxidative addition product...
trans-[Ni(Mes2Im)2(F)(ArF)] (ArF = fluoroaryl), which represents the resting state in the catalytic cycle. The subsequent defluoroborylation step with Bpin₂ is the rate determining step and requires elevated temperatures. A boryl complex trans-[Ni(Mes2Im)2(Bpin)(ArF)], a likely intermediate, was never observed and stoichiometric reactions of trans-[Ni(Mes2Im)2(F)(ArF)] with Bpin₂ led directly to the formation of Ar²F-Bpin. This finding implied that reductive elimination is very fast and that [Ni(Mes2Im)(Bpin)(ArF)], once formed, will eliminate Ar²F-Bpin immediately (Scheme 1).²⁵

As an alternative to the thermally-induced C–F bond activation and subsequent borylation of fluoroarenes, we have recently developed a process that employs visible-light photocatalysis, which has emerged as a powerful tool in organic synthesis.⁶ Our highly selective and general photocatalytic C–F borylation protocol⁷ employs a rhodium biphenyl complex ⁷ as a triplet sensitizer combined with the nickel catalyst [Ni(Mes₂Im)₂](1) for the C–F bond activation step and the defluoroborylation process. This Rh/Ni tandem catalyst system operates with visible light (400 nm) and achieves the highly selective borylation of a wide range of polyfluoroarenes with Bpin₂ at room temperature in excellent yields. Both procedures, the thermal and photochemical defluoroborylation, work well for partially fluorinated aromatics but fail, or afford only low yields, for perfluoroaromatics such as hexafluorobenzene or octafluorotoluene.

Utilizing the dinuclear complex [Ni₂(Pr₂Im)₂(h⁻³:η⁻³:η⁻³-COD)] ([Pr₂Im = 1,3-diisopropyl-imidazol-2-ylidene] or the ethylene complex [Ni(Pr₂Im)₂(η⁻²-C₅H₆)] as sources of [Ni(Pr₂Im)₂]¹⁴⁻, we previously found that both readily undergo C–F bond insertion with a wide variety of per- and polyfluoroaromatics on a time scale suitable for catalysis (exemplarily shown for C₆F₆ in Scheme 2).²⁵,k,k⁶,k⁸-k¹⁰, Mechanistic investigations of the insertion process were performed using the ethylene complex [Ni(Pr₂Im)₂(η⁻³-C₅H₆)] as nickel precursor. Ethylene exchange at the [Ni(Pr₂Im)₂(η⁻²-C₅H₆)] complex with hexafluorobenzene and octafluoronaphthalene occurs at low temperatures (−80 °C and −30 °C, respectively; Scheme 2). Subsequent insertion reactions occur at higher temperatures (0 °C and 20 °C, respectively) to form the trans-[Ni(Pr₂Im)₂(F)(C₆F₅)] and trans-[Ni(Pr₂Im)₂(F)(C₁₀F₇)] fluoroaryl fluoride complexes.⁹ We studied the C–F bond activation kinetics and, based on the decay rates of the octafluoronaphthalene complex [Ni(Pr₂Im)₂(η⁻³-C₁₀F₈)] determined by variable-temperature NMR spectroscopy, we derived an activation enthalpy of ΔH° = 19.4 ± 1.9 kcal mol⁻¹ (ΔS° = 14.8 ± 6.0 cal K⁻¹ mol⁻¹).

We report herein the reactivity of 1 with polyfluorinated arenes. We compare the results with those of earlier studies on C–F bond activation processes using nickel complexes with sterically less demanding NHCS, employing Pr instead of Mes substituents, i.e., using [Ni(Pr₂Im)₂]¹⁴⁻ as the nickel source. We demonstrate that the complex of the small NHC ligand Pr₂Im favors a concerted oxidative addition proceeding through an η⁻²(C,C) intermediate in reactions with fluoroarenes to yield trans-[Ni(Pr₂Im)₂(F)(Ar²F)] complexes, whereas the complex of the larger Mes₂Im ligand leads to fluoride abstraction to yield [Ni(Pr₂Im)₂(F)] and a phenyl radical. For both mechanisms, competitive NHC-assisted pathways are found which account for the formation of diamagnetic products by a C–F bond activation step across the Ni–C₅H₅ bond. These NHC-assisted pathways play an important role for complexes of both sterically demanding and less bulky NHC ligands, and should thus be of general importance and widely applicable for the reactivity of NHC-stabilized transition metal complexes.

Results and discussion

C–F bond activation of fluoroaromatics

To gain insight into the C–F bond activation process using [Ni(Mes₂Im)₂](1), we first investigated stoichiometric reactions of perfluorotoluene, perfluorobenzene, perfluoropyridine and the partially fluorinated arenes pentafluorobenzene, 1,2,3,5-tetrafluorobenzene and 1,3,5-trifluorobenzene with 1 (see Scheme 3). We monitored the reactions by ¹H and ¹⁹F{¹H} NMR spectroscopy and observed a significant effect of the degree of fluorination on both reaction rate and yield. Reactions of 1 with hexafluorobenzene and octafluorotoluene proceed within seconds at room temperature, whereas the reactions with tetra- and pentafluorobenzene take minutes to complete. With 1,3,5-trifluorobenzene, full conversion of 1 takes weeks at room temperature (see ESI, Fig. S1†), but can be accelerated at 80 °C in thf to reach completion after 5 days.

These reactions can be performed in thf, toluene or hexane at room temperature and lead, in each case, to the insertion of the nickel complex into the C–F bond of the fluoroarene to form the nickel fluoroaryl fluoride complexes trans-[Ni(Mes₂Im)₂(F)(Ar²F)] [Ar²F = 4-CF₅-C₆F₆ 2, C₆F₅ 3, 2,3,5,6-C₆F₅N 4, 2,3,5,6-C₆F₄H 5, 2,3,5-6-C₆F₆H₂ 6, 3,5-C₆F₆H₂ 7] in fair to good isolated yields. Notably, however, the reaction with C₆F₅ yields less than 20% of the pentafluorophenyl complex 3. Higher temperature, different solvents (thf, toluene, hexane) or added [NMe₃]F does
The reactions of \([\text{Ni(MeSe}_{2}\text{Im})_{2}]\) (1) with (a) octafluorotoluene, (b) hexafluorobenzene, (c) perfluoropyridine, (d) pentfluorobenzene, (e) 1,2,3,5,6-pentafluorobenzene and (f) 1,3,5-trifluorobenzene to give the complexes trans-[\text{Ni(MeSe}_{2}\text{Im})_{2}(\text{F})(\text{ArF})] (2), trans-[\text{Ni(MeSe}_{2}\text{Im})_{2}(\text{F})(\text{C}_{6}\text{F}_{5})] (3), trans-[\text{Ni(MeSe}_{2}\text{Im})_{2}(\text{F})(2,3,5,6-\text{C}_{5}\text{F}_{4}\text{Ni})] (4), trans-[\text{Ni(MeSe}_{2}\text{Im})_{2}(\text{F})(2,3,5,6-\text{C}_{6}\text{F}_{4}\text{H})] (5), trans-[\text{Ni(MeSe}_{2}\text{Im})_{2}(\text{F})(2,3,5-\text{C}_{6}\text{F}_{3}\text{H}_{2})] (6) and trans-[\text{Ni(MeSe}_{2}\text{Im})_{2}(\text{F})(3,5-\text{C}_{6}\text{F}_{3}\text{H}_{2})] (7), respectively. Isolated yields are given.

As the low yield of trans-[\text{Ni(MeSe}_{2}\text{Im})_{2}(\text{F})(\text{C}_{6}\text{F}_{5})] (3) is in sharp contrast with the results we obtained previously for the reaction of \([\text{Ni}_{2}(\text{iPr}_{2}\text{Im})_{4}(\mu-(\eta^{2}:\eta^{2})-\text{COD})]\) or \([\text{Ni}(\text{iPr}_{2}\text{Im})_{2}(\eta^{2}-\text{C}_{2}\text{H}_{4})]\) with \(\text{C}_{6}\text{F}_{6}\), we decided to take a closer look at the corresponding reaction using \([\text{Ni(MeSe}_{2}\text{Im})_{2}]\) (1). Performing the stoichiometric reaction of 1 with \(\text{C}_{6}\text{F}_{6}\) in an NMR tube in \(\text{C}_{6}\text{D}_{6}\) led to an immediate color change from dark-violet to orange, an increase in the degree of fluorination of the aryl ligand, an increase of the Ni–F resonance.

Crystals of 3, 4, and 5 suitable for X-ray diffraction were obtained from saturated solutions of these compounds either in pentane or hexane at \(-30^\circ\text{C}\) (Fig. 1, Table 1; see also ESI Fig. S34–S36 and Table S2†). The crystal structure of 6 was published previously. All complexes of the type trans-[\text{Ni(MeSe}_{2}\text{Im})_{2}(\text{F})(\text{ArF})] (ArF = \(\text{C}_{6}\text{F}_{5}\)) 3, 2,3,5,6-\text{C}_{5}\text{F}_{4}\text{N} 4, 2,3,5,6-\text{C}_{6}\text{F}_{5}\text{H} 5, 2,3,5-\text{C}_{6}\text{F}_{3}\text{H}_{2} 6) adopt a square planar structure with a trans arrangement of the NHC ligands. An increasing degree of fluorination of the aryl ligand leads to a slight shortening of the Ni–F bond lengths (Ni–F: 6: 1.874(2) Å, 5: 1.856(2) Å, 4: 1.859(2) Å, 3: 1.844(2) Å), while the distances of the nickel center to the aryl fluorobenzene become gradually longer (Ni–C: 6: 1.854(5) Å, 5: 1.896(3) Å, 4: 1.883(3) Å, 3: 1.944(5) Å). We assume that both the Ni–F bond lengths with increasing degree of aryl fluorination are indications of stronger Ni–F bonding.
broadening for the N-alkyl groups of the related complex trans-
$\text{[Ni(PPr$_3$)$_2$(C_6F$_5$)]}^{2+}$ which arose due to hindered rotation of the NHC ligand about the Ni–C axis, all resonances observed for the reaction of 1 with C$_6$F$_6$ are involved in the broadening. This led to the assumption that radical species are involved in the process. Subsequent EPR experiments were performed at $-203 \, ^\circ\text{C}$ for the reaction of 1 with C$_6$F$_6$ which confirmed the presence of metal-centered radicals in the mixture.

For EPR spectroscopic investigations, 1 and C$_6$F$_6$ were combined in an EPR tube with thf at $-78 \, ^\circ\text{C}$ and the sample was frozen immediately in liquid nitrogen. The EPR tube containing the frozen reaction mixture was transferred to the cooled EPR cavity at $203 \, ^\circ\text{C}$ and a spectrum was recorded.10 The resulting EPR spectrum displays a superposition of resonances of three different products, of which I and II represent the two dominant species (Fig. 2, I: 40%, II: 50%, III: 10%).

Cyclic voltammetry results exclude a simple electron transfer from 1 to C$_6$F$_6$ as the origin of radical generation in the reaction mixture (see ESI, Fig. S6†), as 1 shows a reversible oxidation/reduction associated with a redox potential of $2.03 \, \text{V}$ for the redox-couple Ni0/Ni1, and an irreversible oxidation at $0.14 \, \text{V}$ for the redox-couple Ni1/Ni2. Although the reduction of C$_6$F$_6$ at $2.87 \, \text{V}$ is irreversible, we exclude simple one electron transfer because of the large separation of 0.84 V.

For further scrutiny, complex 1 was oxidized by adding ferrocenium tetrafluoroborate in thf at room temperature to a suspension of 1 in thf. A few min after addition of the ferrocenium salt the metal-centered radical ([Ni(Mes$_2$Im)$_2$][BF$_4$] (8) precipitated as an off-white solid (83% isolated yield, Scheme 4), which is only sparingly soluble in common organic solvents. The Ni1 complex 8 was characterized by 11B(1H) and 19F(1H) NMR spectroscopy in acetonitrile (decomposition occurs after

Table 1 Crystallographic data for compounds 1, 3, 4, 5, 6, 8, 9, 11, 13, 14, [Ni(6-Mes)$_2$][Br]11a and [Ni(PPr$_3$)$_2$(C$_6$F$_5$)]$^{2+}$

<table>
<thead>
<tr>
<th></th>
<th>d Ni–C1/C2</th>
<th>d Ni–C3(ArF)</th>
<th>d Ni–F</th>
<th>\angle C1–Ni–C2</th>
<th>\angle NHC(C1) : NHC(C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ni(Mes$_2$Im)$_2$] 1</td>
<td>1.827(6)</td>
<td>—</td>
<td>—</td>
<td>176.4</td>
<td>53.0</td>
</tr>
<tr>
<td>3</td>
<td>1.923(3)</td>
<td>C3: 1.882(7)</td>
<td>1.844(2)</td>
<td>175.6(1)</td>
<td>37.07(2)</td>
</tr>
<tr>
<td>4</td>
<td>1.923(3)</td>
<td>C3': 1.944(5)</td>
<td></td>
<td>174.3(1)</td>
<td>36.01(2)</td>
</tr>
<tr>
<td>5</td>
<td>1.921(2)</td>
<td>1.896(3)</td>
<td>1.856(2)</td>
<td>176.4(1)</td>
<td>33.81(1)</td>
</tr>
<tr>
<td>6</td>
<td>1.912(3)</td>
<td>1.854(5)</td>
<td>1.874(2)</td>
<td>176.7(1)</td>
<td>31.65(2)</td>
</tr>
<tr>
<td>8</td>
<td>1.904(3)</td>
<td>—</td>
<td>—</td>
<td>174.5(1)</td>
<td>57.99(1)</td>
</tr>
<tr>
<td>9</td>
<td>1.903(3)</td>
<td>—</td>
<td>F1: 1.845(2)</td>
<td>175.8(1)</td>
<td>53.34(1)</td>
</tr>
<tr>
<td>11</td>
<td>1.923(2)</td>
<td>—</td>
<td>F2: 1.823(2)</td>
<td>159.8(8)</td>
<td>82.37(1)</td>
</tr>
<tr>
<td>13</td>
<td>1.930(2)</td>
<td>1.987(3)</td>
<td>—</td>
<td>159.7(3)</td>
<td>82.11(1)</td>
</tr>
<tr>
<td>14</td>
<td>1.918(1)</td>
<td>C3: 1.869(1)</td>
<td>—</td>
<td>159.5(3)</td>
<td>82.46(8)</td>
</tr>
<tr>
<td></td>
<td>1.917(1)</td>
<td>C3': 2.046(1)</td>
<td></td>
<td>179.3(1)</td>
<td>57.99(1)</td>
</tr>
<tr>
<td>[Ni(6-Mes)$_2$][Br]</td>
<td>1.939(3)</td>
<td>—</td>
<td>—</td>
<td>159.5(3)</td>
<td>82.46(8)</td>
</tr>
<tr>
<td>[Ni(PPr$_3$)$_2$(C$_6$F$_5$)]</td>
<td>1.941(3)</td>
<td>—</td>
<td>—</td>
<td>159.5(3)</td>
<td>82.46(8)</td>
</tr>
<tr>
<td></td>
<td>P1: 2.243(5)</td>
<td>1.973(2)</td>
<td>—</td>
<td>P1–Ni–P2</td>
<td>145.2(2)</td>
</tr>
</tbody>
</table>

Fig. 2 EPR spectrum ($-203 \, ^\circ\text{C}$) of the reaction mixture of 1 with C$_6$F$_6$ after 5 s at $-78 \, ^\circ\text{C}$ in thf.
some time) and IR spectroscopy, elemental analysis and high-resolution mass spectroscopy. The 11B(1H) and 19F(1H) NMR spectra revealed an intact counter anion [BF$_4$]$^-$ (see ESI, Fig. S64†). Crystals of 8 suitable for X-ray diffraction (Fig. 3, Table 1; see also ESI, Table S2 and Fig. S37†) were obtained by slow evaporation of a saturated solution of 8 in a 1:1 toluene/ethanol mixture under an argon atmosphere at room temperature. The X-ray crystal structure reveals a nearly linear alignment of the NHC ligands with slightly elongated Ni–C distances compared to those of the starting material 1.

![Fig. 3 Molecular structure of [Ni(Mes$_2$Im)$_2$][BF$_4$] (8) in the solid state (ellipsoids drawn at the 50% probability level). Hydrogens atoms are omitted for clarity.](image)

The results of the EPR spectroscopic investigations10 performed on solid-state samples of [Ni(Mes$_2$Im)$_2$][BF$_4$] (8) are shown in Fig. 4. The general insolubility of 8 precluded determination of its magnetic moment by the Evans method. The spectrum reveals two sets of signals, i.e., 8a ($g_{xx} = 2.02$, $g_{yy} = 2.47$, $g_{zz} = 2.62$; 70%) and 8b ($g_{xx} = 1.98$, $g_{yy} = 2.06$, $g_{zz} = 2.13$; 30%), both in line with nickel-centered radicals. Note that in previous studies of two other homoleptic two-coordinate cationic d5-nickel(i) complexes, [Ni(6-Mes)$_2$][Br] (6-Mes = 1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene) and [Ni(P3Bu$_3$)$_2$][Al(OC(CF$_3$)$_3$)$_4$], no EPR signals were observed.11 To obtain further insight, we performed density functional theory (DFT) calculations on the molecular geometries, electronic structures and EPR parameters (g tensors) of a variety of potential candidates for 8 (PBE0-D/pcSseg-2, see the ESI for details†).12

The DFT-optimized, D_2-symmetric geometry of the [Ni(Mes$_2$Im)$_2$]$^+$ radical cation of 8 agrees very well with the X-ray structure (Fig. 5; e.g., $d_{Ni-C} = 1.89$ Å, exp: 1.894(3) Å). In the 2A electronic ground state, the spin density is localized at the metal center, with the unpaired electron residing in an s/d$_z$-type orbital (Fig. 5a).

The calculated g values for the radical cation [Ni(Mes$_2$Im)$_2$]$^+$ ($g_{xx} = 2.01$, $g_{yy} = 2.65$, $g_{zz} = 2.98$), computed under gas-phase conditions, strongly differ from the experimental data with a maximum deviation of 0.36 (8a) and 0.85 (8b; see Table 2 and ESI, Table S3†). However, computations in the presence of the counter ion result in further structural motifs with impact on

![Fig. 4 EPR spectrum of 8 in the solid state at –203 °C with NBu$_4$Br.](image)

![Fig. 5 (a) Spin density plot for [Ni(Mes$_2$Im)$_2$]$^+$; (b) molecular structure of 8DFT showing Ni–F$_{BF_4}^-$ contacts (isovalue ± 0.0075 a$_0$^{-3}; lengths of Ni–F contacts in Å; hydrogen atoms not shown.](image)
the computed tensors (see ESI, Fig. S7†). A Ni–F contact with the counter ion in 8_{DFT} (Table 2, entry 4, Fig. 5b) results in tensor components closely corresponding to those of $8a$ (maximum deviation: 0.03), while no species matching the EPR parameters of $8b$ were identified in our computational exploration. However, none of the EPR signatures detected for the electrochemically-formed complex 8 appeared during the reaction of 1 with C6F6 (Fig. 2) and, in light of our CV results, it is unlikely that the [Ni(Mes2Im)2]+ cation is involved here.

We then focused on identifying the byproducts of the reaction of 1 with C6F6. Stoichiometric reaction of 1 with C6F6 in THF overnight at room temperature led to a very small amount of a dark-green precipitate which was removed by filtration. After removal of all volatiles from the filtrate, the residue was washed with a large amount of hexane to extract the C–F bond activation product. The yellow residue, which remained after washing, was identified as the difluoride complex trans-[Ni(Mes2Im)2(F)2] (9) by elemental analysis, X-ray diffraction and 1^H, 19^F($^1^H$) and 13^C($^1^H$) NMR spectroscopy (see ESI†). Most significantly, the fluoride resonance, detected as a singlet at -560 ppm in the 19^F($^1^H$) NMR spectrum, is shifted ca. 200 ppm to higher field compared to those of the mono-fluoride complexes 2–7 (-333 ppm to -362 ppm, vide supra). A similar high-field shifted fluoride resonance was also observed for the phosphine-stabilized platinum complex [Pt(PPh3)2(F)2] (-455.9 ppm) compared to

Table 2 Experimental and DFT calculated g tensors for species 8

<table>
<thead>
<tr>
<th>Compound</th>
<th>g tensor components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g_{xx}</td>
</tr>
<tr>
<td>$8a$ Exp. (solid state)</td>
<td>2.02</td>
</tr>
<tr>
<td>$8b$ Exp. (solid state)</td>
<td>1.98</td>
</tr>
<tr>
<td>[Ni(Mes2Im)2]$^+$ (gas phase)</td>
<td>2.65</td>
</tr>
<tr>
<td>8_{DFT}</td>
<td>2.03</td>
</tr>
</tbody>
</table>

* DFT-optimized structure with Ni–FBF_4 contacts.

Fig. 6 Molecular structure of trans-[Ni(Mes2Im)2(F)2] (9) in the solid state (ellipsoids drawn at the 50% probability level). Hydrogens atoms are omitted for clarity.

Scheme 5 Synthesis of [Ni(Mes2Im)2(I)2] (10) and [Ni(Mes2Im)2(F)2] (9).

Fig. 7 Molecular structure of trans-[Ni(Mes2Im)2(C6F5)] (11) (top) in the solid state (ellipsoids drawn at the 50% probability level) and EPR spectrum at -203 °C of the isolated compound 11 (bottom). Hydrogens atoms are omitted for clarity.
iodide ligand, and was detected at 176.5 ppm (cf. \([\text{Ni(Mes}_2\text{Im})_2\text{F}_2] \) (9): 174.6 ppm).

Thus, \([\text{Ni(Mes}_2\text{Im})_2\text{F}_2]\) (9) was clearly identified as one of the side products of the reaction of 1 with \(\text{C}_6\text{F}_6\). This complex is formed in low yield (1%) but in an amount similar to that of the insertion product \(\text{trans-[Ni(Mes}_2\text{Im})_2\text{F}(\text{C}_6\text{F}_5)]}\) (3). The amounts of complexes 9 and 3 total ca. 40% when the reaction of 1 with \(\text{C}_6\text{F}_6\) is performed at room temperature, and thus the majority of the products formed in this reaction is still unaccounted for.

Storing the concentrated hexane mother liquor of the extract from the isolation of 9 (vide supra) for 3 days at \(-30^\circ\text{C}\) led to crystallization of the remaining C–F bond insertion product \(\text{trans-[Ni(Mes}_2\text{Im})_2\text{F}(\text{C}_6\text{F}_5)]}\) (3) and a novel nickel(i) complex \(\text{trans-[Ni}^\text{i}(\text{Mes}_2\text{Im})_2\text{C}_6\text{F}_5)]\) (11) as yellow (3) and orange (11) crystals, respectively, which were manually separated in a glovebox (see ESI, Fig. S8†). The paramagnetic compound 11 was characterized by elemental analysis, EPR spectroscopy and X-ray diffraction. Determination of the room-temperature magnetic moment of 11 in solution (Evans method) gave a \(\mu_{\text{eff}}\) value of 1.80 \(\mu_\text{B}\), which is consistent with the presence of one unpaired electron. The molecular structure (Fig. 7, top, Table 1; see also ESI, Table S2 and Fig. S39†) and the EPR spectrum (Fig. 7, bottom) of 11 confirm that this complex is a three-coordinate nickel(i) radical. Simulation of the EPR spectrum of 11 gave a \(g\) tensor of \(g_{xx} = 2.04, g_{yy} = 2.16\) and \(g_{zz} = 2.31\), which was also observed in the EPR spectrum of the crude reaction mixture of 1 and \(\text{C}_6\text{F}_6\) (Fig. 2). With the experimentally obtained \(g\) tensors and the molecular structure of the radical species 11 in hand, we carried out computational studies of the electronic properties of complex 11 and a likely radical counterpart from the reaction of 1 and \(\text{C}_6\text{F}_6\), \([\text{Ni}^\text{i}(\text{Mes}_2\text{Im})_2\text{C}_6\text{F}_5)]\) (12) (Fig. 8). Both complexes 11 and 12 would be the result of a one-electron oxidative addition reaction of two equiv. of 1 with one equiv. \(\text{C}_6\text{F}_6\) (Scheme 6).

Molecular geometries, electronic structures and EPR parameters (\(g\) tensors) were thus calculated for the metal radicals \(\text{trans-[Ni}^\text{i}(\text{Mes}_2\text{Im})_2\text{C}_6\text{F}_5)]\) (11) and \(\text{trans-[Ni}^\text{i}(\text{Mes}_2\text{Im})_2\text{F}]\) (12) (Fig. 8) in order to connect the experimentally observed EPR spectra from the reaction mixture of 1 and \(\text{C}_6\text{F}_6\) (Fig. 2), the EPR spectra of the isolated compound 11, and the corresponding isotropic \(g\) tensor components with the assigned structure of 11 (Fig. 7).

According to DFT calculations, complexes 11 and 12 are \(\text{C}_2\) symmetric doublet ground state species. The spin density is located at the metal center and the unpaired electron resides in an s/d\(_z^2\)-type orbital, yielding \(2A\) electronic ground states (Fig. 8). Calculated and experimental \(g\) tensor components are in good agreement for species 11, with a maximum difference of 0.03 in \(g_{zz}\). With the largest deviation being 0.08 for 12, the agreement is still reasonable (Table 3).

To provide further evidence for the existence of \(\text{trans-[Ni}^\text{i}(\text{Mes}_2\text{Im})_2\text{C}_6\text{F}_5)]\) (11) and \(\text{trans-[Ni}^\text{i}(\text{Mes}_2\text{Im})_2\text{F}]\) (12), we attempted to synthesize these complexes independently. The

![Fig. 8](image-url)
Fig. 8 Spin density plots for \(\text{trans-[Ni}^\text{i}(\text{Mes}_2\text{Im})_2\text{C}_6\text{F}_5)]\) (11) (top) and \(\text{trans-[Ni}^\text{i}(\text{Mes}_2\text{Im})_2\text{F}]\) (12) (bottom) (isovalue 0.0075 \(a_0^{-3}\), hydrogen atoms are omitted for clarity).

Table 3 Comparison of experimental and calculated \(g\) tensors for species 11 and 12

<table>
<thead>
<tr>
<th>Compound</th>
<th>DFT/Exp(^a)</th>
<th>(g_{xx})</th>
<th>(g_{yy})</th>
<th>(g_{zz})</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Exp. (isol.)(^f)</td>
<td>2.04</td>
<td>2.16</td>
<td>2.31</td>
</tr>
<tr>
<td></td>
<td>Exp. (react. mix.)(^e)</td>
<td>2.04</td>
<td>2.17</td>
<td>2.32</td>
</tr>
<tr>
<td></td>
<td>DFT</td>
<td>2.06</td>
<td>2.17</td>
<td>2.29</td>
</tr>
<tr>
<td>12</td>
<td>Exp. (react. mix.)(^e)</td>
<td>1.93</td>
<td>2.46</td>
<td>2.64</td>
</tr>
<tr>
<td></td>
<td>DFT</td>
<td>2.01</td>
<td>2.42</td>
<td>2.57</td>
</tr>
</tbody>
</table>

\(^a\) The experimental \(g\)-tensor components are reorganized in ascending order from \(g_{xx}\) to \(g_{zz}\).
\(^b\) EPR parameter have been calculated using DFT. The calculated values are rounded to match the number of digits of the experimental values.
\(^c\) Exp. (isol.); see Fig. 7 (bottom).
\(^d\) Exp. (react. mix.); see Fig. 2 I and II (I corresponds to compound 12; II corresponds to compound 11).
reaction of [Ni(Mes2Im)2][BF4] (8) with CsF led to a mixture of two complexes, which we were not able to separate. One of them was identified via 19F{1H} NMR spectroscopy as trans-[Ni(Mes2Im)2(F)2] (9) (19F{1H} NMR resonance at −560 ppm), and the resulting mixture reveals an EPR resonance with g tensors (gxx = 2.05, gyy = 2.42, gzz = 2.61) which are close to the g-tensors calculated for trans-[Ni(Mes2Im)2(F)] (12). We are thus confident that the second metal radical obtained in the reaction mixture is the monofluoride complex trans-[NiI(Mes2Im)2(F)] (12).

The complex trans-[Ni(Mes2Im)2(C6F5)] (11) as well as related trans-[Ni(Mes2Im)2(2,3,5-C6F3H)] (13) and trans-[Ni(Mes2Im)2(2,3,5-C6F3H2)] (14) can be synthesized from the reaction of [Ni(Mes2Im)2]2[F][ArF]3 (ArF = C6F5, 2,3,5,6-C6F4H5, 2,3,5-C6F3H6) with PhSiH3 (Scheme 7, see also ESI Fig. S9 and S10†).

The metal radicals were characterized by elemental analysis, IR and EPR spectroscopy as well as single-crystal X-ray diffraction. All compounds are stable in the solid state as well as in solution for several days. If the reactions are performed in an NMR tube and followed by 1H and 19F{1H} NMR spectroscopy (see ESI; Fig. S9 and S10†), the resonances for the Mes2Im, pentafluorophenyl and fluoride ligands vanish, indicating the formation of a paramagnetic species. For complexes of the type trans-[Ni(NHC)2(H)ArF], we expect hydride resonances in the region of ca. −13 ppm in the 1H NMR spectrum,9,10 and a strong absorption in the IR spectrum in the region between 1600 and 2200 cm−117 (we expect the Ni−H stretch to be at ca. 1850 cm−1 based on DFT calculations). However, such signals were absent for 11, 13 and 14. Thus, although complexes of the type trans-[Ni(Mes2Im)2(ArF)] cannot easily be distinguished from the corresponding hydride complexes trans-[Ni(Mes2Im)2(H)ArF] by X-ray diffraction (see below), we are confident that 11, 13 and 14 are the metal radicals. Crystals of trans-[Ni(Mes2Im)2(C6F5)] (11), trans-[Ni(Mes2Im)2(2,3,5-C6F3H)] (13) and trans-[Ni(Mes2Im)2(2,3,5-C6F3H2)] (14) suitable for X-ray diffraction (Fig. 9, Table 1; see also ESI Table S2 and Fig. S39–S41†) were obtained by storing saturated solutions of these compounds either in pentane or hexane at −30 °C. Complexes 11–13 adopt a distorted T-shaped structure, in which the NHC ligands occupy mutually trans positions. Due to the absence of the fluoride ligand, 11, 13 and 14 exhibit shortened Ni−C distances to the fluoroaryl ligand and reduced C1–Ni–C2 angles compared to nickel(n) complexes 3, 4, 5 and 6, which is also a further indication of the absence of a metal hydride. The data is in line with the data observed for [NiI(PiPr3)2(C6F5)] reported by Johnson and co-workers previously (Table 1, see also ESI Table S2†).18 EPR spectra of compounds 11, 13 and 14 were recorded in frozen thf solutions and reveal similar g tensors for the complexes, which are in good agreement with the calculated parameters (see ESI, Fig. S11–S13 and Table S4†).

Thus, the reaction of 1 with C6F6 affords the insertion product trans-[Ni(Mes2Im)2(F)2(C6F5)] (3) in approximately 20% isolated yield, the difluoride complex trans-[Ni(Mes2Im)2(F2)] (9) in approximately 17% isolated yield, the three-coordinate nickel(i) metal radicals trans-[Ni(Mes2Im)2(C6F5)] (11) (isolated yield: 10%), trans-[Ni(Mes2Im)2(F)] (12) (not isolated), and a small amount of a decomposition product, i.e., a dark green precipitate which was not characterized. Trans-[Ni(Mes2Im)2(·F)] (12) was not isolated; it was only observed in the EPR spectra after 5 s at −78 °C, and the signals vanish after about 10 s during the course of the reaction. Further investigation of the hexane mother liquor of the reaction of 1 and C6F6 revealed that the bis(aryl) nickel(n) complex [Ni(Mes2Im)2(C6F5)] (15) remains in solution and was identified in the reaction mixture by 19F{1H} NMR spectroscopy. The radical species 11 and 12 were identified by EPR spectroscopy in a frozen thf solution at −78 °C (Fig. 2). The diamagnetic products trans-[Ni(Mes2-Im)2(F)2(C6F5)] (3), trans-[Ni(Mes2Im)2(F2)] (9), and trans-[Ni(Mes2Im)2(C6F5)] (15) were identified by NMR spectroscopy (see Fig. S14 of the ESI†).

To expand our study to less fluorinated systems, we reacted 1 with pentafluorobenzene. After 48 h at room temperature, the 19F{1H} and 19F NMR spectra recorded in C6D6 reveal the formation of the C−F bond activation product trans-[Ni(Mes2-Im)2(F)2(C6F4H)] (5), the nickel difluoride complex [Ni(Mes2-Im)2(F2)] (9), and the corresponding bis(aryl) nickel(n) complex...
[Ni(Mes₂Im)₂(C₆F₄H)₂] (see ESI, Fig. S15†). Furthermore, an EPR spectrum of the frozen reaction mixture of 1 with pentafluorobenzene in THF recorded after 5 s at −78 °C (see ESI, Fig. S16†) revealed resonances for three different products, one of which is in accordance with trans-[Ni(µ²-η⁻⁴-η⁻¹)₂(C₂H₄)] (12) and another has the same g tensor as observed for isolated [Ni(Mes₂Im)₂(C₆F₄H)] (13). Thus, the reaction of 1 with C₆F₆ also follows a radical reaction mechanism akin to the reaction of 1 with C₆F₆ below.

Mechanistic investigations

Experimental investigations and DFT studies reported previously for the reaction of [Ni(PR₃)₄(C₆F₆)] and [Ni(PR₃)₄(η⁻²-η⁻¹-C₅H₅)], used as source of [Ni(PR₃)₄] (14), with C₆F₆ suggested a concerted mechanism for the insertion of 1PR to the C−F bond, and no indications for radical reactivity were obtained. As presented above, however, paramagnetic complexes clearly emerge in the reaction of 1 with C₆F₆. To obtain further insight, we performed a quantum-chemical investigation (COSMO(THF)-PBE0-D/def2-TZVP, for details see ESI†) on the reaction pathways of C₆F₆ with [Ni(Mes₂Im)] (1) and with the sterically less encumbered [Ni(PR₃)₄] (14).

C−F bond activation in the latter reaction commences with the formation of a rather stable 16-electron η² adduct between 1PR and C₆F₆ (II, Scheme 8; see ESI, Fig. S17†). The DFT-optimized geometry of II is in good agreement with the structure of the closely related complex [Ni(PR₃)₄(η⁻²-C₅H₅)] (14). Three distinct reaction pathways are then possible. First, direct oxidative addition of the C−F bond to the nickel atom proceeds through TS1 to yield the trans product 3PR with an effective activation barrier of ΔG° = 23 kcal mol⁻¹ relative to II (see ESI, Fig. S18†). Alternative formation of the corresponding cis- [Ni(µ²-PR₃)₂(F)(C₆F₅)] (12) and subsequent isomerization is kinetically disfavored (ΔG° = 27 kcal mol⁻¹, see ESI Fig. S19 and S20†), as is dissociation of an NHC ligand (ΔG° = 28 kcal mol⁻¹, see Fig. S32†).

Second, NHC ligand cooperativity (see ESI; Fig. S21 and S23†) opens a kinetically competitive pathway to the trans-product 3PR, that is, addition of the C−F bond across the Ni−NHC bond through TS2 to yield intermediate 13, in which coordination of the fluorinated NHC−F ligand to the nickel atom involves a bridging C−N bond formation. In TS2, the Caryl−F bond of 1.93 Å is strongly elongated compared to C₆F₆ (Caryl−F bond: 1.32 Å) and TS1 (Caryl−F bond: 1.77 Å), while NHC−F bond formation is hardly visible (C/F distance: 2.40 Å). From 13, fluoride migration onto the nickel ion (TS3, with a low barrier of ΔG° = 15 kcal mol⁻¹) leads to 3PR with an overall barrier of ΔG° = 24 kcal mol⁻¹. Third, homolytic C−F bond cleavage involves an effective barrier of ΔG° = 31 kcal mol⁻¹ (TS4) and, hence, radical abstraction is kinetically disfavored here (see ESI, Fig. S22†).

C−F bond activation with the sterically more congested Mes−NHC complex I shows marked differences. Formation of the η²-C₆F₆ adduct 15 (see ESI, Fig. S24†) is now endergonic by 12 kcal mol⁻¹, and consecutive oxidative C−F bond addition via TS5 (ΔG° = 21 kcal mol⁻¹, see ESI; Fig. S25†) leads to the cis-product 16. We attribute the endergonicity of the η²-C₆F₆ adduct formation (15, ΔΔG° = 28 kcal mol⁻¹ compared to the exergonic formation of 11) mainly to the increased steric demand of the mesityl groups. A trajectory to the trans-product is precluded by the steric demand of the mesityl substituents. NHC dissociation to yield [Ni(Mes₂Im)](η⁻⁶-C₆F₆) and subsequent insertion into the C−F bond is associated with a large barrier (ΔG° = 34 kcal mol⁻¹, see ESI; Fig. S32 and S33†) and is

![Scheme 8](Image)

Scheme 8 Calculated pathways for the C−F bond activation of C₆F₆ with 1PR (ΔG° in kcal mol⁻¹).
irrelevant here. Note that an alternative adduct formation stabilized by π-stacking interactions between C_6F_6 and one of the NHC mesityl substituents, such as I7 (see ESI; Fig. S26†), is also endergonic and less favorable than 15. Furthermore, a “concerted” NHC-assisted process as in the iPr system does not exist. We found a multi-step sequence for the mesityl system instead (Scheme 9 and ESI; Fig. S27†), commencing with heterolytic C–F bond cleavage in 15, which exhibits a partially reduced C_6F_6 fragment ($q_{NPA}(C_6F_6) = -0.69$). The fluoride anion expelled from the nickel coordination sphere is loosely held within the cleft formed by the mesityl substituents in 18. A similar stabilizing association of a fluoride anion by the methyl...
groups of mesyl substituents has been reported by Macgregor et al. for the C–F bond activation step in hydrodefluorination reactions.⁹ Formation of the trans-product 3 from here involves binding to the carbene carbon atom and subsequent F-shift onto the Ni center. The overall path involves a low effective barrier of 16 kcal mol⁻¹ (TS6).

Fluorine radical abstraction to yield C₆F₆ and radical complex 12 via TS9 is slightly endergonic and exhibits a barrier of 16 kcal mol⁻¹ (Scheme 10 and ESI, Fig. S26 and S28†). Recombination of C₆F₆ and 12 to 3 then provides a large thermodynamic driving force. Alternative addition of C₆F₆ to the initial complex 1 to yield radical species 11 is also a highly exergonic process (−69.5 kcal mol⁻¹), as well as addition of a second equivalent of C₆F₆ to yield 15 (−108.0 kcal mol⁻¹).

Endergonic formation of difluorocarbene complex 9 from 12 and another equiv. of C₆F₆ can be compensated by consumption of C₆F₆; however, a second fluorine abstraction step is prevented by the high kinetic barrier of 37 kcal mol⁻¹ via TS10 (see ESI; Fig. S29†). The mechanism for the formation of 9 remains obscure to us thus far. We compute the ligand exchange reaction 3 + 3 → 9 + 15 to be exceedingly endergonic (25.7 kcal mol⁻¹), and also the disproportionation reactions of radicals 11 and 12 yielding 1 + 15 (31.0 kcal mol⁻¹) or 1 + 9, (14.9 kcal mol⁻¹), are unlikely to contribute to the formation of 9 (see ESI, Fig. S30†). A dinuclear complex [Ni(Mes₂Im)₂]₂[µ-((−1⁻¹⁻�
A phosphine-assisted process has been proposed before for the C–F bond activation of pentafluoropyridine with [Ni(PR3)2], based on the experimental observation of an unusual selectivity for the insertion into the 2-position of C6F5 and on DFT calculations. However, another study performed on the reaction of pentafluoropyridine with [Ni(PET3)2] suggested that pathways other than a concerted oxidative addition or a phosphine-assisted pathway account for the unusual selectivity. The detailed experimental analysis of the reactivity of a [Ni(PEt3)2] precursor with pentafluoropyridine demonstrated the formation of a mononuclear adduct [Ni(PEt3)2][μ-η2-η2-C6F5N], of dinuclear adducts [Ni(PEt3)2]μ-η2-η2-C6F5N, some of which exhibit C–F bond activation, and a nickel(i) radical species [Ni(PEt3)2(2-CF3N)]. Other heteroatom-assisted C–F bond activation processes have also been proposed for other metals mainly including boryl or silyl moieties.

Despite precedent in the oxidative addition of other aryl carbon–halide bonds to nickel, there is only little experimental evidence for the involvement of radicals in C–F bond activation processes. It is known that some polyfluoropyridines react with [Ni(PR3)2] to yield EPR-active complexes as likely intermediates, and some studies on C–F bond activation have shown unusual products with highly-fluorinated arenes that may be indicative of radical pathways. However, the clear identification of radical intermediates has not been possible so far and alternative mechanisms cannot be ruled out. Although DFT calculations were performed to examine the traditional concerted oxidative addition and phosphine-assisted pathways for C–F bond activation, radical pathways involving Ni(i) intermediates were rarely considered computationally.

Thus, the reaction of 1 with different fluoroarenes leads to nickel insertion into the C–F bond to give the nickel fluoroaryl fluoride complexes trans-[Ni(Mes2Im)2][F](ArF), but EPR spectroscopy also provided evidence that at least three paramagnetic species are intermediates or products of the reaction of C6F6 with 1. We provide evidence that simple electron transfer from [Ni(Mes2Im)2][F] to C6F6 occurs in the first step in radical oxidative additions at nickel, unlikely to occur. The redox potentials are not in line with intermolecular electron transfer to yield [Ni(Mes2Im)2][BF4] and C6F6 and the EPR resonance of [Ni(Mes2Im)2][BF4], which has been established for the authentic complex [Ni(Mes2Im)2][BF4]8, was not detected in the reaction mixture. Furthermore, many diamagnetic and radical products of the reaction of [Ni(Mes2Im)2]1 to C6F6 were identified, namely the insertion product trans-[Ni(Mes2Im)2][F][C6F6][3], the difluoro complex trans-[Ni(Mes2Im)2][F2]3, the bis(aryl) complex trans-[Ni2(HMes2Im)2][C6F6]15, the nickel(i) complex trans-[Ni3(HMes2Im)2][C6F6]11, and the metal-centered radical trans-[Ni3(HMes2Im)2][F]12. DFT calculations performed on the reaction of [Ni(Mes2Im)2][F]1 with C6F6 explain the occurrence of the radical species observed. Both an NHC-assisted and a radical process are kinetically equally favored routes for this reaction. Fluorine radical abstraction from C6F6 by 1 is associated with a barrier of only 16 kcal mol\(^{-1}\) and subsequent radical recombination steps provide the thermodynamic driving force required.

Matsubara et al. and Louie et al. reported the clean isolation of T-shaped three-coordinate radical species [Ni2(NHC)2][X] (X = Cl, Br, I; NHC = Mes2Im, Dippe2Im) from the reaction of [Ni(NHC)2] with aryl halides. We have demonstrated earlier that [Ni3(PrIm)2][μ-(η2-η2-COD)], a source of [Ni3(PrIm)2][η9], reacts cleanly with aryl chlorides to yield the nickel(u) complexes trans-[Ni(NHC)2][Cl][Ar]. Our calculations show now that a trajectory to the trans-product by a concerted oxidative addition is precluded for [Ni(Mes2Im)2]1 (1) and most probably also for [Ni(Dipp2Im)2] by the steric demand of the mesityl substituents. As a consequence, other pathways such as electron transfer and radical abstraction must occur which are responsible for a limited or altered reactivity of complex [Ni(Mes2Im)2][F]1 and analogues containing even more bulky N-aryl substituents compared to complexes of sterically less demanding NHCs. However, fluoride abstraction occurs for the reaction of 1 and C6F6 even at −78 °C to yield trans-[Ni1(Mes2-Im)2][C6F6]11 and trans-[Ni1(Mes2Im)2][F]12. The latter is, in contrast to the complexes of the heavier homologues, very reactive and has defined thus far isolation. In turn, the complexes trans-[Ni1(Mes2Im)2][C6F6]11, [Ni1(Mes2Im)2][2,3,5,6-C6F4H]12 and [Ni1(Mes2Im)2][2,3,5-C6F3H2]13 seem to be much more stable than [Ni1(NHC)2][C6H6] and have been synthesized and characterized. The increased stability of [Ni1(Mes2-Im)2][2,3,5,6-C6F4H]12 can be explained by the increased Ni-C6F6 bond strength of the fluoroaryl ligand with respect to C6F6.

Nelson and Maseras reported computational investigations of the reaction of [Ni(NHC)2] complexes with aryl halides Ph-X (X = Cl, Br, I) and demonstrated that steric effects determine the mechanism. Small NHC ligands (NHC = Mes2Im) favor concerted oxidative addition via a η2(C,C) π-coordinated intermediate leading to trans-[Ni2(NHC)2][X][Ar] complexes whereas larger NHC ligands (e.g. NHC = Mes2Im) lead to halide abstraction to form [Ni2[NHC][X]] and a phenyl radical. We confirm here, by means of experiment and theory, that [Ni(NHC)2] complexes of sterically less demanding NHCs favor the reaction with fluoroarenes via a concerted oxidative addition proceeding through an η1(C,C) intermediate, and that for the bulkier NHC Mes2Im, C–F bond activation is achieved more easily by fluorine atom abstraction. However, for both mechanisms, we found an NHC-assisted pathway which is competitive, that accounts for the formation of diamagnetic products by a C–F bond activation step across the Ni-CNHC bond. NHC-assisted pathways play an important role for complexes of both sterically demanding and less bulky NHC ligand. We believe that this dual reaction pathway concept, including NHC-assisted reaction pathways, should be of general importance and widely applicable for the reactivity of NHC transition metal complexes.

Conclusions

We present herein a detailed account of the C–F bond activation of polyfluoroaromatics, especially of C6F6 using the nickel(0) complex [Ni(Mes2Im)2][F]. The reaction of 1 with different fluoroarenes leads to insertion of nickel into the C–F bond of the
fluoroarene to give the nickel(ii) complexes trans-[Ni(Mes₂Im)_2](F)[ArF] (16) (ArF = 4-CF₃-C₆F₄, 2,3,3,5,6-C₆F₄N 4, 2,3,5,6-C₆F₄H 5, 2,3,5-C₆F₅H₂ 6, 3,5-C₆F₅H₂ 7) in good to fair yields with the exception of the formation of the pentafluorophenyl complex trans-[Ni(Mes₂Im)_2](F)[C₆F₅] (3) (less than 20%). Whereas the C–F bond activation process of C₆F₆ using [Ni(Pr₂Im)₂] (19) follows a concerted or NHC-assisted mechanism to give the insertion product via η²-coordinated intermediates, metal radical species were detected for the reaction of 1 with C₆F₆. EPR spectroscopy provided evidence that at least three paramagnetic products are intermediates or products of this reaction. The experiments reveal that simple electron transfer from [Ni(Mes₂Im)₂] (1) to C₆F₆ is unlikely to occur as (i) the redox potentials do not match for an electron transfer between [Ni(Mes₂Im)₂] (1) and C₆F₆ to give [Ni(Mes₂Im)₂]²⁻ and C₆F₆⁻, and (ii) the EPR resonance for [Ni(Mes₂Im)₂]²⁻ as established for the stable, isolated complex [Ni(Mes₂Im)₂][BF₄] (8), was not detected in the reaction mixture. Several other byproducts were identified aside from the insertion product, namely the difluoride complex trans-[Ni(Mes₂Im)_2](F)_2 (9), the bis(aryl) complex trans-[Ni(Ph₂Im)₃](C₆F₅) (15), the structurally-characterized nickel(i) complex trans-[Ni(Mes₂Im)₂(C₆F₅)] (11) and the metal radical trans-[Ni(Ph₂Im)₃](F) (12). Complex 11 and related complexes [Ni(Mes₂Im)_2][2,3,5,6-C₆F₄H₂] (13) and [Ni(Mes₂Im)_2][2,3,5-C₆F₅H₂] (14) were synthesized and characterized independently from the reaction of trans-[Ni(Mes₂Im)_2](F)[ArF] with PhSiH₃.

DFT calculations were performed on the insertion of [Ni(Pr₂Im)₂] (19) and [Ni(Mes₂Im)₂] (1) into the C–F bond of C₆F₆, which explain the formation of radical species for the reaction with [Ni(Mes₂Im)₂] (1). For [Ni(Pr₂Im)₂] (19), the crucial reaction intermediate is an η¹(C,C)-bonded complex [Ni(Pr₂Im)₂(η²-C₆F₆)] from which two favorable pathways with almost identical barriers, i.e., a concerted oxidative addition pathway and a NHC-assisted pathway, lead to the formation of trans-[Ni(Pr₂Im)₂](F)[C₆F₅] (1). For [Ni(Mes₂Im)₂] (1), an NHC-assisted and a radical pathway were identified with similar kinetic barriers. Fluorine atom abstraction from C₆F₆ at [Ni(Mes₂Im)₂] (1) occurs via end-on attack of C₆F₆, while the key intermediate for the NHC-assisted pathway is the η¹(C,C) intermediate [Ni(Mes₂Im)₂(η²-C₆F₆)]. The NHC-assisted pathway can be interpreted as heterolytic C–F bond cleavage to yield ionic intermediates trans-[Ni(Mes₂Im)_2](C₆F₅)]⁺ F⁻, in which the fluorido anion is stabilized within the sphere of the trans-[Ni(Mes₂Im)_2](C₆F₅)]⁺ cation. Several fluoride transfer steps, i.e., migration to the NHC, NHC rotation, and fluoride transfer to the metal cation lead to the formation of trans-[Ni(Mes₂Im)_2](F)[C₆F₅] (3).

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

U. R., H. B. and T. B. M. thank the Julius-Maximilians-Universität Würzburg and U. R. the Deutsche Forschungsgemeinschaft (Ra720/12) for support. Quantum-chemical calculations were performed at the Center for Scientific Computing (CSC) Frankfurt on the Goethe-HLR computer cluster.

References

11 Chemical Science

12 Molecular structures of the radical species discussed in this section were obtained at the RI-PBE-D/def2-SVP/W06 level of DFT. The PBE0-D functional and the pcSseg-2 basis set, which is specifically optimized for the calculation of magnetic properties, were employed to obtain EPR parameters (PBE0-D/pcSseg-2).

17 Optimized molecular structures and thermal/vibrational contributions to Gibbs free energies were obtained at the PBE0-D/def2-SVP level of DFT. The def2-TZVP basis set and the COSMO-SOLVO model were employed to obtain improved relative energies (COSMO(THF)-PBE0-D/def2-TZVP).

