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ammett-equation: reaction
barriers in chemical space†

Marco Bragato, a Guido Falk von Rudorff a and O. Anatole von Lilienfeld *ab

It is intriguing how the Hammett equation enables control of chemical reactivity throughout chemical

space by separating the effect of substituents from chemical process variables, such as reaction

mechanism, solvent, or temperature. We generalize Hammett's original approach to predict potential

energies of activation in non aromatic molecular scaffolds with multiple substituents. We use global

regression to optimize Hammett parameters r and s in two experimental datasets (rate constants for

benzylbromides reacting with thiols and ammonium salt decomposition), as well as in a synthetic dataset

consisting of computational activation energies of �2400 SN2 reactions, with various nucleophiles and

leaving groups (–H, –F, –Cl, –Br) and functional groups (–H, –NO2, –CN, –NH3, –CH3). Individual

substituents contribute additively to molecular s with a unique regression term, which quantifies the

inductive effect. The position dependence of substituents can be modeled by a distance decaying factor

for SN2. Use of the Hammett equation as a base-line model for D-machine learning models of the

activation energy in chemical space results in substantially improved learning curves reaching low

prediction errors for small training sets.
1 Introduction

Chemical reactions are difficult to study and model from
a theoretical point of view. In 1935, Hammett proposed
a quantitative model for free energy differences in benzyl
derivatives1,2 that assumes that the substituent and reaction
effects can be separated by a product ansatz:

log

�
K

K0

�
xrs (1)

Here, K is either the equilibrium or rate constant for
a substituted reactant, K0 refers to the unsubstituted reactant, r
is a constant that depends only on the reaction, taking into
account also conditions such as temperature and solvent and s

depends only on the type of substituent and its position on the
molecule.

This model is compelling since it gives an intuitive concept
of electron donating and electron withdrawing effects3–6 in the
context of free energy differences. The model quickly became
quite successful and has been applied to problems ranging
from its original purpose, quantifying substituent effects,3 to
redox potentials,7 dipole moments,8 orbital energies of
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metallorganic complexes,9 aromaticity,10–21 ion stabilization,22

mechanicistic investigation,23,24 catalyst activity of nano-
particles,25 proton–electron coupling in radicals,26 molecular
conductance,27 excited singlet state,28 and even toxicities.29More
recent approaches have also tried to apply the models to non-
benzyl systems.9,30–32 It is, however, less satisfying because the
linear relationship postulated by Hammett lacks a motivation
based on physical effects. Early attempts to explain the theory by
electrostatic considerations33,34 were successful for special cases
only. Nevertheless, Hammett's model has demonstrated
remarkable predictive power and accuracy for many cases given
the model's simplicity.3 Over time the equation has been
expanded to also encompass, solvent effect,35–38 resonance and
eld effect,39 steric effects,40–43 nucleophilicity44 and oxidation
potential.45 These models trade off transferability for accuracy;
for this reason, in the majority of applications, the original
equation is the one being used.

Hammett's model assumes that substituent effects can
indeed be separated from other contributions and are perfectly
transferable between environments by virtue of changing r only,
leaving s unchanged. In some sense, Hammett's model there-
fore captures the part of reality that is directly transferable
across chemical environments. Since this assumption is of
approximate nature, it is hard to assign unambiguous values of
s to functional groups, as they oen lack transferability, such
that the reference reaction and compound becomes of utmost
importance.46 Similarly, r has shown to be hardly transferable
and even exhibit an inconsistent temperature dependence.3
Chem. Sci., 2020, 11, 11859–11868 | 11859
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Interestingly, Hammett parameters can be inferred from
experiments: either by OH vibrational frequencies related to the
electron density at the point of bonding,47 by assessing NMR
shis48–51 or quadrupole resonance,52,53 by relation to electron
binding energies,54,55 IR spectroscopy,56 electrochemical polari-
zation,57 or charge transfer.58 Extensive comparison to experi-
ment however, uncovered special cases in which Hammett's
model struggles to adequately model reality, partially leading to
the introduction of several s values for the same functional
group to be used in different molecular environments.59 Some
limitations subsequently could be surpassed by extending the
model, e.g. to include concentration dependence.60

From a computational perspective, atomic charges were
quickly found to correlate with s values for a given functional
group,61–63 so the few available experimental data points that
otherwise would be tedious to extend could be used to calibrate
a linear regression while the functional groups were quickly
screened by simple charge tting methods or electron density
self-similarity measures.64 Still, the resulting s values lack
transferability65 and computational studies were not successful
for reactions involving excited states.66 More recently, energy
decomposition approaches have been evaluated,67 connecting
to the idea of electrostatic contributions as a dominating
contribution to the validity of Hammett's model.

The use of Hammett's approach as a guide in chemical space
to nd molecules of desired energy differences has been
hampered by three issues: the focus on single substituents, the
difficulty to obtain a consistent set of Hammett coefficients3,68,69

and the restriction to free energy differences. While multiple
substituents have been cautiously explored,70 experimental
evidence was found that s values of multiple substituents are
additive, as long as no resonance is involved.6,71,72 In this work,
we focus on addressing these three main limitations of Ham-
mett's approach.

2 Method
2.1 The Hammett equation

The original formulation of the Hammett equation is shown at
the beginning of the previous section. Here the only observables
are the reaction constants K and K0, so it is not possible to
calculate a unique set of {r} and {s}, as there will always be an
arbitrary constant that can be moved between the two. In order
to remove this degree of freedom, Hammett proposed the
following procedure:1 (i) pick a reference reaction i for which ri

¼ 1, (ii) use it to assign a value of s to the substituents for which
there is data for the reference reaction, (iii) use this set {s} to
evaluate rj for another reaction j using a least squares regres-
sion, (iv) expand the set {s} using the new rj, (v) repeat steps (iii)
and (iv) until each reaction and substituent has a value
assigned.

The choice of the reference reaction, as well as the sequence
used to expand the set {s}, greatly inuences the nal result: for
a set of NR reactions there are up to NR! possible sets of {r} and
{s}. Overall, with NR reactions and NS set of substituents there
are NRNS different Hammett equations with only NR + NS

parameters to determine. The system is greatly overdetermined,
11860 | Chem. Sci., 2020, 11, 11859–11868
making it easy to overt the model. Overtting towards one
reference reaction directly reduces transferability of the
substituent parameter s across reactions, as Hammett's model
reproduces the reference reaction alone. To achieve maximum
transferability, a method that is less biased towards one refer-
ence reaction is required. In the context of regression, this calls
for robust regressors which are less prone to be impacted by
observations that do not satisfy the linearity assumptions of
Hammett's approach. These observations would constitute
outliers for the Hammett regression.

In our model, we use the more robust Theil–Sen regressor,73

which evaluates the linear coefficient as the median of the
slopes of all lines that pass through each pair of points, and we
calculate the entire set of reaction constants {r} at once. This
two additions make the model respectively more robust towards
outliers, that could skew the values of the parameters, and
remove the dependence on the choice of the reference reaction,
which makes the nal set of parameters more univoque. The
substituent constants {s} are then evaluated by inverting the
Hammett equation and averaging the results over all reactions.
For numerical reasons, it might be necessary to initially x one
arbitrary reaction constant to 1 to avoid trivial solutions. This is
the only source of bias in the model, meaning that the number
of possible set of reaction and substituent constant scales only
linearly with the number of reactions, and not factorially like in
the original model. This procedure allows to affordably identify
the best set of parameters. The derivation of the model is
explained in details in the ESI.†

For reactants with multiple substituents, s describes the
combined effect of all of them. To identify individual contri-
butions, we propose a linear model where the molecular s is
given by the sum of single substituent parameters ~s, obtained
by a categorical regression using a dummy encoding. These
term depend on the chemical composition of the substituent
and on its position on the molecule. In order to separate these
two contributions, we modelled each single substituent
constant as a product between a term a, which depends only the
chemical composition, and a distance decaying function
(exponential or power law), which encodes the distance of the
substituent from the reaction center.

To distinguish the two methods of calculating the substit-
uent constants, i.e. by reversing the Hammett equation and by
summing single substituents contributions, we named the rst
one s-Hammett and the latter a-Hammett.

Non-linear functions, which can model many body contri-
butions, have also been studied by including three body terms
such as the Axilrod–Teller–Muto potential.74 This increases the
number of parameters needed but allows to include the inter-
actions between substituents.
2.2 Machine learning

We trained a Kernel Ridge Regression (KRR) machine to learn
the kinetic constant and activation energies for different reac-
tions. Molecules were described with a one-hot encoding
representation, which maps every fragment into a ngerprint-
like string of zeroes and ones. Our Hammett model was then
This journal is © The Royal Society of Chemistry 2020
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used as a baseline for Delta Machine Learning75 (D-ML), where
a machine was trained to learn the residuals of the method.
This approach can give a faster learning, since the hypersurface
of the residuals is usually smoother, thus easier to learn.

These models were programmed in Python using the QML76

and scikit-learn77 packages. Hyper-parameters were determined
with a 5-fold validated grid search, nal results obtained with
a 15-fold cross validation.
Fig. 2 Prediction of kinetic constants on two experimental reaction
data set: nucleophilic substitution between benzylbromides and
thiols78 (top half) and decomposition of ammonium salts (bottom
half).79 The picture compares results from our model (blue circles),
from the original Hammett procedure (orange crosses) and from the
tabulated parameters of the original paper (green diamonds).1 The
correlation plots (a) and (e) show the higher reliability of our method
for the prediction of the rate constants when compared to the others.
The error bars display the dependence on the reference reaction. The
Hammett plots on the right ((b), (c), (d), (f) and (g)) show the increased
robustness of our method with respect to outliers and the preservation
3 Results
3.1 Experimental analysis

To test the effectiveness of our method, we apply it to two
different set of experimental results and compare our
predictions with the one from the original Hammett model.1

The two reactions are shown in Fig. 1, panels (a) and (b). The
rst data set78 studies the substituent effect on the nucleo-
philic reactivity between thiophenols and benzylbromides.
We use a different r to describe each reaction with a different
thiophenol and a different s for each substituent R1 on the
benzylbromide. The second data set79 reports the rate
constants of the decomposition of tetra-alkylammonium salts
in solution at different temperatures. According to the orig-
inal formulation of Hammett, the temperature dependence is
included in eqn (1) through the reaction constant, meaning
that each temperature is described by a different r. Each set of
substituents on the ammonium salt is then described by
a different s.

The kinetic constants have been evaluated through the
Hammett equation using three different set of parameters {r}
and {s}: the rst one obtained with our model, the second one
by applying the original Hammett method, as described in the
beginning of the Method section, and the third one using the
values of s calculated by Hammett himself in the original
paper.1 This last method could be used only for the rst of the
Fig. 1 Reactions studied in this paper: (a) nucleophilic reaction
between thiophenols and benzylbromides, (b) decomposition of tetra-
alkylammonium and (c) SN2. Data from reaction (a) and (b) are
experimental values while for reaction (c) are computational.

of the relative ordering of the substituent constants s. The inset (h)
reports the temperature dependence of the rate constants for the
decomposition of two different ammonium salts, highlighting how the
outliers correspond to unphysical behaviour.

This journal is © The Royal Society of Chemistry 2020
two experimental data set, since the molecules used in the
second one where not included in the original paper.

The results are shown in Fig. 2. The upper half (subplots (a)
to (d)) shows the results on nucleophilic substitution of ben-
zylbromides,78 while the bottom half ((e) to (i)) the ones on the
ammonium salts decomposition.79

The scatter plots (a) and (e) present the correlation between
the experimental kinetic constants and the estimated ones. The
blue dots are obtained by our model, the orange cross by the
original approach1 and the green diamond are calculated using
the {s} from the original paper.1 The error bars show the range
of results spanned by changing the reference reaction. For
nucleophilic substitution of thiols (upper half), the reference
uses the un-substituted thiol, while for the thermal
Chem. Sci., 2020, 11, 11859–11868 | 11861
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Fig. 3 Correlation of the activation energies between the reactions in
the data set. The labels indicate the nucleophile-leaving group couple,
in this order. The data show a linear trend, which is the underlying
assumption for the Hammett model. These activation energies range
linearly between 3 kcal mol�1 and 40 kcal mol�1. The inset in the top
right corner shows the general scaffold of the molecules in the data
set, where R1 to R4 are the substituents and Nu and LG are the
nucleophile and leaving group respectively. The carbon atoms where
the substituents are attached are labeled C1 and C2 for the one that
undergoes the substitution and the a carbon, respectively.
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decomposition of ammonium salts (bottom half), the reference
is the reaction at 35 �C.

The correlation plots show how our method outperforms the
original Hammett method in the vast majority of the case, oen
by a signicant margin; using the original {s} yields very inac-
curate results. The error bars demonstrate how important the
choice of the reference reaction is: for our method the effect is
too small to be visible, while for the original method it can give
results that vary by up to 25% for both the rst (a) and the
second (b) data set. The usage of tabulated sigma removes this
dependence but introduces a signicant error that can be up to
50%.

The improvement given by our method is in part due to the
increased robustness towards outliers. This effect becomes
evident from the Hammett plots on the right panels ((b) to (d)
and (f) and (e)), which show the linear relationship between
substituent constant s and log(k/k0) for each approach. Our
method (panels (b) and (f)) gives a better interpolation for the
majority of the data. Additionally, the Hammett plots show how
the ordering of the different s for different substituents does
not depend on the method, meaning that it is still possible to
use them as a relative measure of the inductive effect without
loss of generality. This comes at the cost of a worse evaluation of
the cases that deviate from the linearity.

The tradeoff in accuracy on the outliers is especially evident
from the scatter plot (e) for the decomposition of ammonium
salts. The original model gives better predictions only for some
specic cases, for example when considering the reaction
involving a beta-naphtyl thiol. The dependence of the kinetic
constant of this last case on the temperature is shown in the top
panel of inset (h). The linear behaviour is in contrast with the
typical exponential Arrhenius-like that can be observed for any
other case in this data set, as presented in the bottom panel of
(h) for a para-methoxy thiol. This shows that the robustness of
the revised Hammett proves useful when dealing with noisy
data and can be helpful in identifying unphysical features in the
data set.

Overall, Fig. 2 highlights the improvement on the original
method given by the application of the Theil–Sen regressor,73

which remove the impact of the outliers on the parameters, and
by the averaging out of the reference reaction, which signi-
cantly reduces the variance for the possible values of the
parameters.
3.2 Hammett revisited for SN2

In this work, we extended the Hammett equation to a chemical
space that is outside the scope of the original model by working
on a computational data set of SN2 reactions on small molecules
with an ethylene scaffold. The reaction is shown on the bottom
of Fig. 1, while the typical transition state is depicted in the top
right inset of Fig. 3. These molecules have four sites where
substituents can be placed, labelled R1 to R4, and undergo
a nucleophilic substitution of the leaving group LG by the
nucleophile Nu. The substituents considered for positions R1 to
R4 are –H, –NO2, –CN, –NH3, –CH3, while the leaving groups
and nucleophiles are: –H, –F, –Cl, –Br. In total, we consider 12
11862 | Chem. Sci., 2020, 11, 11859–11868
different SN2 reactions, one for each combination of Leaving
Group LG and nucleophile Nu, shown on the axis of Fig. 2 and 3.
The potential energies have been taken from the QMrxn20 data
set.80

For this data, we worked with activation energies instead of
the kinetic constant. The two quantities are related by the
transition state theory, which assumes a quasi-chemical equi-
librium between reactants and transition state. Thus, the
Hammett equation can be applied to potential energy differ-
ences without loss of generality. However, it should be noted
that there is an inverse proportionality between kinetic constant
and activation energies: a small barrier will be easier to over-
come, thus giving a higher kinetic constant, while the opposite
is true for a large barrier.

Activation energies for the different reactions correlate
linearly with each other, as shown in the lower le part of Fig. 3.
Here each scatter plot compares the energy barriers of any two
reactions; the nucleophile and leaving group are indicated on
the edges, in this order. If Hammett's model was no approxi-
mation, all such scatter plots would show perfect linear corre-
lation. We nd that the activation energies are strongly
correlated meaning that the relative effect of different substit-
uents is the same even across different reactions. Consequently,
the ordering of the elements in {s} is unique. The slope of each
linear t expresses the relative susceptibility of the two reac-
tions to the substituents' effect.
This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Accuracy of our model with the respect to the original Ham-
mett approach. For each reaction, we show the mean absolute error
(MAE) obtained with our model (red line) and with the original Ham-
mett model (gray dots), where each dot represents a different choice
for the reference reaction. The size of the dots is proportional to the
size of the training set for that data point. The blue dotted line
corresponds to the estimated MP2 error.81,82

Fig. 5 Contribution of each pair of group g and position p to the
molecular s, as obtained from the dummy encoding. Positive contri-
butions give larger s, resulting in higher activation energies, while
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The improvement obtained with our method can be easily
seen in Fig. 4. Here we present the Mean Absolute Error (MAE)
for the prediction of the activation energy across all the reac-
tions considered. The red line shows the MAE of our model,
while the gray dots show the ones of the original model. For
each reaction there are eleven dots, one for every different
reference reaction in our data set. The thin gray lines connect
the results obtained by applying the original Hammett
approach to the same reference reaction. The size of each dot is
proportional to the number of common set of substituents
between the reference reaction and the one being predicted.
Finally, the dashed blue line shows the typical error of the MP2
method for nucleophilic reactions,81,82 estimated by comparison
to W3.2//QCISD.83,84

Our method outperforms the classic Hammett approach in
the vast majority of the cases. For only a few reactions the
original model can give better results but there is no single
choice of reference that shows a consistently smaller MAE. Our
method averages out the error obtained from the selection bias
of the reference and gives a consistent prediction across all
reactions, comparable in accuracy to the underlying MP2
method.82 Using a higher level of theory could potentially
improve the quality of the prediction as long as the different
activation energies become more linearly related. It is to be
expected though that the dominating linear trend is well-
reproduced with MP2 calculations already and that higher
level results introduce non-linear corrections to the MP2 ener-
gies. In that case, higher level calculations would not improve
the Hammett model, as it is only able to capture linear relations
This journal is © The Royal Society of Chemistry 2020
and averages out non-linearities. It should be noted that
potential energy differences such as activation energies are less
susceptible to changes in level of theory.

The original method is highly susceptible to overtting and
numerical noise, as shown by the fact that small errors corre-
spond mostly to medium size dots: few data points (small dots)
lead to an unreliable t, while too many (big dots) can make the
model too rigid to be reliably transferable. This is especially
evident for the two lemost reactions (F–H and F–F), were the
larger data set are described very poorly by the original model.
This can give MAE of up to 5.2 kcal mol�1, while our model has
an error of 3.8 kcal mol�1 at most.

As discussed in the Method section, the original Hammett
approach can get up to NR! different set of parameters, which
for the 12 reactions considered here is in the order of 108. The
results shown in Fig. 4 are obtained from a regression that
considers only the reference reaction and the one for the
prediction, so stopping the procedure aer only two r and
a subset of s have been assigned. The factorial scaling of the
extensive search makes it prohibitively expensive to nd the
best set of parameters for the original Hammett approach.
Since our improvement does not depend on the choice of
a particular reference reaction anymore, there is a unique set
of model parameters that can be obtained directly, without
search.
3.3 Decomposition of s for SN2

The non-aromatic molecules we considered have four substit-
uents attached to two different carbons atoms: two on the one
involved in the reaction, from now on denoted as C1, and two
on a carbon atom connected to C1 by a single bond, from now
on denoted as C2. The molecular s for each set of substituents
depends on all four groups and their position. Via categorical
regression, described in the ESI,† it is possible to separate the
negative contributions lead to a lowered barrier.

Chem. Sci., 2020, 11, 11859–11868 | 11863
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Fig. 6 Correlation between the s obtained from the revisited Ham-
mett and the ones obtained from: (a) the dummy encoding, (b) the
power law function, (c) the exponential function, (d) the three body
Axilrod–Teller–Muto function. Each panel also shows the R2 of the
correlation.
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individual contributions ~s and express the overall s as a linear
combination.

The results of the decomposition are reported in Fig. 5. Each
horizontal bar corresponds to one single-substituent ~s and the
colors are used to distinguish the four positions: red and orange
for positions 1 and 2, on C1, and green and blue for positions 3
and 4, on C2 (cf. Fig. 3). The plot shows that the contributions
given by positions 1 and 2 are almost identical. This makes
sense chemically, since these two positions are nearly equiva-
lent by symmetry (the molecule is chiral) and thus must have
very similar effect on the reactivity of the molecule. The same is
true for positions 3 and 4, although their absolute values of ~s
are much smaller with respect to positions 1 and 2. Again, this
follows chemical intuition, as these positions are further away
from the reacting centre and their effect is dampened. These
two properties of ~s are not imposed at any point during the
procedure, but they emerge by themselves.

The sign of the single substituent constants can be inter-
preted in the following way: if the reaction constant r is positive,
a substituent with a negative substituent constant s will give
a lower activation energy than the reference substituent, and
vice versa for positive s. In our case, r > 0 for all reactions, so it is
possible to correlate the single substituent constants with the
inductive effect. The electron withdrawing power of the groups
considered goes as

–NO2 > –CN > –H > –CH3 > –NH2

Groups with negative values are electron withdrawing, while
those with positive values are electron donating. This again
make sense chemically since the transition state of an SN2
reaction is known to be negatively charged, and benets more
from a substituent that can remove electron density from the
reacting centre. The discrepancy in the sign with respect to
textbook values of s emerges from the fact that here we are
considering reaction barriers rather than kinetic constants, and
the two properties are inversely related. The correlation with the
inductive effect, as well as the magnitude of the substituents'
effect depending on the position, is not imposed by the model
but shows up naturally during the procedure.

Although the single substituents constant obtained by the
categorical regression depend on both their position and
chemical composition at the same time, the results of this
model indicate that these two can be further separated. We
expressed the position dependence as the spatial separation
from the reaction center, using a distance decaying function –

we tested an exponential and power law one – that scales the
electron withdrawing/donating effect of the substituent. The
latter is given by a constant which depends only the chemical
composition.

The effects of interactions between different substituent on
the molecular substituent constant can be modelled by a three-
body term, as the Axilrod–Teller–Muto potential.

The results from these decompositions of the substituent
constants are shown in Fig. 6. Here each scatter plot reports the
correlation between the molecular s and the single-substituent
11864 | Chem. Sci., 2020, 11, 11859–11868
ones, obtained with four different prediction methods: (a)
categorical regression via dummy encoding, (b) power law
function, (c) exponential function and (d) Axilrod–Teller–Muto
(ATM) function.74 Each panel shows the R2 of the relative t.

For each of these models, the number of parameters
required depends on the number of substituent groups NG

considered and the number of positions NG on the molecular
backbone. For our SN2 dataset, NG ¼ 5 (–H, –NO2, –CN, –NH3,
–CH3) and NP ¼ 4 (R1, R2, R3, R4) (cf. Fig. 3).

The dummy encoding shown in plot (a) requires a total of
NPNG parameters, one for each group-position pair, so 20 for
this data set. This approach has the great advantage of being
independent from the backbone of the molecules, since it is
sufficient to label each position and group. Including a new
position or group in the data set would increase the number of
parameters needed by NG (5) and NP (4) respectively.

For the exponential function and the power law in panels (b)
and (c), the number of parameters required is NG + 1, one for
each group plus an additional one to regulate the distance
decay. For our data set, this means six parameters. In this case,
it is necessary to know the geometry of the molecular skeleton,
which can be easily obtained. In terms of scalability, adding one
more group increases the number of parameters by one, while
for a new position it is only necessary to evaluate its distance
from the reaction centre. The results obtained by these two
functions are very similar, correlate well with the one obtained
with the revisited Hammett's algorithm and require less
parameters than the categorical regression: in our case we go
down from 20 to 6.
This journal is © The Royal Society of Chemistry 2020
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The Axilrod–Teller–Muto function shown in panel (d) takes
into account the interaction between any two different groups
in different positions on the molecule. This requires a total of
NG + (NG

2 + NG)/2 + 1 parameters: one for each group, one for
every unique pair, and an additional one for the distance decay.
For our data set, this brings us back to 20, as for the dummy
encoding. For the ATM approach it is necessary to know the
exact geometries of every molecule in order to calculate the
distances and angles between different groups and positions.
Extending the data set to a new group increases the parameters'
cost by 1 + NG, i.e. 6. Including the interaction between groups
and positions removes the simple additivity of single-
substituents ~s and actually worsens and the prediction.

Overall, Fig. 6 shows that the molecular substituent
constants: (i) can be described quite well with only NG + 1, i.e. 6
parameters, and (ii) show physical additivity. This parametri-
zation allows us to transfer the information gained on one set of
substituent to another, making it possible to evaluate the s for
a new molecule.
Fig. 7 Learning curves for the activation energies with different
methods. The circles are obtained by the Hammettmodel, where the s

are calculated globally for the blue line (s-Hammett) and additively for
the green line (a-Hammett). The diamonds and squares are given by
machine learning and D-ML respectively, the baseline for the latter is
a-Hammett.
3.4 Comparison with machine learning for SN2

We compared the performance of our method with a kernel
ridge regression machine learning model. We used a one-hot
encoding representation, where each molecule is described
with ngerprint-like string that depends on the functional
groups present. This representation was chosen because it
contains no exact structural information, i.e. no cartesian
coordinates, just like the categorical regression, making the
comparison more fair as the two models work with the same
information. The machine was trained on both the activation
energies and the residuals of the prediction from our revisited
Hammett. The latter approach is called delta-machine
learning,75 and uses as a baseline the predictions obtained
from our a-Hammett method, described in the Method section
and in the ESI,† where the substituent constants are obtained
from a linear combination of single substituent contributions
that are scaled by a distance decaying function. We choose this
method as a baseline because it gives better predictions starting
from smaller training set and because its residuals are more
consistent, thus easier to learn.

The comparison of different methods is shown in Fig. 7.
Here we report different learning curves, which show how the
performance of each method improves as the training set size
increases.

For a small training set, only some reactions and set of
substituents can be sampled, giving values of r that are highly
inuenced by random noise. For the s-Hammett model, this
generates a set {s} that poorly reects the true substituents'
effect and gives very high prediction errors. This method shows
signicant improvement with the increase of the training set
size, and using the complete data set recovers the accuracy
shown in Fig. 4.

The a-Hammett method already gives errors below
5 kcal mol�1 for only 400 training points and quickly converges
to an accuracy close to the underling level of theory. The at-
tening out of the learning curve is due to the difficulty of
This journal is © The Royal Society of Chemistry 2020
distinguishing similar substituent constants, as also shown by
the patter of horizontal lines in Fig. 6.

TheML andD-MLmethods converge towards the same error,
however the latter's learning curve has a signicantly lower
offset. This means that our method can also be used to speed up
the learning of the target property at the cost of a very quick and
inexpensive initial treatment of the data. The two learning
curves converge at around 1600 data points, where the baseline
for the due D-ML attens out. Beyond this point, both methods
just learn the MP2 error.

Overall, machine learning consistently outperforms our
models in terms of prediction errors. This, however, comes at
the cost of a higher complexity of the model, which requires
a signicantly higher number of parameter and sacrices
chemical interpretability. Kernel ridge regression requires one
parameter for each training point, while the Hammett model
has only as many parameters as there are reactions and set of
substituents. This number is further cut down when consid-
ering the a-Hammett approach, which for this application
makes use of only 18 parameters in total (cf. Section 3.3). Each
parameter of our model can be understood in terms of inductive
effect or susceptibility to it.

The increased exibility of KRR becomes relevant for devia-
tions from linearity, which the Hammett equation cannot
intrinsically handle, as reected by the atting out of the
learning curves for our models. This occurs when the data in the
training set samples the reaction and substituent spaces
extensively enough to give stable values for s and r, and the
model cannot give a signicant improvement beyond this point.
Chem. Sci., 2020, 11, 11859–11868 | 11865
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4 Conclusion

We generalized the calculation of Hammett parameters r and s

to account also for potential energy changes due to reactions of
non-aromatic molecules with multiple substituents. Our results
indicate that substituent effects are largely additive as long as
no resonance occurs. For the SN2 reaction space, Hammett s
values can be explained by chemical composition and distance
to the reaction center alone. This connects to the established
view regarding the Hammett s values as a measure of the
inductive effect, reduces the number of parameters needed by
our model and gives each of them a chemical meaning. The
decomposition proposed makes it possible to transfer the
chemical information gained from one set of substituents to
a different one, allowing to estimate the values of s for new
molecules. This decomposition in principle would allow future
work to extend our approach to resonance cases by assigning s

values to pairs (or n-tuples) of substituents while retaining the
readily interpretable concept of Hammett's model.

Moreover, we present a method to compress quantum
chemical reference energies from several reactions into one
reliable set of Hammett parameters. This allows to reduce the
number of calculations required for real-world applications of
Hammett's empirical relationship. Additionally, it reduces the
risk of over-tting towards one specic reaction which we
demonstrate to be a signicant problem with the original
formulation. The overall improvement in robustness over the
original method is achieved by using the more robust Theil–Sen
regressor for the linear interpolations and by averaging out the
inuence of the reference reaction.

Our approach builds on the original Hammett equation and
it still belongs to the family of linear free energy relationships.
The core assumption and main limitation of the model is that
a signicance variance of the data must be explainable in terms
of linear trends. Using higher levels of theory can improved the
quality of the prediction as long as this condition is met.
Reaction barriers and potential energy differences however, are
less susceptible to changes in computational accuracy.

We tested this method on two different experimental data
sets and on a computational one and showed systematic and
overall improvement in both, prediction quality and reliability.
This method also provides an excellent baseline for D-ML
approaches, effectively forming an valuable stepping stone for
dramatically reducing the need for training data obtained from
computationally expensive quantum chemistry calculations.

Given modest but sufficient experimental data, and based on
the demonstrated improvement of Hammett's empirical
formula for potential energies, one can now think of this
approach as a more general guideline how to assist in chemical
reaction design—without the need of extensive trial-and-error
experiments. We rather advocate for diverse data from many
different reactions but common molecular skeletons, which
then can be combined into one model following our approach.
We demonstrated on our data set that this model reaches
accuracies similar to quantum chemical calculations. Accord-
ingly, we believe that the promise of Hammett's original idea
11866 | Chem. Sci., 2020, 11, 11859–11868
can now be delivered in order to uncover trends in reaction
energetics throughout substantially larger chemical spaces. The
code used in our work is freely available.85
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