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have been paid for by the Royal Society
of Chemistry While strategies involving a 2e~ transfer pathway have dictated glycosylation development, the direct
glycosylation of readily accessible glycosyl donors as radical precursors is particularly appealing because
of high radical anomeric selectivity and atom- and step-economy. However, the development of the
radical process has been challenging owing to notorious competing reduction, elimination and/or Sy
side reactions of commonly used, labile glycosyl donors. Here we introduce an organophotocatalytic
strategy through which glycosyl bromides can be efficiently converted into corresponding anomeric
radicals by photoredox mediated HAT catalysis without a transition metal or a directing group and
achieve highly anomeric selectivity. The power of this platform has been demonstrated by the mild
reaction conditions enabling the synthesis of challenging a-1,2-cis-thioglycosides, the tolerance of
various functional groups and the broad substrate scope for both common pentoses and hexoses.
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Introduction

Despite the fact that O-linked glycosides are a dominant form in
biologically important glycoconjugates,* the replacement of “O”
by C-, N- and S-linked glycosides offers the merits of improved
hydrolytic stability and/or bioactivity while maintaining similar
conformational preferences. * In particular, thioglycosides have
emerged as a privileged class of structures owing to their broad
spectrum of biological activities (see representative examples in
Scheme 1).>* Moreover, they are widely used as glycosyl donors
in glycosylation reactions.® The broad biological and synthetic
utility has triggered significant interest in the development of
efficient methods to construct a C-S bond with a defined
anomeric configuration, which plays key roles in biological
activities.

Strategies involving an ionic 2e” transfer pathway have
dictated the C-S bond formation development.”™ Direct
replacement by a thiol with a glycosyl donor is an attractive
approach in that both starting materials are readily accessible,
but gives a mixture of o/B anomers in most cases (Scheme 2a).?
To overcome these limitations, the methods of reversing the
polarity at the anomeric carbon have been developed (Scheme
2b).? These elegant methods enable the stereoselective control
formation of both o and B anomers but with limited scope of
saccharides.” Indirect methods using preformed anomeric
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stage glycodiversification for a total of 50 substrates probed.

thiols offer versatile approaches to thioglycosides (Scheme
2¢).'** Nonetheless, the anomeric stereoselectivity of these
processes depends on the nature of the anomeric thiols. In
particular, few methods are capable of selectively constructing
the challenging a-1,2-cis-thioglycosides,® featured in a number
of natural products and bioactive molecules (Scheme 1).
Radical cross coupling offers a distinct paradigm for ster-
eoselective construction of glycosidic bonds.'* Anomeric radi-
cals have been elegantly explored for highly stereoselective C-
glycosidic bond formation with a transition metal (TM).**"”
However, stereoselective C-S bond formation through the
glycosyl radical has remained elusive (Scheme 2d)."” This is
attributed to: (1) reduction of glycosyl radicals by HAT
(hydrogen atom transfer) donors;'® (2) elimination reaction of
labile glycosyl donors with a TM catalyst;'® (3) competing Sy2
reaction with thiols, which could compromise the anomeric
selectivity.?”” Therefore, stable radical precursors such as
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Scheme 1 Selected examples of thioglycosides with a-1,2-cis-
configuration.
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glycosyl stannanes are designed to minimize these issues."”
Given the fact that the glycosyl radical can favour the formation
of anomeric C1 conformation, we deliberately push the limit by
developing an organophotocatalytic approach without a direct-
ing group or a TM for stereoselective S-glycosylation. Herein, we
wish to disclose the results of the investigation, which has led to
a general organophotocatalyzed thiolation of glycosyl bromides
with highly stereoselective control (Scheme 2d).

Results and discussion

In our own efforts, recently we have developed visible-light-
mediated glycosyl radical reactions for the synthesis of C-

Q SRR o as glycosides."® In addition, we reported an organophotocatalytic

L S Tl e ————— <R’H0)nm %JE?(N «  thiolation of acyl radical method with thiosulfonates.>® These
=0, r h SR' N . . . . :

glycosyl radical sulfur electrophile  Blue LEDs, -5°C, 18-24 h < B8 chemistries guided us to explore a new thioglycosylation reac-

precursor  LG: Leaving Group 4CICZIPN

tion. The reaction of a-glucopyranosyl bromide 1a with thio-
sulfonate 2a and 4CzIPN** as a photocatalyst (PS) was probed
(Table 1 and Tables S1-S6t). First, we examined several
commonly used reductants including iPr,NEt, Hantzsch ester,
and ascorbic acid (Table S1,} entries 2, 6 and 7) for the
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Scheme 2 |onic and radical thioglycosylation.

Table 1 Reaction optimization

OAc OAc OAc

4CICZIPN (5 mol%), KsPOj (4.0 equiv)
AcO’ A + P sms kil AcQ O+ AcQ O
AcO. (TMS);,SlOH (1.5 equiv), DCE:H,0 (2:1, viv) ACO Aco
AcO g,

5°C, 24 h, Blue LED AcO sgn AcO 4
1a (2.0 equiv) 2a (1.0 equiv) 3a 4

Entry Variation from the “standard conditions”* Yield® (3a, %) o: B¢
1 None 76 (72)* >20:1
2 4CzIPN (5 mol%), 2¢, Na,CO; (4.0 equiv.), DMSO, 1t 37 <10:1
3 4BrCzIPN (5 mol%), 2¢, Na,COj (4.0 equiv.), DMSO, rt 33 <10:1
4 4CICzIPN (5 mol%), 2¢, Na,COj3 (4.0 equiv.), DMSO, rt 65 <10:1
5 Cs,CO; instead of K3PO,, DCE : DMSO (1 : 1, v/v), 1t Trace —

6 DCE : DMSO (1 : 1, v/v), 1t 80 <10:1
7 2b instead of 2a, DCE : DMSO (1 : 1, v/v), it 72 <10:1
8 2d instead of 2a, DCE : DMSO (1 : 1, v/v), rt 66 <10:1
9 2d instead of 2a, DCE : DMSO (1 : 1, v/v), it 68 <10:1
10 2e instead of 2a, DCE : DMSO (1 : 1, v/v), rt Trace —

11 2f instead of 2a, DCE : DMSO (1 : 1, v/v), 1t 66 <10:1
12 2g instead of 2a, DCE : DMSO (1 : 1, v/v), it Trace —

13 1b instead of 1a Trace —

14 DCE instead of DCE : H,O (2 : 1, v/v), 1t 60 17:1
15 DCE instead of DCE : H,O (2 : 1, v/v), =5 °C 67 >20:1
16 Without 4CICzIPN, (TMS);SiOH or K;PO, Trace —

17 Under dark conditions Trace —

Halogenose: PS:

OAc H
% | @ 2
AcO’
AcO-

AcoR.

1 Sulfur Electrophiles:

H
X=F
an—Nm 2 BnSSBn
29

¢ Standard conditions: unless specified, a mixture of glycosyl bromide (0.2 mmol), sulfur electrophile (0.1 mmol), 4CICzIPN (0.005 mmol), K;PO,
(0.4 mmol), and (TMS);SiOH (0.15 mmol) in DCE/DMSO (1 mL 1:1 V/v) or DCE/H,0 (1.5 mL, 2 : 1, v/v) was irradiated with 40 W Kessil blue LEDs in
aN, atmosphere at —5 °C for 24 h. ? Yield determined by '"H NMR using 1,1,2,2- tetrachloroethane as an internal reference. ° Ratio determined by
crude "H NMR. ¢ Isolated yield.

4CzIPN: X = H
4CICZIPN: X=(

1a:R=Br
1b:R=Cl
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generation of the glycosyl radical. Disappointedly, only the
reduced product 4 was obtained. It should be pointed out that
this is a general problem in using glycosyl halides as radical
progenitors in glycosylation.'® Minimizing the issue requires
a radical capable of effective dehalogenation whereas the
hydrogenated product should be a weak H-donor. A silyl or
a silyloxy radical can induce dehalogenation while the strong
Si-H and Si-O-H make them more difficult to abstract.*
Therefore, various silanes were screened and (TMS);SiOH was
the best, giving 3a in 37% yield (Table S1,} entries 3-5 and 8-9).
A survey of PSs revealed 4CICzIPN?'™¢ as the optimal promoter
(65% yield, Table S21 and 1, entries 2-4). The process was also
sensitive to bases (entries 4-6 and Table S41) and K;PO, gave 3a
in high yield. Among the thiosulfonates probed (entries 6-12),
methanethiosulfonate (2a) was the best, possibly attributed to
the lower hindrance and relatively high redox stability (Ereq =
—1.65 V vs. SCE, Fig. S371). Glycosyl chloride (1b) did not
undergo the dechlorination presumably due to its strong C-Cl
bond (entry 13). To further improve the stereoselectivity (entry
6), we conducted reaction optimization including the solvent
and reaction temperature (Table 1, entries 14-15 and Tables S3
and S67). It was found that the biphasic solvent (DCE : H,O =
2 : 1) could not only retain the high anomeric selectivity but also
increase the yield (76%, entry 1), and a low temperature (—5 °C)
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1a 2 4C\CI\PN
OAc OAc OAc
Q Q
OAc OA Q AcO
. © Arﬁm Ro ARo
AcO AcO AcO
%o Aﬁm 20 5 s s
AcO AcO /©/
SBn SPh MeO r
A:72%, :B>20:1 A:70%, :Bp>20:1 A:66%, c:p>20:1 A:65%, c:B>20:1A:68% a:p>20:1
3c 3e
OAc
OAc OAc /m OAc OH
Q o} AcQ Q Q
AcO AcO AcO H
Aa\%ﬁﬁ aw@ﬁ ) mﬁﬁ %o
ACO ¢ ACO ¢ <A%or s , OH{
: “OO \_S (I
cl [¢]
A:64%, o B>20:1 A:55%, o p>20:1 Ai62%, a:B>20 11 A%, a:B=18 11 A:65% c:p>20 : 1
3f 3g 3h 3i 3j
OAc OAc OAc OAc

A 46%, o : p=17:1B:79%, a:B>20:1 A% 60%, ou: f>20:1A%70%, a:B>20: 1B30%(x [i>20 1
3k 68% for 2.0 mmol 3m 3n
scale, o: $>20:1

OAc OAc

lo) o ocN
AcO
AcO oet “Ro \j/ %
AcO AcO
S
- s ]

B% 37%, a:p=9:1 B% 49%, a1 §>20:1 BY: 79%, o : p>20: 1

3p 3q 3r 3s
OAc OAc
Q Q
AcO'
© S A0 L e P T SN e P

B% 35%, a: p=13:1

a3t B9 43%, o $>20:1 (ZE=47:1)

3u

Scheme 3 Scope of thiosulfonates. “Reaction conditions: unless
specified, see footnote a of Table 1 and the ESI;T isolated yield; the
ratio of & and B anomers determined by crude *H NMR. ®Yield after
hydrolysis of the acyl group. “Disulfide used. “Toluenethiosulfonate
used. €Z/E ratio determined by *H NMR.
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is also required to maintain good yield and anomeric selectivity
(entry 14, 15). The control experiments confirmed that base,
light, (TMS);SiOH, and PS were essential for this transformation
(entries 16-17).

The generality of the new S-glycosylation was examined. We
first evaluated the performance using glucosyl bromide (1a) as
a radical donor for coupling with various thiosulfonates 2
(Scheme 3). The process serves as a general approach to both
aryl and alkyl thioglycosides. Uniformly high axial selectivities
are observed regardless of the nature of the sulfur electrophiles.
With respect to aryls, electron-neutral (3b), -donating (3c¢-3d,
3h), and -withdrawing (3e-3f) groups on the phenyl ring and
fused aromatic (3g) can be tolerated. Moreover, heteroaromatic
thiosulfonates such as thiophenyl (3i) and furanyl (3j) enabled
access to medicinally valued thioglycosides. The tetrazole
derived disulfide instead of labile thiosulfonate could serve as
an alternative and delivered the desired 3k. The reaction per-
formed in DCE : H,O failed for pyridinyl thiosulfonate. Decent
results (31, 79%, o : B > 20 : 1) were obtained with DCE : DMSO
(condition B). The protocol can also be applied in gram scale
synthesis. Notably, less reactive sp® alkyl glycosides 30-3s could
be synthesized with the protocol.””

For even less electrophilic substrates, p-tolylthiosulfonates
(3q-3u) displayed better performance than methylthiosulfo-
nates. Particularly, a long alkyl chain with a Z-double bond
product (3u), which exhibits intriguing antitumor activity

4CICzIPN (5 mol%), K3PO4 (4.0

Q X_ _Me  €quiv), (TMS);SiOH (1.5 equiv) Q
(RO); * RTTY S (RO); S
2 blue LED, - 5°C, 24 h
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' Q Q 0 Q
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AcO o o AcO
spy  Aco OA° A0 Sac SPy
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TBDPSO.
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Scheme 4 Scope of saccharides and selenoglycosylation. “Reaction
conditions: unless specified see footnote a of Table 1 and the ESI;¥
isolated yield; the ratio of o and B anomers determined by crude *H
NMR. ?3.0 equiv. of glycosyl bromide used. “Disulfide used.
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(Scheme 1), is efficiently prepared with high diastereoselectivity.
The limitation of the method is also realized. C,—~N-Ac-saccha-
rides such as p-glucosamine failed to react due to the lability of
these reactants (see Fig. S5 in the ESIt).

The alternation of sugars was probed next (Scheme 4). Both
common hexoses (glucose 3v-3x, galactose 3y, mannose 3z,
fucose 3aa, rhamnopyranose 3ab, and glucuronic acid 3ac) and
pentoses (3ad-3af) gave good yields and high stereoselectivity.
Among the tested monosaccharides, except ribose (3af) adopt-
ing expected B selectivity owning to the steric effect, the others
gave expected a-selectivity. Furthermore, disaccharides (3ag
and 3ah) could participate in the process smoothly. For xyloses
(3ai-3aj), the obtained products adopted P orientation since the
anomeric xylosyl radical is B selective.”® Besides pyridyl (Py),
other pharmaceutically relevant heteroaromatics such as ben-
zothiazole and oxadiazole (3ai, 3aj) could be efficiently incor-
porated. This offers a viable strategy for the synthesis of xylose-
derived bioactive analogs.’ Finally, the strategy can also be
extended for the synthesis of synthetically challenging a-1,2-cis-
selenoglycosides (Scheme 4 and Table S771).>* For example,
under the reaction conditions (see footnote a of
Table 1, DCE : H,O, v/v, 2: 1), four glycosyl bromides could
couple with methyl phenylselenyl sulfonate to deliver the cor-
responding a-seleno-glycosides 3ak-3an with uniformly high
stereoselectivity (o : B > 20 : 1).

The capacity of selective functionalization of biologically
relevant structures and therapeutics is the testament to the
synthetic power of a methodology. As demonstrated (Scheme 5),

OAc
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Scheme 5 Thiodiversification of pharmaceutically relevant structures.
?Reaction conditions: unless specified, see footnote a of Table 1 and
the ESI;t isolated yield; ratio of o and B anomers determined by crude

*H NMR. PThe product after hydrolysis. “Methylthiosulfonate used.
9DCE : H,0 (L5 mL, 2 : 1, v/v) used as the solvent.
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C1-6' connected thioglycosides 3ao-3aq were efficiently
synthesized. It is noted that a native unprotected saccharide
thiosulfonate could be used for efficient cross coupling (3aq).
Moreover, it is particularly noteworthy that the protocol is
amenable for the synthesis of a-S-linked 1,1’-disaccharides with
C1 thiol electrophiles, a synthetic challenge in glycosylation,*
as demonstrated in 1-thiodisaccharides (3ar) and thio-
trisaccharide (3as). Furthermore, a-linked thioglycosyl amino
acid 3at and peptide 3au could be efficiently constructed. The
synthetic manifold was further exemplified by late-stage thio-
glycosylation of therapeutics. The incorporation of thioglycosyl
moieties into estrone (3av), Captopril (3aw), and flavone (3ax)
has been realized smoothly.

In the new thioglycosylation reaction, critically (TMS);SiOH
was identified as a HAT reagent, which could efficiently suppress
the undesired reduction of the radical 8 (Scheme 6a). This may be
attributed to the strong O-H bond (calculated BDE = 98 kcal
mol ", see the ESI,T BDE of S-H: 83 kcal mol™")*** and steric
hindrance, making the H difficult for 8 to abstract. This strong
bond also echoes the use of stronger 4CICzIPN (E*/E"~ = 1.58 V
vs. SCE)* to oxidize the silyloxide [((TMS);SiO~/TMS);SiO" = 1.54
V vs. SCE)]. A spontaneous Brook rearrangement of silyloxy
radical 6 forms a silicon-centred radical 7,2*?'* which acts as an
effective debrominator. The anomeric effect makes the radical 8
axially positioned and directs o-selective coupling with

a) Proposed mechanism
(TMS)3SiOH

K3PO4

mo

4CICzIPN 4CICzIPN’

(TMS)3S|O
4CICzIPN ™~

(TMS)gSIO .
/5\\0 l
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O LJ AcO R
Oﬁﬁ o "%
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(TMS)3SiOH \’ l2
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OAc
Q,
AcO detected by HRMS
0]

b) Deuteration reactions
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] i AcO
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dry DCE/DMSO (1:1, viv) 4-d D,0 (15.0 equiv)
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4CICzIPN (5 mol%)
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K3POy4 (4.0 equiv)
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c) Glycosyl radical intermediate trapping study OAc
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Scheme 6 Proposed mechanism and mechanism studies.
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thiosulfonate 2. In the reactions, we still observed a notable
amount of the reduction product 4. It is believed that it is
produced from the reaction of 8 with (TMS);SiOH, which was
confirmed by deuteration experiments with observed deuterated
product 4-d (Scheme 6b). This also rationalizes that 2 equiv. of
glycosyl bromide 1 is used to ensure high efficiency of the thio-
glycosylation process. Finally, a radical trapping study with
TEMPO and methyl acrylate' further confirms the radical
engaged process (Scheme 6c¢).

Conclusions

In conclusion, we have developed a metal-free, glycosyl radical
strategy for the stereoselective synthesis of thioglycosides by
employing commonly used glycosyl bromides as radical
precursors. The uncovered organophotoredox mediated HAT
radical pathway can highly stereoselectively induce the forma-
tion of an anomeric C-S bond while minimizing the side reac-
tions. The power of the platform has been underscored by the
mild reaction conditions enabling the synthesis of challenging
a-1,2-cis-thioglycosides, the tolerance of various functional
groups and the broad substrate scope for both common
pentoses and hexoses. Furthermore, this general approach is
compatible with both sp® and sp® sulfur electrophiles and late-
stage glycodiversification. It is expected that the strategy
enabling the efficient generation of glycosyl radicals from labile
glycosyl bromides can offer a reliable alternative for the
synthesis of C- and other hetero-glycosides.
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