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Diversity-oriented synthesis of peptide-boronic
acids by a versatile building-block approachf

Stefan P. A. Hinkes,@ Severin Kammerer ® and Christian D. P. Klein @ *

A new strategy for the synthesis of peptide-boronic acids (PBAs) is presented. 20 Fmoc-protected natural

amino acids with orthogonal side-chain protection were straightforwardly converted into their
corresponding boron analogues in three simple steps. Subsequent immobilisation on commercially
available 1-glycerol polystyrene resin and on-resin transformations yielded a diversity of sequences in
high purity. The strategy eliminates various synthetic obstacles such as multi-step routes, low yields, and

inseparable impurities. The described method comprises great potential to be implemented in
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automated combinatorial approaches by markedly facilitating the access to a variety of PBAs. The

coupling of amino acids or other building blocks with a-aminoboronates allows the creation of hybrid
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Introduction

In the past years, boronic acids have gained importance within
numerous research fields, with an unmet versatility as synthetic
intermediates and various other applications.”” Peptide-
boronic acids (PBAs) in particular are used as protease inhibi-
tors®® and as covalent ligands in structural biology.*® Bortezo-
mib is the first FDA-approved PBA and concurrently the first-in-
class proteasome inhibitor.”” Numerous other investigational
and approved PBA drugs followed, among these are ixazomib,'®
delanzomib," vaborbactam' and taniborbactam." However,
synthesis and structure-activity relationship studies of PBAs
remain tedious work, in which the construction of the «-ami-
noboronate partial structure and deprotection of boronate
esters constitute the crucial steps.

The established synthetic approaches towards PBAs and
related compounds can be subdivided into late-stage bor-
ylations and building block approaches (Fig. 1). The most
commonly used building block strategy remains the Matteson
homologation, with chiral a-chloroboronic esters as key inter-
mediates.**® While this transformation is highly stereo-
controlled, the harsh reaction conditions restrict the substrate
scope and necessitate various transformations after introduc-
tion of the boronic ester. An elegant substrate-controlled
asymmetric borylation of imines was developed by Ellman
and coworkers in 2008, and optimised in 2014."” However, this
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molecules with significant potential in various scientific disciplines, such as medicinal chemistry,
structural biology, and materials science.

a) Established strategies in PBA synthesis and their limitations.
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Fig. 1 Strategies for the synthesis of peptide-boronic acids. (a)
Commonly used solution-phase approaches and their limitations. (b)
Recently reported solid-phase approaches. (c) This work: facilitated
access to a diversity of PBAs by introducing N-Fmoc-a.-aminoboronic
acids as versatile building blocks.
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approach remains underexploited towards the synthesis of
boron equivalents of proteinogenic amino acids, likely due to
the scarcity of suitable aldehyde precursors.

Recently, Baran and coworkers reported the Ni-catalysed
decarboxylative borylation of redox-active esters.'® Along with
its Cu-catalysed variant,* it constituted a milestone in boronic
acid synthesis due to its broad scope. Although primary,
secondary, tertiary and peptidic carboxylic acids were readily
converted into their boron counterparts, N-Fmoc-a-amino-
boronates have not been reported, probably due to their poor
stability in presence of silica gel. The Yudin group recently re-
ported the design of boron-based peptidomimetics in an
elegant multicomponent approach using a-boryl isocyanides
(Fig. 1).>*° However, only derivatives of horo-Phe and boro-Leu
have been reported. In 2020, Reyes et al. described the asym-
metric Rh-catalysed synthesis of a-aminoboronates using
a chiral monophosphite ligand.”* Although the concept is very
promising, the reaction scope is restricted by the necessity of
a hydrophobic interaction between aromatic moieties of
substrate and chiral ligand. While late-stage borylations can be
superior in linear synthesis routes, versatile building blocks are
obviously indispensable for convergent and diversity-oriented
reaction sequences.

To date, several on-resin transformations of aromatic and
aliphatic boronates have been described.””?® Our group
recently reported commercially available 1-glycerol polystyrene
resin to be compatible with Fmoc-based chemistry,” which
has been applied to the solid-phase synthesis of bortezomib
and ixazomib by Daniels and Stivala.”® Obviously, a combina-
torial approach consisting of routine and automatable steps
would grant access to complex libraries, thereby allowing the
exploration of novel chemical space and biomolecular inter-
actions. However, no route has yet been described for the
synthesis of Fmoc-a-aminoboronates. We hereby report
a strategy to obtain these versatile building blocks, which can
be readily employed in solid-phase synthesis to obtain
a diversity of PBA sequences.

Results and discussion

Considering the recent achievements in decarboxylative bor-
ylation reactions,"'®*****® Fmoc-a-aminocarboxylic acids derived
from natural amino acids appeared to be prime starting mate-
rials for an innovative building block strategy due to their
diversity, wide availability and applicability to solid-phase
synthesis.

We initially investigated the formation and stability of redox-
active N-hydroxyphthalimide (NHPI) esters as substrates in
decarboxylative borylations. Although only few examples of
Fmoc-protected NHPI esters are described in the literature,**
we found that transformations went smoothly in most cases
and provided stable products in high yields (Table 1). Only some
compounds showed instabilities and side reactions were
observed, for example d-lactam formation®* with all tested
monoprotected (-Pbf, -Mtr, -Tos, -NO,) arginine derivatives.
Fortunately, the NHPI ester of bis-Boc protected arginine (2q)
could be easily obtained. Fmoc-His(Trt)-ONHPI (2u) was found
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Table 1 Activation and borylation of Fmoc-a-aminocarboxylic
acids®?<?

NiCl; (10 mol%)

o NHPI (1.0 eq) [o} Ligand (13 mol%)
HQJ\ 032;1(01 eq) : h 9 } MgBr,*Et,0 (1.5 eq) uo
_ 1eq \)J\ [BapinoMelLi (3.0 eq)
Fmoe H R NG Fmoc/N O/N —_— chc”NYB\O
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Nox
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X = CONHPI: 2b, 82%
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X = Bpin: (+)-3b, 58%

X = Bpin: (%)-3c, 66% X = Bpin: (+)-3d, 70%

H
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_ S

X'=CONHPI: 2f, 91% X' = CONHPI: 2g, 83%
X = Bpin: 3e, 52% X = Bpin: (+)-3f, 61% X = Bpin: (+)-3g¢
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(Bu
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X = Bpin: (+)-3i, 38% X = Bpin: (£)-3}, 43% N\ X = Bpin: (+)-3k, 52% \ X = Bpin: ()-31, 64%

X = CONHPI: 2h, 78%
X = Bpin: (£)-3h, 46%

N
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Hl}l o
Trt

H
N X H
H H -
_N X _N X Fmoc Fmoc” N X
Fmoc j/ Fmoc j:
o O
{Bu {Bu HN - H
| Boc
(X CONHPI: 2m, 94% (X = CONHPI: 2n, 97% (X CONHPI: 20, 83% (X = CONHPI: 2p, 84%
X = Bpin: (+)-3m, 54% X = Bpin: 3n, 64% X = Bpin: (+)-30, 45% X = Bpin: (+)-3p, 51%
H
P X H
Fmoc _N X X
Fmoc Fmoc” Fmoc”
Boc—N 7
n . < !
Boc X .Boc |
N )\ N tBu

H

X =CONHPI: 2s, 74%
X = Bpin: (+)-3s, 34%

>< CONHPI: 2t, 84%
x Bpin: (+)-3t, 48%

X = CONHPI: 2q, 84%

( X'=CONHPI: 2r, 81%
X =Bpin: ()-3q, 47%

X = Bpin: (+)-3r, 56%

H

ZT

X

- H
Fmoc” X Fmoc Fmoc” N X _ H X
N s j/ Fmoc j/

4

N

/ tBu” s it
Trt \O

(X = CONHPI: 2u, 42% ( X'= CONHPI: 2v, 85% ( X = CONHPI: 2w, 67% ( X = CONHPI: 2x, 64%
X = Bpin: (+)-3u, trace X = Bpin: (+)-3v, trace X =Bpin: ()-3w, trace "\ X = Bpin: (+)-3x, trace

“ Isolated yields. ” Reaction conditions: 1 (0.5-1.0 mmol scale,
1.0 equiv.), NHPI (1.0 equiv.), DIC (1.1 equiv.), DMAP (0.1 equiv.),
DCM, 0 °C, 1 h; rt, 2-16 h. © Reaction conditions: NiCl,-6H,0
(10 mol%), 4,4-dimethoxy-2,2"-bipyridyl (13 mol%), MgBr,-OEt,
(1.5 equiv.), [Bpin,Me]Li (3.0 equiv.), THF, 0 °C, 1 h; rt, 1 h; sIBX
(6.0 equiv.), EtOAc, 40 °C, 2 h (see the ESI for details). ¢ Without sIBX
workup, therefore obtained as a crude material containing B,pin,
impurities.

to be of limited stability towards silica gel, but decomposition
could be minimised by using deactivated silica gel (SiO,/H,O
100 : 35, m/m) in the purification step.
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The obtained redox-active esters were examined for their
viability as substrates in the recently published Ni-catalysed
decarboxylative borylation. To our delight, the vast majority of
building blocks could be transformed into their corresponding
pinacolyl boronates, however accompanied by the expected loss
of stereoinformation at the a-carbon due to the radical reaction
mechanism."® For all tested cysteine derivatives (3v, 3w and 3x),
only trace amounts could be identified, indicating that the
presence of a sulfur atom in B-position is detrimental. No
appreciable side reactions were observed during the borylation
of Fmoc-Met-ONHPI (2g), where sulfur is located in y-position.
It should be noted that we were unable to obtain acceptable
yields of Fmoc-a-aminoboronates by applying the operationally
simpler Cu-catalysed decarboxylative borylation method.*

Workup of the crude borylation products proved demanding
at first attempts. a-Amino pinacolyl boronates are known to lack
stability on silica gel or alumina columns, and it should be
noted that the tested compounds even decomposed partially on
deactivated silica gel and product fractions were often found to
be contaminated with phthalimide and B,pin,. Therefore,
chromatography did not seem feasible and the workup proce-
dure was optimised to circumvent chromatographic purifica-
tion: after filtration of the quenched reaction mixture, the crude
residue was treated with stabilised 2-iodoxybenzoic acid
(sIBX).** Delightfully, the addition of sIBX oxidatively destroyed
the excess B,pin, while leaving the a-amino pinacolyl boronates
unaffected, thereby providing evidence of their relative stability
towards mild oxidants. A short extraction procedure was
appended to simultaneously remove phthalimide, B,pin,
degradation products and IBX stabilisers (see the ESI{ for
details).

Applying the optimised workup procedure allowed us to
obtain the desired N-Fmoc-a-pinacolyl boronates in good yields
(Table 1). Most transformations went smoothly and without
impairment of the respective side-chain functionalities, con-
firming the findings of Li et al.*® and highlighting the broad
scope of the Ni-catalysed decarboxylative borylation. Fmoc-Met-
Bpin (3g) was found to be partially oxidised to its sulfoxide by
IBX under the tested conditions as it is described for other
thioethers.** Therefore, the IBX workup was bypassed in the
case of 3g to obtain the compound with B,pin, impurities,
which could be removed in the subsequent step (vide infra).

Initial attempts to deprotect the pinacolyl boronates with
established methods failed.***®* However, our recently pub-
lished monophasic transesterification method® enabled the
deprotection of pinacolyl building blocks in a straightforward
fashion. The procedure was further optimised to allow a direct
lyophilisation after complete conversion to avoid elevated
temperatures. Reactants were transesterified with volatile
methylboronic acid in mixtures of acetonitrile and dilute
aqueous hydrochloric acid to give solutions that could be freeze-
dried to obtain the desired compounds in very high yields (see
the ESIT for details). While conditions A were expedient for acid-
insensitive compounds and superior in terms of methylboronic
acid equivalents, reducing the amount of dilute hydrochloric
acid was essential to prevent premature side-chain deprotection
of some acid-labile compounds (conditions B). Unexpectedly,
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partial side-chain deprotection was observed for compounds
4n, 4q and 4t even when binary water/acetonitrile mixtures were
used as a solvent, presumably due to the acidity of methylbor-
onic acid. Therefore, a buffer system using phosphate buffer pH
7.0 and a short extraction step were employed in the trans-
esterification step (conditions C). With these three conditions
in hand, all 20 investigated compounds could be obtained in
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Table 2 Monophasic transesterification of a-amino pinacolyl
boronates®?<4-¢
OH
o MeB(OH), H |
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R
R
3a-t 4a-t
OH H (\)H
wo yo o o MNs.
N B N B _N B Fmoc OH
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Fmoc” OH

(4)-4h boro-Phe”
91%

OH

B
Fmoc” OH

o o
1
tBu

(£)-41 boro-Glu(tBu)®
91%
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Boc”

(+)-4p boro-Lys(Boc)®
95% (36%, 2 steps)®

OH
H |
B

N
Fmoc” “OH
N
<
N
/
Boc

(&)-4t boro-His(Boc)?
48% (30%, 2 steps)®

@ Isolated yields. ® Reaction conditions (0.1-0.6 mmol scale): compound
3 (1.0 equiv.), MeB(OH), (5.0 equiv.), MeCN/0.1 N HCI (1 : 1, v/v), rt, 16 h.
¢ Reaction conditions (0.1-0.6 mmol scale): compound 3 (1.0 equiv.),
MeB(OH), (10.0 equiv.), MeCN/0.1 N HCI (9 : 1, v/v), t, 2 h. ¢ Reaction
conditions (0.1-0.6 mmol scale): compound 3 (1.0 equiv.), MeB(OH),
(10.0 equiv.), MeCN/phosphate buffer pH 7.0 (1:1, v/v), rt, 2 h.
¢ Applying the same transesterification conditions to crude compound
3 according to route 2, Scheme 1.
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high yields (Table 2). We emphasise that this is the first method
to straightforwardly obtain a library of a-aminoboronic acid
building blocks that are readily employable in diversity-oriented
synthesis approaches.

Our recent findings indicated that B,pin, could be converted
into volatile or water-soluble degradation products by double
transesterification with MeB(OH), under acidic aqueous condi-
tions.* These results prompted us to circumvent IBX workup in
the case of oxidation-sensitive derivative 3g. Delightfully, the
crude compound could be transesterified smoothly to give
a product with boric acid contaminants that were easily removed
by addition of methanol and evaporation of the formed trimethyl
borate under reduced pressure (see the ESIt for details).

Inspired by these results, an optimised protocol with supe-
rior overall atom economy was established (Scheme 1, route 2)
and tested for selected compounds (Table 2). While the oxida-
tive destruction of excess B,pin, with IBX (route 1) allows yield
determination and full characterisation of Fmoc-a-amino-
pinacolyl boronates, the simultaneous transesterification of
pinacolyl boronates and B,pin, is considerably faster and less
expensive. Additionally, IBX is a hazardous and potentially
explosive reagent.” Route 2 is therefore preferable for large-
scale syntheses and industrial applications.

O,
(e}
Fmoc” 2 o~
R o
o o NiCl,*6 H,0
[ ;@ di-MeObipy
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Scheme 1 Process optimisation for the preparation of Fmoc-a-ami-
noboronates. Route 1: oxidative removal of B,pin, contaminants with
IBX. Route 2: simultaneous transesterification of pinacolyl boronates
and Bypin, contaminants (see the ESIT for details).
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The utility of the synthesised Fmoc-a-aminoboronates for
solid-phase synthesis approaches was subsequently investi-
gated. The compounds were readily soluble in methylene
chloride, thereby enabling their straightforward immobilisa-
tion onto 1-glycerol polystyrene resin. No additives, e.g. bases,
were necessary to efficiently immobilise the building blocks
under these conditions. It should be noted that the use of
tetrahydrofuran as in literature-known protocols*** led to
diminished yields, most likely due to its hygroscopy or its
propensity to form peroxides that would be detrimental to
boronic acids. Mild and efficient cleavage from solid support
was achieved by treating the resin with DCM/MeOH/H,O
(5:4:1, v/iv/v). All 20 building blocks were tested regarding
their loading efficiency and were shown to be readily immobi-
lised and cleaved from solid support (Table 3).

As further proof of concept, a selection of building blocks was
applied in standard Fmoc solid-phase synthesis protocols.
Sequences could be obtained in high purity with full conserva-
tion of side-chain protecting groups. Due to the non-acidic
cleavage conditions, the described method provides access to
synthetic intermediates readily applicable to late-stage diversifi-
cations, e.g. petasis reactions*** or cross-coupling reactions.***

Final compounds were obtained by side-chain deprotection
using TFA-based cleavage solutions and subsequent HPLC
purification. Syntheses were successful for building blocks with

Table 3 Immobilisation experiments®
(o}
H (EI?H 'e;}gl)(/;:-%rzlqiﬁl-) /H E‘% Washing steps n EH
Fmoc” \( ~oH ~pemir zh Fmoc 1/ o o mg Fmoc” \( “oH
R d t, 3x30 min R
4a-t (1.2 equiv.) 4a-t

Entry 4 Compound Loading efficiency”
1 (£)-4a boro-Gly 66%

2 (£)-4b boro-Ala 81%

3 (£)-4c boro-val 46%

4 (£)-4d boro-Leu 60%

5 4e boro-1le 64%

6 (£)-af boro-Pro 60%

7 (£)-4g boro-Met 43%

8 (£)-4h boro-Phe 46%

9 (£)-4i boro-Asn(Trt) 44%

10 (£)-4j boro-GIn(Trt) 62%

11 (£)-4k boro-Asp(¢Bu) 71%

12 (£)-41 boro-Glu(tBu) 84%

13 (£)-4m boro-Ser(tBu) 67%

14 4an boro-Thr(tBu) 66%

15 (£)-40 boro-Orn(Boc) 84%

16 (£)-4p boro-Lys(Boc) 66%

17 (£)4q boro-Arg(bis-Boc) 54%

18 (£)-ar boro-Tyr(tBu) 26%

19 (£)-4s boro-Trp(Boc) 49%

20 ()4t boro-His(Boc) 70%

¢ Reaction conditions: 1-glycerol polystyrene resin (100.0 mg, B =
0.60 mmol g™, 0.06 mmol, 1.0 equiv.), compound 4 (0.072 mmol, 1.2
equiv.), DCM (1.5 mL), rt, 2 h. Cleavage was performed with DCM/
MeOH/H,0 (5:4:1, v/v/v) for 3 x 30 min (see the ESI for details).
b Calculated by the molar ratio of cleaved compound 4 and the stated
loading capacity of 1-glycerol polystyrene resin (B = 0.60 mmol g~ %).
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Table 4 Proof-of-concept synthesis of selected peptide sequences®?

OH 1-glycerol PS O OH
B4 resin (1.0 equiv.) /H é‘o 1. Fmoc SPPS gL
~ e - s
Fmoo” " OH pow . za6h ™ T O 2. DCMIMeOH/H,0 AV Y ~OH
R R d t, 3x30 min R
4 (1.2 equiv.) 5a-n

cl o " OH
o OH N _B.
A N OH o]
[ N \g \(
Pz o
N \( cl
(RS/SS)-Bortezomib (%)-Ixazomib
5a, 35% (+)-5b, 56%
OH COOR

[e] OH
H |
N ,B.
N OH
H
(o] )
-

R =1tBu: 5d, 47%
-C

R =H: 5e, 34%

OR
o OH
Hoo
N /Q(N B.
XN OH
(Y WrTY
_ o
N t\l\
o

° RO

R =tBu: 59, 61%
“C
R =H: 5h, 73%

NHR
(o} OH
H |
N B.
N OH
H
o ;

NHR NHR
R = Boc: 5k, 58%

C
R =H:5j, 57% R=H:5l,61%

o N OH
N “OH
N
& )
OR

R =tBu: 5m, 55%
“C

R = Boc: 56i, 47%
“C

R =H: 5n, 38%

“ Isolated yields. ” Loading step: compound 4 (1.2 equiv.), DCM, rt,
2-16 h. Peptide elongation was performed using standard Fmoc-SPPS
protocols (see the ESI for details). Cleavage step: DCM/MeOH/H,0
5:4:1 (v/v/v), 3 x 30 min. °Reaction conditions: 40% TFA in
methylene chloride, rt, 2 h. 4 Reaction conditions: MeCN/TFA/H,O
(7:2:1,v/vv), rt, 2 h.

nonpolar (5a-e), polar (5f-1) and aromatic (5m-n) side-chains,
underlining the general versatility of the described approach
(Table 4).

Conclusions

We hereby present a straightforward method for the conversion
of Fmoc-a-aminocarboxylic acids into their boron equivalents
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in three simple steps. Additionally, the efficient deprotection of
boronic esters under neutral, buffered conditions was estab-
lished in the course of our investigations. Considering the
utility of the intermediates for automated synthesis, the process
was further optimised by establishing a fast protocol with
enhanced atom economy. All building blocks were shown to be
employable in standard Fmoc-based solid-phase synthesis
protocols and yielded a diversity of peptide-boronic acids. The
synthetic toolbox provided here will likely facilitate the
diversity-oriented synthesis of PBAs with a multitude of poten-
tial applications in drug discovery, life sciences and materials
research.
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