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space simulators

Hythem Sidky,a Wei Chenb and Andrew L. Ferguson *a

Small integration time steps limit molecular dynamics (MD) simulations to millisecond time scales. Markov

state models (MSMs) and equation-free approaches learn low-dimensional kinetic models from MD

simulation data by performing configurational or dynamical coarse-graining of the state space. The

learned kinetic models enable the efficient generation of dynamical trajectories over vastly longer time

scales than are accessible by MD, but the discretization of configurational space and/or absence of

a means to reconstruct molecular configurations precludes the generation of continuous atomistic

molecular trajectories. We propose latent space simulators (LSS) to learn kinetic models for continuous

atomistic simulation trajectories by training three deep learning networks to (i) learn the slow collective

variables of the molecular system, (ii) propagate the system dynamics within this slow latent space, and

(iii) generatively reconstruct molecular configurations. We demonstrate the approach in an application to

Trp-cage miniprotein to produce novel ultra-long synthetic folding trajectories that accurately

reproduce atomistic molecular structure, thermodynamics, and kinetics at six orders of magnitude lower

cost than MD. The dramatically lower cost of trajectory generation enables greatly improved sampling

and greatly reduced statistical uncertainties in estimated thermodynamic averages and kinetic rates.
1 Introduction

Molecular dynamics (MD) simulates the dynamical evolution of
molecular systems by numerically integrating the classical
equations of motion.1 Modern computer hardware2,3 and effi-
cient and scalable simulation algorithms4–7 have enabled the
simulation of billion8,9 and trillion-atom systems.10 Advancing
the barrier in time scale has proven far more challenging.
Stability of the numerical integration requires time steps on the
order of femtoseconds commensurate with the fastest atomic
motions,11 which limits simulations to microseconds on
commodity processors11 and milliseconds on special purpose
hardware.3 Enhanced sampling techniques apply accelerating
biases and analytical corrections to recover thermodynamic
averages12–16 but – except in special cases and the limit of small
bias17,18 – no analogous approaches exist to recover unbiased
dynamical trajectories from biased simulations.

The MD algorithm propagates a molecular conguration xt
at time t to xt+s via transition densities xt+s � ps(xt+s|xt).19,20

Assuming ergodicity, the probability density over microstates
converges to the stationary distribution as lim

t/N
qtðxÞ ¼ pðxÞ.

Breaking the time scale barrier requires a surrogate model for
ps(xt+s|xt) that can be more efficiently evaluated and with larger
time steps than MD. Accurately approximating this propagator
in the high-dimensional N-atom congurational space x˛ℝ3N is
intractable. In general, for sufficiently large s there is an
, University of Chicago, Chicago, USA.
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f Chemistry 2020
emergent low-dimensional simplicity that admits accurate
modeling of the dynamics by a low-dimensional propagator
ps(jt+s|jt) within a latent space j˛ℝm�3N . The relation between
MD and latent space dynamics can be represented as,19,20

(1)

This scheme denes three learning problems:19 (i) encoding
E of molecular congurations x to the latent space j, (ii) prop-
agation P of the latent space dynamics according to transition
densities ps(jt+s|jt), and (iii) decoding (or generating) D of
molecular congurations from the latent space.19

Markov state models (MSM)21–28 and the equation-free
approach of Kevrekidis and co-workers29–35 respectively employ
congurational and dynamical coarse graining to parameterize
low-dimensional propagators, but both methods lack molecular
decoders. Recently, numerous deep learning approaches have
been proposed to learn E, P, and D from MD trajectories,
including time-lagged autoencoders,36 time-lagged variational
autoencoders,37 and time-lagged autoencoders with propaga-
tors.38 Training these networks requires a time-lagged recon-
struction term kxt+s � D+P+E(xt)k within the loss, which can
cause the network to fail to approximate the true slow modes.39

Further, time-lagged autoencoders and time-lagged variational
autoencoders do not learn valid propagators,19 and the inherent
Chem. Sci., 2020, 11, 9459–9467 | 9459
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stochasticity of MD appears to frustrate learning of the propa-
gator and decoder in time-lagged autoencoders with propaga-
tors.19 Deep generative MSMs (DeepGenMSM) simultaneously
learn a fuzzy encoding to metastable states and “landing
probabilities” to decode molecular congurations.40 The
method computes a proper propagator and generatively
decodes novel molecular structures, but – as with all MSM-
based approaches – it congurationally discretizes the latent
space and relies on the denition of long-lived metastable
states.

In this work, we propose molecular latent space simulators
(LSS) as a means to train kinetic models over limited MD
simulation data that are capable of producing novel atomistic
molecular trajectories at orders of magnitude lower cost. The
LSS can be conceived as means to augment conventional MD by
distilling a kinetic model from training data, efficiently gener-
ating continuous atomistic trajectories, and computing high-
precision estimates of any atomistic structural, thermody-
namic, or kinetic observable.

The LSS is based on three deep learning networks indepen-
dently trained to (i) learn an encoding E into a latent space of
slow variables using state-free reversible VAMPnets (SRV),41 (ii)
learn a propagator P to evolve the system dynamics within this
latent space using mixture density networks (MDN),42,43 and (iii)
learn a decoding D from the latent space to molecular congu-
rations using a conditional Wasserstein generative adversarial
network (cWGAN).44 Separation of the learning problems in this
manner makes training and deployment of the LSS modular and
simple. The stochastic nature of theMDN propagator means that
the trained kinetic model generates novel trajectories and does
not simply recapitulate copies of the training data. The approach
is distinguished from MSM-based approaches in that it requires
no discretization into metastable states.20,40 The continuous
formulation of the propagator in the slow latent space shares
commonalities with the equation-free approach,29,31 but we
eschew parameterizing a stochastic differential equation in favor
of a simple and efficient deep learning approach, and also equip
our simulator with a generative molecular decoder.
Fig. 1 Schematic diagram of the latent space simulator (LSS) comprisi
VAMPnet (SRV) learns an encoding E of molecular configurations into
operator (eqn (1)). A mixture density network (MDN) learns a propagator
conditional Wasserstein GAN (cWGAN) learns a generative decodingD of
The trained LSS is used to generate ultra-long synthetic trajectories by p
sampling from the MDN to generate long latent space trajectories, and

9460 | Chem. Sci., 2020, 11, 9459–9467
2 Methods

A schematic diagram of the LSS and the three deep networks of
which it is comprised is presented in Fig. 1. We describe each of
the three component networks in turn and then describe LSS
training and deployment.
2.1 Encoder: state-free reversible VAMPnets

The transfer operator T at a lag time s is the propagator of
probability distributions over microstates with respect to the
equilibrium density u(x) ¼ q(x)/p(x) under transition densities
ps(xt+s|xt).45,46 For sufficiently large s the dynamics may be
approximated as Markovian so ps(xt+s|xt) is time homogenous,

utþsðxÞ ¼ T +utðxÞ ¼ 1

pðxÞ
ð
dypsðx|yÞutðyÞpðyÞ: (2)

In equilibrium systems obeying detailed balance p(x)ps(y|x)
¼ p(y)ps(x|y), T is identical to the Koopman operator, self-

adjoint with respect to hajbip ¼
ð
aðxÞbðxÞpðxÞdx, and possesses

a complete orthonormal set of eigenfunctions {ji(x)} with real
eigenvalues 1 ¼ l0 > l1 $ l2 $.,41,46–49

T +jiðxÞ ¼ lijiðxÞ;
�
ji |jj

�
p
¼ dij : (3)

The pair (j0(x) ¼ 1, l0 ¼ 1) corresponds to the equilibrium
distribution at t / N and the remainder to a hierarchy of
increasingly quicker relaxing processes with implied time scales
ti ¼ �s/ln li.41 The evolution of ut(x) aer k applications of T is
expressed in this basis as,

utþksðxÞ ¼ T k+utðxÞ ¼
X
i

hji |utip exp

�
�ks

ti

�
jiðxÞ; (4)

The variational approach to conformational dynamics (VAC)
denes a variational principle to approximate these
ng three back-to-back deep neural networks. A state-free reversible
a latent space spanned by the leading eigenfunctions of the transfer
P to sample transition probabilities ps(jt+s|jt) within the latent space. A
molecular configurations conditioned on the latent space coordinates.
rojecting the initial configuration into the latent space using the SRV,
decoding to molecular configurations using the cWGAN.

This journal is © The Royal Society of Chemistry 2020
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eigenfunctions as ~jiðxÞ ¼
X
j

sijcjðxÞ within a basis {cj} by
solving for optimal expansion coefficients sij.41,47,48 SRVs41 –

themselves based on VAMPnets, a deep learning-based method
for MSM construction,27 and closely related to extended
dynamic mode decomposition with dictionary learning50 –

employ deep canonical correlation analysis (DCCA)51 to learn
both the optimal expansion coefficients and optimal basis
functions as nonlinear transformations of the (featurized)
molecular coordinates. This is achieved by training twin-lobed
deep neural networks to minimize a VAMP-r loss function

L SRV ¼ �
X
m

lrm.
27 SRVs trained over MD trajectories furnish an

encoding E (eqn (1)) into am-dimensional latent space spanned
by {ji(x)}i¼1

m, where m is determined by a gap in the eigenvalue
spectrum. This spectral encoding into the leading modes of T
neglects fast processes with implied timescales ti � s (eqn (4))
and is an optimal parameterization of the system for a low-
dimensional long-time propagator.19

This slow subspace represents the optimal m dimensional
embedding for the construction of the long-time propagator,
but information is lost on more quickly relaxing processes. If
there are faster processes in the system that are known to be of
interest (e.g., fast components of a folding transition), it may be
possible to identify the higher order SRV eigenfunctions cor-
responding to these processes and judiciously expand the slow
subspace to include these modes. Contrariwise, it can some-
times be the case that processes within the slow subspace (e.g.,
slow cis/trans isomerizations) may not correspond to the kinetic
process of interest (e.g., folding). In certain situations it can be
desirable to eliminate these slow “nuisance processes”, perhaps
because they correspond to very slow and rarely sampled events
that are deleterious to constructing a robust kinetic model of
the process of interest. One may eliminate these modes from
the slow subspace a posteriori by simply discarding the SRV
eigenfunctions identied to correspond to these processes, or –
if they are known beforehand as a result of a previous analysis –
a priori by subtracting them out of the system featurization
using deation.52
2.2 Propagator: mixture density networks

At sufficiently large s the latent space j(x) ¼ {ji(x)}i¼1
m supports

an autonomous dynamical system in the leading modes of T .
We train MDNs to learn transition densities ps(jt+s|jt) fromMD
trajectories projected in the latent space. MDNs combine deep
neural networks with mixture density models to overcome poor
performance of standard networks in learning multimodal
distributions.42,43 Transition densities are approximated as
a linear combination of C kernels,

psðjtþs|jtÞ ¼
XC
c¼1

acðjtÞfcðjtþs;mcðjtÞ; scðjtÞÞ; (5)

where we choose fc to be m-dimensional Gaussians. The jt-
dependent Gaussian means mc(jt), variances sc(jt), and linear
mixing coefficients ac(jt) are learned by a deep feedforward
neural network that minimizes the loss function

L MDN ¼ �
X
g

ln psðjtþs
g|jt

gÞ, where g indexes pairs of time-
This journal is © The Royal Society of Chemistry 2020
lagged training data observations. The normalization
XC
c¼1

acðjtÞ ¼ 1 is enforced by somax activations and the mc(jt)

bounded using sigmoid activations.
The trained MDN denes the latent space propagator P (eqn

(1)) and we sample transition densities ps(jt+s|jt) to advance the
system in time (Fig. 1). Propagation is conducted entirely within
the latent space and does not require recurrent decoding and
encoding to the molecular representations that can lead to
accumulation of errors and numerical instability.19,53 The tran-
sition densities are learned from the statistics of transitions in
the training data and new trajectories are generated by
sampling from these transition densities. These new trajecto-
ries therefore represent novel dynamical pathways over the
latent space and are not simply recapitulations or approximate
copies of those in the training data. Successful MDN training is
contingent on the low-dimensional and Markovian nature of
the latent space dynamics at large s discovered by the SRVs.

2.3 Decoder: conditional Wasserstein GAN

Generative adversarial networks are a leading neural network
architecture for generative modeling.54 We employ a cWGAN44,55

to decode from the latent space j to molecular congurations x
by performing adversarial training between a generator G(z)
that outputs molecular congurations from inputs z � P zðzÞ
and a critic C(x) that evaluates the quality of a molecular
conguration x. The networks are jointly trained to minimize
a loss function based on the Wasserstein (Earth mover's)
distance,

L WGAN ¼ max
w˛W

Ex�P x
½CwðxÞ� � Ez�P z

½CwðGðzÞÞ�; (6)

where P xðxÞ is the distribution over molecular congurations
observed in the MD training trajectory and {Cw}w˛W is a family
of K-Lipschitz functions enforced through a gradient
penalty.44,55 To generate molecular congurations consistent
with particular states in the latent space we pass j as a condi-
tioning variable to G and C56 and drive the generator with d-
dimensional Gaussian noise P zðzÞ ¼ N ð0; 1Þ˛ℝd. The noise
enables G to generate multiple molecular congurations
consistent with each latent space location. We train the cWGAN
over (xg, jg) pairs by encoding each frame g of the MD training
trajectory into the latent space using the SRV. The trained
cWGAN decoder D (eqn (1)) generates molecular congurations
from the latent space trajectory produced by the propagator
(Fig. 1).

3 Results and discussion
3.1 4-Well potential

We validate the LSS in an application to a 1D four-well poten-
tial23 V(x) ¼ 2(x8 + 0.8e�80x2 + 0.2e�80(x�0.5)2 + 0.5e�40(x+0.5)2) for
which analytical solutions are available. In this simple 1D
system we construct the propagator directly in x ¼ j˛ℝ1, so
encoding and decoding are unnecessary and this test validates
that the MDN can learn transition densities ps(xt+s|xt) to accu-
rately reproduce the system thermodynamics and kinetics. We
Chem. Sci., 2020, 11, 9459–9467 | 9461
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Fig. 3 Free energy profiles for the MD and LSS trajectories projected
into the slowest latent space coordinate j1. Shaded backgrounds
represent standard errors estimated by five-fold block averaging. The
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generate a 5 � 106 time step Brownian dynamics trajectory in
a dimensionless gauge with diffusivity D ¼ kBT ¼ 1000 and
a time step Dt ¼ 0.001.57 A MDN was trained using Adam58 with
early stopping over the [0,1] scaled trajectory at a lag time of s ¼
100, with C ¼ 8 Gaussian kernels, and two hidden layers of 100
neurons with ReLU activations.59 The trained MDN was used to
generate a 5 � 104 step trajectory of the same length as the
training data. Analytical transition densities were computed by
partitioning the domain into 100 equal bins and dening the
probability of moving from bin i to bin j as p(j|i) ¼ Cie

�(Vj�Vi) for
|i � j| # 1, where Vi is the potential at the center of bin i and Ci

normalizes the total transition probability of bin i.41

The Brownian dynamics and synthetic LSS stationary
distributions are in quantitative agreement with the analytical
solution for the stationary density (Fig. 2a) and show very
similar kinetic behaviors in their transitions between the four
metastable wells (Fig. 2b). This agreement is due to the excellent
correspondence between the analytical and learned transition
densities (Fig. 2c and d).
profiles agree within a 0.91kBT root mean squared error. Ten repre-
sentative structures from the MD and LSS ensembles are sampled from
the folded (j1 z 0), unfolded (j1 z 0.9), and metastable (j1 z 0.45)
regions.
3.2 Trp-cage miniprotein

We train our LSS over the 208 ms all-atom simulation of the 20-
residue TC10b K8A mutant of the Trp-cage mini-protein per-
formed by D. E. Shaw Research.60 Generation of these MD
trajectories would require �2.5 days (2 million CPU h) on the
special purpose Anton-2 supercomputer or �6 months on
a commodity GPU card.3

The SRV encoder was trained over a featurization of the
trajectory employing backbone and sidechain torsions and Ca

pairwise distances as informative and roto-translationally
Fig. 2 Validation of the LSS in a 1D four-well potential. TheMDN propaga
d) transition densities in excellent accord with analytical and Brownian d

9462 | Chem. Sci., 2020, 11, 9459–9467
invariant descriptors.25 We preprocess and represent the
atomistic simulation data to the SRV in this manner to elimi-
nate trivial rigid translations or rotations that would otherwise
contaminate the learned slowmodes. There are many choices of
rotationally and translationally invariant featurizations, but we
have shown in previous work on Trp-cage that this choice
tor predicts (a) a stationary distribution, (b) kinetic transitions, and (c and
ynamics results.

This journal is © The Royal Society of Chemistry 2020
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Table 1 Implied time scales of leading Trp-cage modes. Standard
errors estimated by five-fold block averaging

Timescale MD (ms) LSS (ms)

t1 3.00 � 0.61 2.89 � 0.12
t2 0.54 � 0.37 0.43 � 0.04
t3 0.45 � 0.12 0.42 � 0.01
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contains more kinetic variance and generates more kinetically
accurate models than either Ca pairwise distances alone,
backbone and sidechain torsions alone, or rotationally and
translationally aligned Cartesian coordinates.25 We trained
a SRV with two hidden layers with 100 neurons, tanh activa-
tions, and batch normalization using Adam58 with a batch size
of 200 000, learning rate of 0.01, and early stopping based on
the validation VAMP-2 score.25,41 A lag-time of s ¼ 20 ns was
chosen based on convergence of the transfer operator
Fig. 4 Free energy profiles of the MD and LSS trajectories projected int

This journal is © The Royal Society of Chemistry 2020
eigenvalues, and a m ¼ 3-dimensional latent space encoding
dened based on a gap in the eigenvalue spectrum. The MDN
propagator was trained over the latent space projection of the
MD trajectory at a lag time of s ¼ 20 ns using Adam58 with early
stopping, C¼ 24 Gaussian kernels, and two hidden layers of 100
neurons with ReLU activations. The cWGAN decoder comprised
a generator and critic with three hidden layers of 200 neurons
with Swish61 activations and a d ¼ 50-dimensional noise vector.
The training loss stabilized aer 52 epochs. The cWGAN is
trained to generate the Trp-cage Ca backbone by roto-
translationally aligning MD training congurations to a refer-
ence structure. Training of the full LSS pipeline required �1
GPU h on a NVIDIA GeForce GTX 1080 Ti GPU core.

The trained LSS was used to produce 100 � 208 ms synthetic
trajectories each requiring �5 s on a single NVIDIA GeForce
GTX 1080 Ti GPU core. The LSS trajectories comprise the same
total number of frames as the 208 ms all-atom trajectory but
contain �1070 folding/unfolding transitions compared to just
o the leading three MD TICA coordinates.

Chem. Sci., 2020, 11, 9459–9467 | 9463
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12 in the training data and were generated at six orders of
magnitude lower cost. This observation illuminates the crux of
the value of the approach: the LSS learns a kinetic model over
limited MD training data and is then used to generate vastly
longer novel atomistic trajectories that enable the observation
of states and events that are only sparsely sampled in the
training data. We now validate the thermodynamic, structural,
and kinetic predictions of the LSS.

Thermodynamics. The free energy proles projected into the
slowest latent space coordinate F(j1) ¼ �kBT ln(q(j1)) show
excellent correspondence between the MD and LSS (Fig. 3). The
free energy of the folded (j1 z 0) and unfolded (j1 z 0.9)
basins and transition barrier are in quantitative agreement with
a root mean squared error between the aligned proles of
0.91kBT. The LSS proles contain 10-fold lower statistical
uncertainties than the MD over the same number of frames due
to the 100-fold longer LSS data set enabled by their exceedingly
low computational cost.

Structures. The MD and LSS molecular structures within the
folded basin (j1 z 0) and metastable transition state (j1 z
0.45) possess a relative Ca-RMSD of 0.29 nm and 0.37 nm,
respectively. Relative to the Trp-cage native state (PDB ID: 2JOF),
the MD and LSS folded congurations possess a Ca-RMSD of
0.20 nm and 0.28 nm, respectively. The mean and standard
deviation of the time-averaged radii of gyration (Rg) for the MD
(0.87 � 0.16) nm and LSS (0.87 � 0.13) nm trajectories are
indistinguishable with standard errors computed by ve-fold
block averaging. These results demonstrate that the LSS
molecular structures are in excellent accord with MD.

Kinetics. We compare the MD and LSS kinetics through the
autocorrelation times corresponding to the relaxation time
scales associated with the m ¼ 3 leading kinetic processes. The
autocorrelation Ci(s) ¼ hji(t + s)ji(t)i/hji(t)ji(t)i of each process
ji is computed as an average over the MD data by projecting the
training trajectory into the slow latent space through the trained
SRV, whereas for the LSS data we use the latent space trajectory
produced by the MDN. We t the autocorrelation functions with
a decaying exponential Ĉi(s) ¼ exp(�s/ti) (cf. eqn (4)) and report
ti as the implied relaxation time scale associated with ji(t).
Standard errors sti in ti are estimated by breaking the LSS
trajectory into K ¼ 5 contiguous blocks of equal length,
computing ti

k over each of the k ¼ 1.K blocks, and estimating
sti – assuming the block size to be large enough to assume
independent and uncorrelated estimates – from the standard
deviation computed over the K estimates {ti

k}k¼1
K.62 The stan-

dard error provides a estimate of the deviation of the estimated
value of ti from the true value. All three time scales are in
excellent agreement and again the LSS uncertainties are
approximately 10-fold lower than the MD (Table 1).

We then employ time-lagged independent component anal-
ysis (TICA)46,63–69 to determine whether the LSS trajectory
possesses the same slow (linear) subspace as the MD. We fea-
turize the trajectories with pairwise Ca distances and perform
TICA at a lag time of s ¼ 20 ns. Projection of the free energy
surfaces into the leading three MD TICA coordinates show that
the leading kinetic variance in the MD data is quite accurately
reproduced by the LSS (Fig. 4). The only substantive
9464 | Chem. Sci., 2020, 11, 9459–9467
disagreement is absence in the LSS projection of a small high-
free energy metastable state at (TIC1 z 0, TIC3 z �2.5) cor-
responding to congurations with Pro18 dihedral angles j z
(�50)�. These congurations are only transiently occupied due
to rare Pro18 dihedral ips that occur only twice during the 208
ms MD trajectory and are not contained in the m ¼ 3-dimen-
sional latent space.

4 Conclusions

We have presented LSS as a method to learn efficient kinetic
models by training three state-of-the-art deep learning networks
over MD training data and then using the trained model to
generate novel atomistic trajectories at six orders of magnitude
lower cost. The spirit of the approach is similar to MSM-based
and equation-free approaches that use limited MD training
data to parameterize highly-efficient kinetic models that can
then be used to generate dynamical trajectories over vastly
longer time scales than are possible with conventional MD. In
contrast to these approaches, the absence of any discretization
of the congurational space and provisioning with a molecular
decoder enables the LSS to produce continuous atomistic
molecular trajectories. Importantly, the probabilistic and
generative nature of the approach means that the generated
molecular trajectories are novel and not simply a reproduction
of the training data, and the statistics of these trajectories
accurately reproduce the structural, thermodynamic and kinetic
properties of the molecular system.

The dramatic reduction in the cost of trajectory generation
opens a host of valuable possibilities: vastly improved sampling
of congurational space and dynamical transitions enable
estimates of thermodynamic averages and kinetic rates with
exceedingly low statistical uncertainties; parameterization of
kinetic models withmodest training data enable the production
of ultra-long trajectories on commodity computing hardware;
representation of the kinetic model as the parameters of a trio
of deep networks enables efficient sharing of a “simulator in
a box” that can then be used for rapid on-demand trajectory
generation. The properties of the trained kinetic model – the
dimensionality of the slow latent space, the structural corre-
spondence of the slow modes, and the transition probabilities
of the propagator – also provide fundamental insight and
understanding of the physical properties of the molecular
system.

As with all data-driven approaches, the primary deciency of
the LSS approach is that the resulting kinetic models are not
necessarily transferable to other conditions or systems and are
subject to systematic errors due to approximations in the
molecular force elds and incomplete sampling of the relevant
congurational space in the training data. The latter issue
means that although the generated LSS trajectories are – similar
to MSM-based and equation-free approaches – largely interpo-
lative. The stochastic nature of the MDN propagator and
generative nature of the cWGAN generator means that we may
anticipate local extrapolations beyond the exact training
congurations.40 There is no expectation, however, that the
trained model will discover new metastable states or kinetic
This journal is © The Royal Society of Chemistry 2020

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc03635h


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
A

ug
us

t 2
02

0.
 D

ow
nl

oa
de

d 
on

 5
/2

1/
20

25
 6

:2
6:

04
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
transitions, and certainly not do so with the correct thermody-
namic weights or dynamical time scales.

The present work has demonstrated LSS in a data-rich
training regime where the MD training data comprehensively
samples congurational space. The next step is to establish an
adaptive sampling paradigm – similar to that in MSM
construction22 and some enhanced sampling techniques70–73 –
to enable its application in a data-poor regime. The adaptive
sampling approach interrogates the kinetic model to identify
under-sampled states and transitions that contribute most to
uncertainties in the model predictions (i.e., “known
unknowns”) and initializes new MD simulations to collect
additional training data in these regions. This interleaving of
MD training data collection and model retraining can dramat-
ically reduce the required quantity of training data.22 Moreover,
new simulations initialized in under-sampled regions may also
occasionally be expected to transition into new congurational
states not present in the initial training data (i.e., “unknown
unknowns”).72 Iterating this process until convergence can
expand the range of the trained kinetic model to encompass the
relevant congurational space and minimize the cost of
training data collection.

Finally, we also envisage applications of the LSS approach
beyond molecular simulation to other elds of dynamical
modeling where stiff or multi-scale systems of ordinary or
partial differential equations, or the presence of activated
processes or rare events, introduces a separation of time scales
between the integration time step and events of interest. For
example, there may be protable adaptations of the approach in
dynamical modeling within such elds as cosmology, ecology,
immunology, epidemiology, and climatology.
Availability

Codes implementing the three deep networks required by the
LSS are available at https://github.com/hsidky/srv/tree/newgen/.
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6, 22.
9466 | Chem. Sci., 2020, 11, 9459–9467
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