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e novo molecular design of
organic structure-directing agents for zeolites
using nature-inspired ant colony optimization†

Koki Muraoka, ‡ Watcharop Chaikittisilp §* and Tatsuya Okubo *

Organic structure-directing agents (OSDAs) are often employed for synthesis of zeolites with desired

frameworks. A priori prediction of such OSDAs has mainly relied on the interaction energies between

OSDAs and zeolite frameworks, without cost considerations. For practical purposes, the cost of OSDAs

becomes a critical issue. Therefore, the development of a computational de novo prediction

methodology that can speed up the trial-and-error cycle in the search for less expensive OSDAs is

desired. This study utilized a nature-inspired ant colony optimization method to predict

physicochemically and/or economically preferable OSDAs, while also taking molecular similarity and

heuristics of zeolite synthesis into consideration. The prediction results included experimentally known

OSDAs, candidates having structures closely related to known OSDAs, and novel ones, suggesting the

applicability of this approach.
Introduction

The deployment of materials in commercial products needs to
satisfy multiple requirements including properties, durability,
economic efficiency, and environmental regulations. A class of
microporous silicate-based materials known as zeolites has
overcome the valley of death to be adapted in several applica-
tions such as catalysis and separation.1 Zeolites can be synthe-
sized under hydrothermal conditions, where inorganic and/or
organic cations, together with water molecules, t within the
interior spaces of the anionic silicate-based frameworks to
direct the crystallization of specic crystalline phases.2 Diver-
sication and tuning of organic structure-directing agents
(OSDAs), which are typically organic cations, have been a major
driving force in expanding the number of available zeolite
structures to over 240.3,4 The use of OSDAs can, however,
increase the production cost of zeolites and entails additional
processes for removal of OSDAs (mostly combustion) and
wastewater treatment.
g, The University of Tokyo, 7-3-1 Hongo,

okubo@chemsys.t.u-tokyo.ac.jp

(ESI) available: Typical trajectory of
olecular structures and stabilization
s for three zeolites, and structures of
ion. See DOI: 10.1039/d0sc03075a

s Area, Lawrence Berkeley National
A 94720, USA.

ces Division of Materials Data and
itute for Materials Science (NIMS), 1-1
. E-mail: CHAIKITTISILP.Watcharop@

3

In fact, industrially important zeolites such as FAU, FER,
MOR, LTA and LTL zeolites can be produced without using
OSDAs.5 On the other hand, structures including *BEA, CHA,
AEI, and CON zeolites, which typically need OSDAs for their
syntheses, have also gathered interest due to their remarkable
catalytic properties.6–8 In order to advance the implementation
of such cost-intensive materials, modication of typical
synthetic routes is necessary. A previous research study
proposed three strategies for the cost reduction of synthesis of
zeolites with OSDAs, namely, OSDA-free synthesis, recycling of
OSDAs, and replacement of OSDAs.9

Conventional OSDA-free synthesis has been explored for
decades under a wide range of synthesis conditions to produce
about 30 aluminosilicate zeolites.5 The recent expansion of
OSDA-free synthetic routes has mainly been driven by the use of
seed crystals, which are synthesized from conventional routes
using OSDAs.10 The secondary use of the synthesized product as
seeds can substantially reduce the amount of OSDAs required
for synthesis,11 although the number of applicable systems
seems to be limited. In the second strategy, OSDAs in zeolites
are recycled by breaking and reuniting cyclic ketal groups in
OSDA molecules.12 However, the implementation of recyclable
functional groups signicantly limits the freedom of OSDA
design, limiting the applicability of the approach.

Replacement of complex and expensive OSDAs with simpler
ones has been successful in several cases.9,13–17 Furthermore,
instead of relying on time-consuming trial-and-error experi-
ments to nd reasonable alternative OSDAs, molecular
modeling can tackle the problem. An OSDA's ability to direct the
crystallization of zeolites is well understood to be mainly
derived from van der Waals interactions and charge
This journal is © The Royal Society of Chemistry 2020
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compensation between OSDAs and inorganic zeolite frame-
works. Even though crystallization of zeolites is strongly gov-
erned by kinetics,18 computational modeling of the host–guest
interactions can accurately describe the outcomes from hydro-
thermal synthesis,19–24 selectivity against competing phases,25,26

congurations of OSDAs,27–29 and location of Al in zeolites with
OSDAs.30

Employment of the host–guest interactions as the objective
function has been realized in de novo molecular design meth-
odologies for zeolite–OSDA systems. The rst example of the
methodology demonstrated that stochastic algorithms can grow
organic molecules inside the zeolite frameworks.19 However, the
growth algorithm also yields organic molecules that are difficult
or impossible to synthesize. This issue was solved in recent
studies by Deem and his co-workers,31 where an evolutionary
algorithm treats an array of readily available reagents and
known chemical reactions as a genetic sequence for producing
candidate OSDAs. The method can predict OSDAs along with
synthetic pathways and stabilization energies, which are useful
to verify in zeolite synthesis.16,22,26,32,33 However, this evolu-
tionary algorithm may sometimes predict trivial, unrealistic,
and/or economically less advantageous candidates.31,33

Design of OSDAs is a multi-objective problem. Several issues,
including stabilization energy, cost of reagents, synthetic
pathways, and environmental compatibility, must be consid-
ered simultaneously, making it a complicated Pareto optimi-
zation problem. The difficulty is apparent in the network of
organic chemistry where molecules are regarded as nodes and
chemical reactions are regarded as edges.34,35 The exploration of
the large chemical network to nd the optimal compound is
computationally demanding and requires meta-heuristic
approaches that are particularly suited for network-based
problems.

The present study solves the multi-objective problem of
OSDA design using a nature-inspired ant colony optimization
(ACO) algorithm.36 The methodology can optimize stabilization
energy of zeolite–OSDA systems by considering the cost of
reagents and molecular similarity, thus screening the large
database of available reagents. The stabilization energy and/or
cost of the predicted results surpass those of current state-of-
the-art OSDAs, proving the efficiency of the method used.

Results and discussion

Although synthesis of OSDAs occasionally requires multiple
synthetic steps using various organic reactions, most of the
practically achievable OSDAs are produced by alkylation of
amines with organic halides. If we focus on particular organic
reactions, de novo design algorithms including ACO can be
efficiently used. Therefore, the scope of OSDAs considered here
is limited to the products of alkylation of commercially avail-
able amines and halides.

The library of available organic compounds was retrieved
from commercial suppliers.37–40 This dataset containing 97 132
compounds was reduced by eliminating molecules with
elements other than carbon, hydrogen, nitrogen, chlorine,
bromine, and iodine. Molecules unable to participate in the
This journal is © The Royal Society of Chemistry 2020
alkylation reaction were taken out of consideration. Aer
removing duplicated entries, 1241 halides and 5144 amines are
present in our database. The combination of 6 383 704 is too
large for one-by-one molecular dynamics (MD) simulations.

To tackle the massive number of combinations, we use ACO,
which is a general meta-heuristic optimization algorithm
inspired by nature. When a biological ant tries to take food to its
nest, it tracks the pheromones deposited on the route that were
secreted by other ants. At rst, ants move randomly because
they do not know the overall network information composed of
the places (nodes) and the routes (edges). By just following the
high-pheromone path, they will eventually nd the best route
because efficient routes tend to be frequently visited in the past.
To computationally mimic such behavior, ACO uses “articial
ant agents” that track “pheromones” on a network.36 In ACO,
pheromones are numerical information that is assigned to
edges in the network. An ant agent stochastically selects the
next edge with the probability proportional to the number of
pheromones. The amount of pheromone is updated for each
run from scores of the objective function to be optimized.

The ability of ACO to nd the best route from a network is
suited for solving network-based problems such as the traveling
salesman problem.41 ACO has also been applied to chemical
networks, for instance, to reductive amination for construction
of predictive models of structure–activity relationships.42,43 The
efficiency of ACO in chemical networks was demonstrated in the
implementation of the de novo design in automated synthesis
and assay systems.

Fig. 1 schematically represents a single step of our ACO.
Firstly, we create 10 ant agents that form called a colony. Each
ant agent selects an amine with the probability proportional to
the corresponding pheromone amount. Then, it selects a halide
in the same way. A virtual alkylation reaction is performed from
the selected amine and halide. If reactive orbitals remain in the
resulting molecule, a further alkylation reaction is applied
using the selected amine or halide (i.e., partial alkylation was
not allowed here). The resulting quaternary ammonium cation
is subsequently evaluated usingmultiple lters. If the candidate
molecule satises the criteria, MD simulation is conducted to
evaluate the stabilization energy, which becomes the score of
the ant agent. Aer running 10 ants, the pair of nodes visited by
the best ant receives pheromones. As is well known, structurally
similar OSDAs sometimes crystallize the same zeolites.44 This
algorithm gives an additional amount of pheromone to the
reagents that are structurally similar to the globally best
reagent. This single step is repeated multiple times.

The rst lter eliminates cyclic ammoniums with signicant
distortions. Unlike actual organic synthesis, the virtual reaction
can produce highly distorted rings such as three or four-
membered rings and ve membered-rings containing triple
bonds. To reject candidates with these signicant distortions,
we counted the numbers and types of bonds in an ammonium
ring (see the Computational methods section for details). The
second lter is the degree of hydrophobicity of cations. It is
generally accepted that OSDAs need to have a moderate
hydrophobicity to be dissolved in aqueous solutions and to
interact with hydrophobic zeolite frameworks.45 The
Chem. Sci., 2020, 11, 8214–8223 | 8215
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Fig. 1 Schematic illustration of the computational workflow. A colony contains 10 artificial ants where each ant stochastically selects an amine
and a halide with the probability proportional to the number of pheromones. The distances between nodes are defined by the cost parameter h
and the adjustable parameter b. The virtual alkylation reaction produces a quaternary ammonium cation, which is subsequently screened with
computationally efficient criteria. The candidate cation that satisfies the criteria is subjected to the MD run to calculate the stabilization energy,
which is used to update the number of pheromones for subsequent ants.

Table 1 Cost parameters h of some of the typical reagents used for
zeolite synthesis

Source Reagent h

Si Colloidal silica (LUDOX AS-40) 0.036
Fumed silica 0.055
Tetraethyl orthosilicate 0.11

Al Aluminum foil 1.6
Aluminum hydroxide 0.052
Sodium aluminate 0.031

Alkali cation Sodium hydroxide 0.0087
Potassium hydroxide 0.048
Rubidium hydroxide 5.5

OSDA Tetramethylammonium 1.3a (2.0b)
Tetraethylammonium 14a (0.50c)
Tetrapropylammonium 32a (4.8d)
1 190a

a Calculated from the cost of amines and halides. b Calculated from
tetramethylammonium hydroxide pentahydrate. c Calculated from
tetraethylammonium hydroxide solution (35 wt% in H2O).
d Calculated from tetrapropylammonium hydroxide solution (20 wt%
in H2O).
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hydrophobicity of OSDAs can be determined by a partitioning
experiment that evaluates the degree of phase transfer of OSDA
salts from water to the organic solvent, mostly chloroform or
octanol. The chloroform–water partition coefficients have been
correlated with C/N+ atomic ratios of efficient OSDAs.46 Using
this knowledge, we reject candidates with too low (#5) and too
high ($18) C/N+.

The rotational freedom of OSDAs is another effective metric
to screen candidate molecules. Molecules with many rotatable
bonds should be avoided because their conformations can be
changed at high temperature in hydrothermal synthesis, which
can reduce the selectivity of zeolite crystallization.46 The
number of rotatable bonds is restricted to less than 3 in
accordance with a previous report.46

If the candidate satises the above criteria, we apply a newly
developed algorithm to estimate locations of OSDAs in a given
zeolite. First, we perform Voronoi tessellation of the zeolite to
approximate its inner porous structure as a set of spheres with
different volumes using Zeo++ soware.47 Among the coordinates
of these spheres, the location with small steric hindrance for the
molecule is identied by counting the number of atoms too close
to each other. Aer nding the best location, the molecule is
randomly rotated in 100 different angles to minimize the steric
hindrance. This procedure is repeated by adding another mole-
cule in the unit cell until no more molecules can be added
without signicant steric hindrance. Thus, candidates that are
too large to t in the given zeolite are rejected at this step.

The obtained zeolite–OSDA complex is used as the input of
MD simulations. To compare with the previous studies,16,33 we
use the same setting for MD simulations; see Computational
methods for details. Most of the computational time is
consumed in the MD runs. Since independent processes run
each ant, distributed processing will signicantly increase the
performance, although multi-core desktop machines are
enough for this purpose.

The efficiency of the ACO algorithm was tested with the
design of OSDAs for several industrially important zeolites.
Small-pore zeolites in which the porous cavities are limited by
8216 | Chem. Sci., 2020, 11, 8214–8223
the apertures composed of eight oxygens and eight tetrahedral
atoms are suitable for chemical processes related to relatively
small species, including methanol-to-olen catalytic conver-
sion48 and selective catalytic reduction of NOx.7 Among
numerous small-pore zeolites, the CHA zeolite is at a high
technology readiness level by virtue of its superior hydrothermal
stability and preferable cage size.49 One of the major hurdles to
deployment is the cost of OSDAs.50–52 To quantitatively conrm
this, we calculated the cost parameter h that correlates with the
US dollar per mole for chemicals, with consideration of scale
merit.34 As summarized in Table 1, the cost parameter of typical
reagents used for OSDA-free synthesis of zeolites ranges from
0.0087–5.5, which is far smaller than the value of 190 for N,N,N-
trimethyl-1-adamantammonium (1), the typical OSDA for the
synthesis of the high-silica aluminosilicate CHA.53 Even though
the amount of OSDAs required for the crystallization of CHA can
be about one order of magnitude smaller than the amount of
This journal is © The Royal Society of Chemistry 2020
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Si,14,54 it inevitably increases the overall cost of production.
Table S1† presents the experimentally proven OSDAs and the
corresponding stabilization energies that range from �9.4 to
�16.8 kJ molSi

�1. Among them, 1 is the best, conrming the
strong experimentally observed structure-directing ability to
crystallize CHA.55,56 Note that the stabilization energy of 1 for
CHA (�16.8 kJ molSi

�1) calculated here is very close to the re-
ported value in a previous study (�16.7 kJ molSi

�1).16

Considering the high cost parameter h of 1, we explored the
chemical network using ACO to nd alternative OSDAs that can
direct CHA crystallization. While some of the meta-heuristic
algorithms are virtually black box, the adaptive process of ACO
is easily interpretable by tracking the amount of pheromone
deposited on reagents. Fig. 2 shows the trajectory of the
normalized pheromone amount in the typical rst 100 steps for
CHA. As can be seen, all reagents started from an equivalent
amount of pheromone, which exponentially decayed as ACO
Fig. 2 Typical trajectory of a normalized amount of pheromone (i.e.,
probability) deposited on reagents for a single run for CHA without
considering the cost of chemicals (a cost adjustable parameter, b ¼ 0)
during the first 100 steps. (a) Trajectory of probability that an amine is
selected. Some selected examples of amines, A1–A6, are shown for
clarity; see Fig. S1a† for all chemicals. (b) Molecular structures of A1–
A6. (c) Trajectory of probability that a halide is selected. Some selected
examples of halides, H1–H4, are shown for clarity; see Fig. S1b† for all
chemicals. (d) Molecular structures of H1–H4.

This journal is © The Royal Society of Chemistry 2020
optimization progressed. Aer 10 steps, one ant agent selected
A1 to produce a candidate OSDA that outperformed the others.
At this point, the candidate OSDA synthesized by A1 was
a global optimum that could receive an extra amount of pher-
omone, fostering the exploration of the other candidates that
use A1 as a building block.

One of the common straightforward approaches for molec-
ular design is the use of structurally similar molecules. To
mimic this design strategy, we implemented a function to
consider molecular similarity.57 Amines that are structurally
similar to A1, such as A2, A3 and A4, received different amounts
of extra pheromones aer A1 became the global best. With the
increased probability as the step proceeded, candidate OSDAs
derived from A2, A3 and A4 were selected by ant agents and won
within colonies as shown in the sharp uptakes of the normal-
ized amounts of pheromones (i.e., probabilities) until step 80.
At step 80, A5, the amine that had increased its amount of
pheromone at step 58, became the global best by reacting with
H1, resulting in the decrease of A1–A4 and the increase of A5
and its structurally related amines until step 90, where the
combination of A6 and H1 outperformed the previous global
best. In the corresponding trajectory for halides, H1 remained
the global best, although other halides (H2, H3, and H4) were
frequently selected and won local ant colonies. Due to the max–
min functionality, repeated winnings of the global best did not
show uptakes, although the additional pheromone derived
from molecular similarity increased the probability of being
selected. Thus, ACO can sample candidate OSDAs both similar
to and different from known ones.43

Fig. 3 summarizes some of the computationally predicted
OSDAs for CHA. The automated lling algorithm introduced
three molecules per unit cell in most cases, which is consistent
with experimental observations56 and the number of cages in
CHA.3 Obviously, the ACO algorithm can propose candidate
OSDAs comparable with the experimentally proven OSDAs,
summarized in Table S1†, in terms of stabilization energies.
Fig. 3 OSDAs for CHA computationally predicted without considering
the cost of chemicals (a cost adjustable parameter, b ¼ 0) and their
corresponding stabilization energies Es and cost parameters h. An
asterisk denotes the experimentally proven OSDAs for CHA.

Chem. Sci., 2020, 11, 8214–8223 | 8217
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Fig. 4 Zeolite–OSDA complexes with the most stabilized configura-
tions using experimentally proven OSDAs (a and c) and ACO-predicted
OSDAs (b and d). (a) CHA and 1. (b) CHA and 2. (c) AEI and 50. (d) AEI
and 9. Carbon, hydrogen, and nitrogen atoms are visualized as black,
grey, and blue spheres, respectively. Silica zeolite frameworks are
visualized as grey sticks.

Fig. 5 OSDAs for AEI computationally predicted without considering
the cost of chemicals (a cost adjustable parameter, b ¼ 0) and their
corresponding stabilization energies Es and cost parameters h. An
asterisk denotes the experimentally proven OSDAs for AEI.
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The fact that ACO identied experimentally proven OSDAs for
CHA such as 1 suggests the excellent prediction ability of the
computational protocol. The most stabilized structure of the
zeolite–OSDA complex shown in Fig. 4a corroborates the strong
stabilization of the system where symmetric 1 structurally ts
with the cylindrical cage of CHA. OSDA 4 is structurally related
to benzyltrimethylammonium, which can be used to reduce the
amount of 1 required for the synthesis of CHA.9 OSDAs 2 and 5
are slightly smaller than an experimentally proven OSDA, 34
(see Table S1†). The most stabilized complex of CHA and 2
shown in Fig. 4b indicates that the candidate OSDA is tightly
conned in the cage of CHA. The only difference between pre-
dicted 8 and known 37 (see Table S1†) is the two bridging
carbons, which makes 37 slightly larger. As was implemented,
all predicted candidates hadmoderate hydrophobicity and rigid
frameworks in terms of C/N+ and the number of rotatable
bonds, respectively, which are essential for successful crystal-
lization of zeolites as explained earlier.46 The stabilization
energy of 3 was comparable with those of experimentally known
OSDAs and its cost parameter was signicantly more advanta-
geous than that of 1, the typically used OSDA for CHA, sug-
gesting the possibility of improving economic efficiency.

The current methodology is applicable to any zeolites as long
as the structure has an inner space to host OSDAs. To demon-
strate this, we applied the de novo OSDA design framework to
another small-pore zeolite, AEI, which is structurally related to
CHA.3 Compared to the cylindrical nature of the cage of CHA,
the cage of AEI has an unsymmetrical avocado-like structure as
shown in Fig. 4c and d, which is one of the reasons why different
OSDAs are required for the crystallization of CHA and AEI. As
summarized in Table S2†, several OSDAs have been used to
direct the crystallization of AEI by lling the distinct cage shown
in Fig. 4c and d. According to a previous study, the stabilization
energies of experimentally proven OSDAs for AEI range from
�13.2 to �16.9 kJ molSi

�1.33 The ACO algorithm found compa-
rable candidate OSDAs as summarized in Fig. 5. Among them,
the stabilization energy of 9 was more negative than �16.9 kJ
molSi

�1.33 The unsymmetrical molecular structure of 9 seems to
be appropriate for the avocado-like cage of AEI as shown in
Fig. 4d. ACO also found experimentally proven OSDAs for AEI
such as 16, supporting the broad applicability of the present
computational protocol. An illustrative outcome of the
8218 | Chem. Sci., 2020, 11, 8214–8223
functionality to consider molecular similarity was 13, 14, and 15
in which they are similar to experimentally known OSDAs such
as 16, 50, and 51 (see Table S2†). Note that the stabilization
energy of 14 for AEI calculated by another group (�15.2 kJ
molSi

�1)33 was slightly different from the value in Fig. 5, likely
because of the different congurations of the zeolite–OSDA
complex.

A notable issue of candidate OSDAs predicted in Fig. 3 and 5
is the high cost parameter h, which can be problematic once the
zeolites are subjected to large-scale experiments or industrial
applications. In the case of CHA, even though some of the
candidates including 3 and 4 are economically more efficient
than 1, other candidates such as 2, 6, and 7 show prohibitively
high cost parameters (see Fig. 3). This can cause convergence to
physicochemically appropriate but economically unrealistic
candidates. In order to consider the cost of chemicals, we return
to the fundamental equation to run ACO. Previous studies
employing ACO for adaptive molecular design used an identical
“distance” between all reagents.42,43 As depicted in Fig. 1, our
current study uses the cost parameter h as the “distance” to
increase the probability that an ant agent selects lower cost
reagents upon optimizing the stabilization energies. This
distance can be adjusted using another parameter, b. When b is
set to 0, ACO runs without cost consideration (i.e., uniform
distance), as shown above in Fig. 3 and 5. Conversely, the cost
parameter fully represents the “distance” when b ¼ 1 (see
details in Computational methods).

Fig. 6 shows the mapping of candidate OSDAs predicted by
a typical run of ACO for AEI with different b values to control the
degree of consideration of the cost parameter. With b ¼ 0, ant
agents sampled both economically reasonable and expensive
chemicals to nd appropriate candidates based solely on the
host–guest interactions. As a result, the prediction produced
candidates that can be prohibitively too expensive to be alter-
natives (vide supra). A slight consideration of the cost parameter
with larger b values reduced the frequency of expensive
This journal is © The Royal Society of Chemistry 2020
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Fig. 6 Stabilization energies and cost parameters of predicted
candidate OSDAs for AEI at different cost adjustable parameters, b. (a)
b ¼ 0, (b) b ¼ 0.1, (c) b ¼ 0.5, and (d) b ¼ 1.

Fig. 7 Computationally predicted OSDAs and their corresponding
stabilization energies Es and cost parameters h. 17 was predicted for
AEI with b ¼ 0.5. 18 and 19 were predicted for AEI with b ¼ 1. 20–24
were predicted for CHA with b ¼ 0.5. An asterisk denotes the exper-
imentally proven OSDAs for AEI. A double asterisk denotes the
experimentally proven OSDAs for synthesis of CHA in the presence of
other OSDAs.

Fig. 8 Computationally predicted OSDAs for CON and their corre-
sponding stabilization energies Es and cost parameters h. 25 was
predicted with b ¼ 0, while 26–30 were predicted with b ¼ 0.5. An
asterisk denotes the experimentally proven OSDA for the synthesis of
CON.
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reagents, as shown in Fig. 6b. This results in less negative
stabilization energies, likely due to fewer chances to sample
expensive but physicochemically preferable chemicals. A
further increase of b highly limited the chance to sample cost
intensive reagents as evident from the scarcity of samplings
with h > 500 (Fig. 6c and d).

A previous study pointed out that the restriction of appli-
cable reactions sometimes yields superior molecules compared
to predictions with more freedom.31 This seemed to hold for the
case with b ¼ 0.5, where 17 exhibited a stabilization energy of
�18.7 kJ molSi

�1 (Fig. 7), outperforming all candidate OSDAs
predicted with lower b (Fig. 5) and all experimentally proven
OSDAs for AEI (Table S2†). A further increase of b to 1 limited
the possibility of selecting cost intensive reagents more tightly,
which resulted in less negative stabilization energy, except for
18 shown in Fig. 7 which outperforms all experimentally proven
OSDAs for AEI (Table S2†) in terms of the host–guest interac-
tions. The cost parameter h of the predicted OSDAs with b ¼ 1
was notably smaller than the candidates identied without
considering the economic efficiency, while the stabilization
energies were comparable to experimentally proven OSDAs and
predicted OSDAs without cost consideration. Notably, 19 pre-
dicted with b ¼ 1 is one of the experimentally proven OSDAs for
AEI that is physicochemically and economically preferable
(Fig. 7). Accordingly, our proposed algorithm traced experi-
mental efforts to explore physicochemically and economically
reasonable OSDAs for the synthesis of zeolites by tuning the
cost parameter b.

At cost parameter b ¼ 0.5, ACO generated some experimen-
tally proven OSDAs for CHA, including 20 (ref. 14) and 21 (ref. 9)
(Fig. 7). However, 20 and 21 require another OSDA such as 1 for
successful crystallization of CHA, presumably owing to their
This journal is © The Royal Society of Chemistry 2020
weaker structure-directing abilities9,14 as indicated by their less
negative stabilization energies. Despite this, 20 and 21 are
signicantly more advantageous than 1 in terms of economic
efficiency as is evident from their lower h values. The function to
consider molecular similarity was effective again for the current
case, where the algorithm predicted structurally similar but
more physicochemically preferable candidate OSDAs including
22, 23, and 24 in the same run.

Another zeolite that suffers from the high cost of OSDAs is
CON,17 which is a three-dimensional medium- and large-pore
zeolite with excellent catalytic performance in methanol-to-
olen reactions.8 The OSDA that can crystallize pure CON
zeolite, 25 (ref. 58), has a cost parameter of 310 (Fig. 8), which is
Chem. Sci., 2020, 11, 8214–8223 | 8219
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Fig. 9 Zeolite–OSDA complexes with the most stabilized configura-
tions using an experimentally proven OSDA, 25 (a), and a predicted
OSDA, 29 (b), for CON. Carbon, hydrogen, and nitrogen atoms are
visualized as black, grey, and blue spheres, respectively. Silica zeolite
frameworks are visualized as grey sticks.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Ju

ly
 2

02
0.

 D
ow

nl
oa

de
d 

on
 1

1/
6/

20
25

 1
2:

47
:0

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
extremely expensive. Unlike the systems where isolated OSDAs
are geometrically tted within the cages as shown in Fig. 4,
more than one OSDA seems to ll the intersection of the
multidimensional channels in CON.17,59 We ran systematic MD
simulations for 25, nding that four molecules can be accom-
modated in the unit cell of CON (see Table S3†), which is
consistent with a previous study.59 Fig. 9a shows that a pair of 25
interacted with each other through van der Waals interactions.
The ACO run for CON with b ¼ 0 successfully predicted 25
(Fig. 8).

With a larger b of 0.5, more reasonable candidates were
sampled. In the cases of 26, 27, and 28, four molecules were
lled in the unit cell of CON to stabilize the zeolite–OSDA
complexes. It is known that p–p interactions between OSDAs
can create supramolecular self-assemblies to ll large cavities in
porous materials.60 The p systems in 27 and 28 have a poten-
tially positive impact on creating molecular aggregates in
inorganic cavities to direct the crystallization of CON. Smaller
molecules such as 29 and 30 also showed superior stabilization
energies compared to the experimentally proven 25. Six mole-
cules lled the unit cell of CON in the cases of 29 and 30
(Fig. 9b). Very recently, our group reported the successful crys-
tallization of CON in the presence of tetraethylammonium and
seed crystals.17 The only difference between the predicted
OSDAs (29 and 30) and tetraethylammonium is the C–C bonds
that connect ethyl groups at the terminals. Since the current
methodology rejects molecules like tetraethylammonium owing
to the high rotational freedom, very similar but more rigid
molecules such as 29 and 30 were predicted as the alternative
candidate OSDAs for CON, which are promising from both
physicochemical and economic viewpoints.

Although the current study assumed that sufficiently nega-
tive stabilization energy in MD simulations is the indicator of
promising structure directing properties, competition with
other zeolite phases can be remarkably critical.16,25,26,31 In such
situations, the mixing of different OSDAs (i.e., the use of more
than one OSDA)9 and the use of seed crystals17 can lead to
successful crystallization, which may economically outperform
the existing preparation protocols. Further, the MD simulation,
the most computationally expensive step in our ACO, can be
replaced or performed together with simplied geometry opti-
mization,61 topological analysis of OSDAs,62 and recently
8220 | Chem. Sci., 2020, 11, 8214–8223
developed machine-learning models,63 which is promising to
accelerate OSDA design.

An alternative metric to evaluate the cost of organic synthesis
is the number of steps to achieve the desired molecule.16

Although the current methodology focused only on the alkyl-
ation reaction, other reactions with multiple steps can feasibly
be considered by using a larger network of organic chemistry
and potential “distance” information stored on each node
(chemical) and each edge (reaction), including cost, safety and
yield,35 which offers the chance to optimize the production of
zeolites from multiple aspects.

It is of note that the applicability of this methodology is not
limited to existing zeolites but covers computationally gener-
ated, so-called hypothetical, zeolites.64,65 Application of our
OSDA design methodology to theoretically feasible hypothetical
zeolites would predict candidate OSDAs that can direct the
crystallization of new zeolites, although this is beyond the scope
of the current study.

Conclusions

Organic structure-directing agents (OSDAs) have massively
contributed to the development of zeolite science as they seem
to accelerate the discovery of new zeolite materials and to
optimize existing zeolites for certain applications. However,
these organic molecules can become an economic burden once
zeolites are subjected to large-scale experiments and/or indus-
trial applications as quantied by the cost parameters.
Although computational methods can relieve the cost of
screening a large number of possible molecules, it can suggest
unfeasible, prohibitively expensive, unrealistic, and/or trivial
candidates. To design OSDAs, this study employed a nature-
inspired ant colony optimization (ACO) de novo design algo-
rithm with implementation of chemical heuristics and molec-
ular similarity to construct the design framework for
optimization of physicochemical objective functions with
consideration of economic efficiency. The predicted candidates
contain experimentally proven OSDAs, molecules similar to
experimentally proven ones, and novel molecules owing to the
unique advantage of ACO molecular design of simultaneously
sampling structural analogues of known molecules and
completely new ones.43 Several recent studies have revealed that
OSDAs can control morphology,27 chirality,26 and atomic
congurations30,66 of zeolites, which can be evaluated by
computational methodologies. It is therefore anticipated that
multi-objective design of OSDAs to simultaneously optimize
these zeolite properties can be achieved by ACO in the near
future.

Computational methods

The prices and the purity of chemical compounds were
retrieved from Aldrich Market Select and websites accessed
from Japan.37–40 The cost parameter, h, was estimated from an
empirical model described in a previous study34 and multiplied
by the purity and molar weight of the corresponding chemicals.
Virtual reactions were encoded using MarvinSketch67 and
This journal is © The Royal Society of Chemistry 2020
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conducted until saturation. The resulting molecule was struc-
turally optimized using a universal force eld.68 The volume,69

the number of orbitals, and the number of rotatable bonds of
a molecule were calculated using RDKit soware.70

To avoid MD for unrealistically distorted candidates, mole-
cules were rejected if one of the constituting rings having N+

(hereaer, the N-ring) was too small (three-membered ring or
four-membered ring). If a candidate molecule contained an N-
ring with triple bonds, it was also rejected because such mole-
cules may be difficult to form in organic synthesis or not suit-
able as OSDAs for hydrothermal synthesis of zeolites. In
addition, if the N-ring contained one-and-a-half bonds (i.e.,
bonds in conjugated systems) and/or double bonds, it was
rejected if it satised the empirically derived equation:

3n2 + 4.5n3 $ n1

where n1 is the number of single bonds in the ring, n2 is the
number of one-and-a-half bonds, and n3 is the number of
double bonds.

Crystallographic information of idealized zeolites was
retrieved from a database provided by the International Zeolite
Association.3 Following a previous study,31 structural optimi-
zation and multi-step MD simulation were performed on
GULP71 under periodic boundary conditions. A charge-less
dreiding force eld72 was applied to consider the rapid
motion of organic molecules2 and vibration of zeolite frame-
works at 343 K on an NVT ensemble. If the connectivity of the
model was changed during the MD run, the candidate OSDA
was rejected. An empty zeolite and a free molecule were also
subjected to the MD run with the same settings except that the
molecule was simulated as a discrete model. The values of the
last 5 ps of the nal MD run with a production time of 30 ps
were averaged to calculate representative energies.31 Stabili-
zation energy Es was computed from the following equation:

Es ¼ Ecomplex � nEOSDA � Ezeolite

where Ecomplex is the energy of the zeolite–OSDA complex, n is
the number of OSDAs, EOSDA is the energy of the free OSDA, and
Ezeolite is the energy of the empty zeolite. The composition of
zeolites was assumed to be purely siliceous throughout the
computations. Energies were normalized by the amount of
silicon in zeolites. Some of the values were used from a previous
study.33

In ACO, an ant agent at node i selects the next node j with the
following probability:

pij ¼
sij
�
hij

b

X

j

sij
�
hij

b

where sij is the amount of pheromone deposited on the edge
between i and j, h is the closeness between i and j, and b is an
adjustable parameter. The scoring function Dsij derived from
the ith amine and the jth halide to be maximized is dened as

Dsij ¼ 60

30� Estabilization
This journal is © The Royal Society of Chemistry 2020
Reagents that participate in the locally best path receive addi-
tional pheromone according to the following equation:

sij(t + 1) ¼ rsij(t) + Dsbestij

where t is the ACO time step and r ¼ 0.95. The size of the ant
colony was set to 10. The Morgan ngerprint73 was used with
a radius of 4 to calculate a bit vector with 2048 bits. The amount
of additional pheromone based on the structural similarity
between the molecular structures was computed using the
following equation:

Ds ¼ exp(�0.3s)

where s is the Tanimoto similarity index57 between a reagent
and the global best at that moment.

A max–min lter74 was applied for all pheromones. The
maximum amount of pheromone smax and the minimum
amount of pheromone smin were calculated according to the
following equations:

smax ¼ 1

1� r
sglobal best

smin ¼ smax

1� ffiffiffi
rn

p
ðn� 2Þpnr

where sglobal best is the amount of pheromone of the global best
and n is the number of amines or the number of halides. The
amount of pheromone was updated when at least one ant agent
among a colony could calculate the stabilization energy from
MD.
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Mater., 2005, 17, 545–552.

21 R. Simancas, D. Dari, N. Velamazan, M. T. Navarro,
A. Cantin, J. L. Jorda, G. Sastre, A. Corma and F. Rey,
Science, 2010, 330, 1219–1222.

22 J. E. Schmidt, M. W. Deem and M. E. Davis, Angew. Chem.,
Int. Ed., 2014, 53, 8372–8374.

23 D. Jo and S. B. Hong, Angew. Chem., Int. Ed., 2019, 58, 13845–
13848.

24 X. Hong, W. Chen, G. Zhang, Q. Wu, C. Lei, Q. Zhu, X. Meng,
S. Han, A. Zheng, Y. Ma, A. N. Parvulescu, U. Müller,
W. Zhang, T. Yokoi, X. Bao, B. Marler, D. E. De Vos,
U. Kolb and F. S. Xiao, J. Am. Chem. Soc., 2019, 141, 18318–
18324.

25 A. W. Burton, G. S. Lee and S. I. Zones, Microporous
Mesoporous Mater., 2006, 90, 129–144.

26 S. K. Brand, J. E. Schmidt, M. W. Deem, F. Daeyaert, Y. Ma,
O. Terasaki, M. Orazov and M. E. Davis, Proc. Natl. Acad.
Sci. U.S.A., 2017, 114, 5101–5106.

27 S. H. Keoh, W. Chaikittisilp, K. Muraoka, R. R. Mukti,
A. Shimojima, P. Kumar, M. Tsapatsis and T. Okubo,
Chem. Mater., 2016, 28, 8997–9007.

28 J. E. Schmidt, D. Fu, M. W. Deem and B. M. Weckhuysen,
Angew. Chem., Int. Ed., 2016, 55, 16044–16048.

29 S. Smeets, L. B. McCusker, C. Baerlocher, S. Elomari, D. Xie
and S. I. Zones, J. Am. Chem. Soc., 2016, 138, 7099–7106.
8222 | Chem. Sci., 2020, 11, 8214–8223
30 K. Muraoka, W. Chaikittisilp, Y. Yanaba, T. Yoshikawa and
T. Okubo, Angew. Chem., Int. Ed., 2018, 57, 3742–3746.

31 R. Pophale, F. Daeyaert and M. W. Deem, J. Mater. Chem. A,
2013, 1, 6750–6760.

32 B. W. Boal, J. E. Schmidt, M. A. Deimund, M. W. Deem,
L. M. Henling, S. K. Brand, S. I. Zones and M. E. Davis,
Chem. Mater., 2015, 27, 7774–7779.

33 J. E. Schmidt, M. W. Deem, C. Lew and T. M. Davis, Top.
Catal., 2015, 58, 410–415.

34 M. Kowalik, C. M. Gothard, A. M. Drews, N. A. Gothard,
A. Weckiewicz, P. E. Fuller, B. A. Grzybowski and
K. J. M. Bishop, Angew. Chem., Int. Ed., 2012, 51, 7928–7932.
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