Introduction

Conductive molecules are highly advantageous for sensors, functional coatings, and electronic devices. Among them, conjugated polymers have gained enormous attention due to their advantageous physical properties including their low weight and flexibility. For example, poly(3-hexylthiophene) (P3HT), poly(phenylenevinylene) (PPV), and polyfluorene (PF) have been widely used in various device applications. Notably, several reports have highlighted the important relationship between the performance of electronic materials and their nanostructures. Therefore, constructing nanostructures by using polymer self-assembly to enable precise control on size and shape has become important for device applications.

There have been numerous studies on the control of polymeric nanostructures over decades. Many uniform nanostructures have been created using various amphiphilic block copolymers (BCPs) with differing solubilities. More recently, pioneered by Ian Manners group, an ingenious method termed Crystallization-Driven Self-Assembly (CDSA) was developed. The CDSA method enables the control of the nanostructure with excellent precision. Many BCPs containing semicrystalline polymers such as polyferroencysilane (PFS), poly(ε-caprolactone) (PCL), polyethylene (PE), and polylactide (PLA) have been successful in forming various uniform nanostructures from 0D-micelle to 3D-supermicelles via CDSA. Despite excellent structural control, the CDSA method has one drawback; it generally takes several hours to days for complete assembly. To broaden the utility of these nanostructures, conjugated oligomers and polymers have been used to form uniform nanostructures via this CDSA method. However, this strategy may be complicated and challenging due to the strong π–π interaction among conjugated polymers. This reduces their solubility leading to easy aggregation, and disrupting controlled self-assembly. Whilst this issue may be resolved by synthesizing BCPs containing highly soluble non-conjugating shells, this insulating block would inevitably limit the potential of the resulting partially semiconducting nanostructures as electronic materials.

To accelerate the self-assembly process and produce nanostructures more efficiently, a one-pot technique named Polymerization-Induced CDSA (PI-CDSA) was developed where CDSA successful occurred during or a few minutes to days after the polymerization. For the spontaneous formation of the conjugated nanoparticles, we have developed another strategy termed In situ Nanoparticulation of Conjugated Polymers (INCP). INC is a process whereby insoluble conjugated polymers are intentionally introduced as the second block. During the synthesis of BCPs, the strong π–π interaction induces spontaneous nanoparticulation, producing semiconducting...
nanostructures without post-treatment. A recent study reported large 2D structures from crystalline poly(cyclopentenylene-vinylene) (PCPV) consisting of fuorene and bulky side chains such as neohexyl and silyl groups. Interestingly, the height of the individual 2D sheets was determined by the degree of polymerization (DP) of these homopolymers as their rigid PCPV backbones were self-assembled side-by-side without chain-folding (Scheme 1a).

Despite the lack of precise control over the nanostructures, this crystalline PCPV showed potential and its expansion to BCP microstructures may provide insights on achieving higher control of the nanostructures. Herein, we report the formation of well-defined semiconducting 1D nanofibers from BCPs having the PCPV as the core block and another PCPV as a soluble shell block. The width of the nanofibers was precisely controlled by the DP of the core block due to the living cyclopolymerization, and the length was controlled via the living CDSA. These two living processes led to not only narrow dispersity of width and length, but also the successful formation of block comelles (Scheme 1b). Interestingly, this CDSA occurred rapidly, taking 10 min to reach micron-sized lengths, thereby allowing direct visualization of this self-assembly growth using confocal laser optical microscopy.

Results and discussion

To prepare uniform nanostructures, we synthesized fully conjugated BCPs consisting of the first PCPV block with soluble dihexyl side-chains (M1) and the crystalline second block from M2. To minimize dispersities, various BCPs (with the fixed [M1]/[I] ratio of 50) were polymerized in tetrahydrofuran (THF) at 0 °C using the third-generation Grubbs catalyst (G3). After the completion of polymerizations, the reactions were quenched by excess ethyl vinyl ether and the polymers were isolated by precipitation in methanol at 25 °C. Six P150-b-P2n were prepared with [M2]/[I] ratios from 10 to 66 in excellent isolated yields (Table 1).

We characterized the purified BCPs by 1H nuclear magnetic resonance (NMR) spectroscopy to get some clues about spontaneous self-assembly. For P150-b-P210 and P150-b-P222, signals from both blocks were observed with expected integrations from the feed ratios, indicating low degrees of aggregation in chloroform. However, as the DP of P2 increased to 33, signals for the P2 block were only 28% of that expected from the feed ratio. The integration values further decreased, reaching a minimum of 11% for P150-b-P266 despite the full conversion of M2 (Fig. S1 and S2†). This phenomenon agrees well with the previous investigation supporting for the INCP mechanism where longer BCPs spontaneously formed more crystalline

![Scheme 1](image)

Scheme 1 New strategy to prepare 1D nanofibers with tunable widths and lengths via rapid self-assembly.

<table>
<thead>
<tr>
<th>Entry</th>
<th>[M1] : [M2] : [cat]</th>
<th>Time</th>
<th>Conv. (%) (M2)</th>
<th>Yield (%)</th>
<th>M_n (kDa)</th>
<th>D_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50 : 10 : 1</td>
<td>2.5 h</td>
<td>>99%</td>
<td>91</td>
<td>23.3</td>
<td>1.15</td>
</tr>
<tr>
<td>2</td>
<td>50 : 22 : 1</td>
<td>4 h</td>
<td>>99%</td>
<td>98</td>
<td>38.6</td>
<td>1.10</td>
</tr>
<tr>
<td>3</td>
<td>50 : 33 : 1</td>
<td>6 h</td>
<td>>99%</td>
<td>90</td>
<td>47.4</td>
<td>1.13</td>
</tr>
<tr>
<td>4</td>
<td>50 : 44 : 1</td>
<td>8 h</td>
<td>>99%</td>
<td>95</td>
<td>10 440</td>
<td>1.56</td>
</tr>
<tr>
<td>5</td>
<td>50 : 55 : 1</td>
<td>9 h</td>
<td>>99%</td>
<td>92</td>
<td>70 350</td>
<td>1.26</td>
</tr>
<tr>
<td>6</td>
<td>50 : 66 : 1</td>
<td>11 h</td>
<td>>99%</td>
<td>92</td>
<td>115 800</td>
<td>1.13</td>
</tr>
</tbody>
</table>

* Calculated by 1H NMR analysis in CDCl3 before precipitation. * Determined by chloroform SEC, calibrated using polystyrene standards. * Determined by AF4 fractograms in chloroform using 0.205 as a dn/dc value.
cores which then, were not detectable in 1H NMR analysis.38–46,47 To better characterize the BCPs by NMR, we attempted various deuterated solvents such as benzene, 1,4-dioxane, chlorobenzene, and o-dichlorobenzene to dissolve both blocks, but still chloroform was the best solvent for the BCPs (Fig. S3 and S4f). Fortunately, with 1H NMR analysis at 47 °C in chloroform, more quantitative analysis was possible for P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{33} and P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{44} due to better solubility of P2 at the higher temperature (Fig. S5f). More definitive support for INCP was provided by dynamic light scattering (DLS) analysis which gives hydrodynamic diameters (D_h, these values should be treated as qualitative estimation). When all BCPs were dissolved in 1 g L−1 chloroform, large D_h from 58 nm for P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{33} to 346 nm for P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{66} were observed in accordance with the 1H NMR analysis, and these D_h values were retained even at 0.0001 g L−1 (Fig. 1a and S6f). The direct indication of successful INCP using P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{66} was obtained from the TEM imaging, DLS, and UV-Vis analysis of the in situ sample from the reaction solution (Fig. S7f). Due to the INCP, we could only measure the molecular weight (M_m) of smaller BCPs (for P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{23}, 23.3 kDa, P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{24}; 38.6 kDa, and P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{33}; 47.4 kDa) by chloroform size-exclusion chromatography (SEC). This linear increase in M_ms and dispersities (D) lower than 1.15 supported successful living cyclopolymerization. Fortunately, the M_ms of strongly aggregated larger BCPs could be estimated using an advanced technique known as asymmetric flow field-flow fractionation (AF4) analysis to determine M_m up to 115 MDa, supporting in situ self-assembly (Table 1 entries 4 to 6, and Fig. S8f).46,47 To further promote self-assembly, we aged BCP solutions (1 g L−1 chloroform) at 25 °C for 1 d, and found an overall increase in D_hs up to 700 nm under identical conditions, except for P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{10} (Fig. 1b and c).48 The BCP having the shortest core block of P2\textsubscript{10} was still in an unimeric state due to its low crystallinity. A further decrease in the signals for the core block P2 via the 1H NMR spectra was also observed. The integration values for P2 in P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{22} decreased from 100 to 74% and, for P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{44}, these signals were barely observable, indicating quantitative self-assembly in the absence of unimers (Fig. S9f). The UV-Vis analysis of these conjugated BCPs showed much stronger vibronic peaks at 595 nm indicating the formation of more ordered structures (Fig. S10–S12f). However, 1H NMR and DLS analysis showed that the initial BCPs in 1 g L−1 dichloromethane (DCM) solution were already undergoing self-assembly even without aging. This more facile and rapid self-assembly may be due to the lower solubility of P2 in DCM than in chloroform leading to more rapid crystallization (Fig. S13f).

Atomic force microscopy (AFM) imaging without aging was undertaken to visualize these structures. We observed spontaneous formation of 1D nanofibers of BCPs via INCP, with the exception of P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{23} which required an aging time of 1 h or longer (Fig. 2a–f and S14f). After aging, the length of the 1D nanofibers from P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{23} grew to a maximum of greater than 20 µm, with no branching (Fig. 2b and S15f). Although their

![Fig. 1](image_url)
(DLS profiles of BCPs solutions (1 g L−1 chloroform) (a) without aging and (b) after 1 day of aging at 25 °C. (c) A table of D_h values of the DLS profiles in (a) and (b).)

![Fig. 2](image_url)
(AFM images obtained from 1 g L−1 chloroform solutions of (a) P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{22} after 1 h, and (b) after 1 d aging at 25 °C, (c) P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{23}, (d) P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{44}, (e) P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{55}, and (f) P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{66} without aging. The higher magnification of (g) height, and (h) phase images of the 1D nanofibers from P1\textsubscript{50}\textsubscript{b}\textsubscript{P2}\textsubscript{55}.)

This journal is © The Royal Society of Chemistry 2020
heights ranged from 3.6 to 5.5 nm without a certain trend independent of the DP of P2, their widths were observed to roughly increase in proportion to the DP of P2 (Fig. S16†). Even with dilution from 1 to 0.05 g L\(^{-1}\), this width trend continued despite the reduction of their lengths to approximately 1 \(\mu\)m (Fig. S17†). With high magnification AFM images of height and phase modes, the core could be distinguished from the shell to show that the crystalline P2 block was taller and denser than the outer P1 block (Fig. 2g and h).

To attain more precise information on width, transmission electron microscopy (TEM) imaging was used. TEM images showed the long fibers with high rigidity without aging, with the exception of P150-b-P22 (Fig. 3a–f and S18†). Without staining, vivid visualization of the electron dense crystalline P2 core was possible, and their measured widths showed a linear increase from 12 to 27 nm, according to an increase of the DP of P2 from 22 to 66 with width dispersities (\(W_w/W_n\)) less than 1.02 (Fig. S18c and S19–S21†). In contrast to a previous study on self-assembly of homopolymer of P2, where the DP of the polymer matched well with the height of 2D nanosheets (Scheme 1a), in this study, the width of the 1D nanofibers was well matched to the theoretically estimated contour length of the P2 block (Fig. 3g, see S22 and Table S1† for calculation of the contour lengths by MM2 computational method). Staining using RuO\(_4\) vapour also enabled the detection of the flexible P1 block, and measurement of the full width of the 1D nanofibers including the shell demonstrated the presence of thicker fibers from 21 to 35 nm (Fig. 3h and S23†).

To investigate the crystallinity of the BCPs and their 1D nanofibers in detail, film X-ray diffraction (FXRD) analysis was conducted on P150-b-P22. A sharp peak was observed at a \(d\)-spacing of 16.9 Å originating from P2, a much weaker peak at \(d\)-spacing of 13.8 Å was produced from P1, and broad peaks between 4 Å and 8 Å were observed (Fig. 4a and S24†). The P1 signal disappeared in the aged sample of P150-b-P22 and other samples of BCPs having longer P2 block. This indicates that the crystallinity of the P2 block dominated the formation of the 1D nanofibers, and the P1 block formed mostly amorphous structure in the self-assembled nanofibers. We also directly observed the crystalline array of the 1D nanofibers from the electron diffraction patterns by selected area electron diffraction (SAED) analysis and fast Fourier transform (FFT) analysis of the high-resolution TEM (HR-TEM) images (Fig. 4b–d and S25†). The SAED showed one \(d\)-spacing at 5.0 Å along the longitudinal direction of the 1D nanofibers and another at 4.2 Å in the orthogonal direction. Additionally, spots at 16.1 Å along the longitudinal direction of the 1D nanofibers were obtained by FFT analysis of the HR-TEM. Based on these diffraction patterns and previous findings on the orthorhombic crystal lattice of the P2 homopolymer, we assigned 16.1 Å as a \(d\)-spacing in the (200) plane and 4.2 Å in the (002) plane. The fact that the P2 block forms the core by lying down on the \(c\) axis, is
consistent with the average widths of the core matching the contour lengths of P2 (Fig. 3g and 4e, f).43

As the width of the 1D nanofibers could be precisely controlled, we attempted to control their lengths by using the living CDSA; epitaxial growth from the uniform seed through the addition of unimers. Fortunately, after sonication of 0.1 g L⁻¹ chloroform solution of long nanofibers from P1₅₀ᵇ-P₂₂₂ for 30 s using an ultrasonicator (11.8 W cm⁻²) at 0 °C, we obtained a seed solution with an average length (Lₚ) of 60.3 nm and a relatively narrow length distribution (Lₚ/Lₚ = 1.18, characterized by TEM) (Fig. S26f). Then, 10 g L⁻¹ chloroform solution of unimers (before aging), was added to the seed solution at unimer-to-seed (U/S) ratios from 1 to 10. A mixture of unimers (before aging), was added to the seed solution at various U/S ratios of 2, 5, 10, 20, and 40. Following 4 h of aging, their Dₚ values linearly increased from 100.7 to 972.3 nm according to the U/S ratios (Fig. 5b and c). The low-magnification TEM images show that the length dispersity was less than 1.15 indicating successful living CDSA. Notably, measured Lₚ seems to be substantially shorter than the theoretical lengths predicted based on the U/S ratio. This may be due to competitive homogeneous nucleation occurring simultaneously with the seeded-growth, because the solubility of the P2 block became slightly lower in DCM.34,35 The living CDSA was also qualitatively supported by DLS analysis, where their Dₚ values gradually increased with higher U/S ratios (Fig. 5d). These Dₚ values also remained fairly constant during aging for a week at both 10 and 25 °C, showing high stability in solution without end-to-end coupling (Fig. 5e and S30f).

To expand the scope of the living CDSA to wider nanofibers, we attempted the living CDSA from larger BCPs. This was challenging as the larger BCPs underwent INCP during synthesis due to lower...
solubility, particularly in DCM. The same sonication protocol successfully produced the seed micelle (P150b-P23, Ln = 84.6 nm, Lw/Ln = 1.13, and P150b-P244, Ln = 66.1 nm, Lw/Ln = 1.13) by switching back to 0.1 g L\(^{-1}\) chloroform instead of DCM. Furthermore, we were able to obtain the corresponding unimer solutions in 0.1 g L\(^{-1}\) chloroform by heating at 60 °C (Fig. S31†). These unimers were then added to the seeds with various U/S ratios from 1 to 10. After 1 h of aging at RT, their Ln increased linearly up to 2.2 μm for P150b-P23, and 4.7 μm for P150b-P244 according to the U/S ratios while length dispersity (Lw/Ln) remained below 1.15, supporting the living CDSA by seeded growth (Fig. 6a-c, S32 and S33†). In both cases, a rise in temperature to prepare the unimer solutions might dissolve some seeds as a result of the improved solubility of the BCPs, resulting in the longer 1D nanofibers than the theoretically predicted length.\(^{34}\) Also, Lw/Ln in both cases remained after aging for 1 d suggesting that end-to-end coupling did not occur in chloroform (Fig. S34†).

To achieve seeded growth of even wider 1D nanofibers, we further heated P150b-P255-66 up to 80 °C but failed to obtain a unimer solution due to even lower solubility (Fig. S31†). To improve solubility, we prepared new P100b-P255 and P100b-P266 with a longer shell block (with [M1]/[I] = 100). Full characterizations using \(^1\)H NMR, AF4, DLS, TEM, and AFM analyses indicated similar behaviors to the previous P150b-P255-66, including similar average core widths of the resulting 1D nanofibers (i.e., before staining: 25.8 nm for P100b-P255 and 31.6 nm for P100b-P266 and after staining: 34.2 nm for P100b-P255 and 37.3 nm for P100b-P266 by TEM imaging) (Fig. S35 and S36†). Analogous sonication produced uniform seed solutions (P100b-P255: Ln = 68.7 nm, Lw/Ln = 1.18 and P100b-P266: Ln = 73.8 nm, Lw/Ln = 1.15). Then, instead of the seeded growth (due to their low solubility), we adopted a self-seeding strategy: thermally induced epitaxial growth.\(^{35-38}\) In this instance, modulating the temperature after sonication provided varying concentrations of the unimer solution in situ, thereby controlling the 1D nanofiber lengths. The seed solutions of P100b-P255 and P100b-P266 in chloroform were annealed at different temperatures ranging from 34 °C to 61 °C and cooled to room temperature (RT). After 3 h, long 1D nanofibers with uniform Ln, ranging from 68.7 nm to 4.6 μm for P100b-P255 and from 73.8 nm to 1.14 μm for P100b-P266 based on the annealing temperature, were generated with narrow dispersities (Lw/Ln: 1.04–1.21) (Fig. 6d–f, S37 and S38†). Additional aging of these wider 1D nanofibers for 1 d did not alter their lengths or widths, showing structural stability and the absence of end-to-end coupling (Fig. S39 and S40†). We were able to control the length of the 1D nanofibers up to 4.7 μm using living CDSA (either by seeded growth or self-seeding), and their core widths ranged from 12 to 32 nm, proportional to the DP of P2 (Fig. S41†).

Another advantage of the living CDSA is the capability to produce more complex block comicelles (BCMs) by further epitaxial growth from the living crystalline ends.\(^{39}\) To prepare BCM, another BCP2 (P325b-P222, Mn = 17.6 kDa, D = 1.06) containing soluble polynorborene derivatives (P3) was synthesized by ring-opening metathesis polymerization (Fig. S42†). This new P325b-P222 also underwent living CDSA to form precisely controlled 1D nanofibers with Ln ranging from 165 to 1178 nm with narrow length dispersity (1.16) via the seeded growth method (Fig. S43†). Then, a 10 g L\(^{-1}\) chloroform solution of the P325b-P222 (U/S ratio = 5) was added to the seedmicelle solution of P150b-P222 in DCM (with Ln of 169 nm and Lw/Ln = 1.10), and a ABA tri-BCM (BCM1) was obtained with uniform length and narrow dispersity (Ln = 899 nm and Lw/Ln = 1.09). The blocky structure of BCM1 was confirmed by AFM analysis, demonstrating a height difference (9 nm of P150b-P222 versus 4 nm of P325b-P222). A clear distinction in contrast was observed by both dry and cryogenic-TEM images as the middle block of the fully conjugated P150b-P222 was darker due to their higher electron density. Moreover, the average core width of BCM1 was consistent throughout all the nanofibers as the length of P2 in both P150b-P222 and P325b-P222 was the same (Fig. 7a and S44†). Encouraged by the initial success, a more complex BCM2 was prepared through addition of the unimer solution, P150b-P222, to another seed solution of P100b-P266 showing a wider 1D nanofiber (annealing temp. 52 °C, Ln = 213

![Fig. 6](https://example.com/fig6.png)
nm). After 4 h of aging at 10 °C, another ABA tri-BCM2 consisting of a wider middle block was identified from AFM and TEM imaging showing a difference in the width of each block depending on the length of P2. Note that only a single strand of the thinner A block grew from both ends of the B block despite large width differences (Fig. 7b and S45†).

Notably, this CDSA of the fully conjugated BCP series exemplifies excellent control of the length and width and rapid growth rate. As such, the growth kinetics of P150-b-P233 was observed using real-time monitoring of the elongation of 1D nanofibers by TEM analysis. Upon the addition of unimers, 1D nanofibers elongated rapidly and reached constant lengths (Ln = 746 nm (U/S ratio = 3, Lw/Ln = 1.03) in 10 min, and Ln = 1.2 μm (U/S ratio = 5, Lw/Ln = 1.08) in just 20 min) (Fig. 8a and Table S2†). Furthermore, the kinetic data was fitted into a stretched exponential function that the Manners group previously used to describe the nanoparticle growth rates of PFS-b-(polydimethylsiloxane) (PFS-b-PDMS) (eqn (S1)†). In this study, this function also explained the growth kinetics of P150-b-P233 well with R² values greater than 0.997, providing k values of 11 × 10⁻³, 9.8 × 10⁻³, 5.7 × 10⁻³, and 5.8 × 10⁻³ s⁻¹ for U/S ratios of 2, 3, 5, and 10, respectively. Notably, these rates are about 10 times faster than those of other typical living CDSA of 1D nanowires or comparable to the highest rates (16 × 10⁻³) under a specific condition. By taking the average values from various U/S ratios, we obtained the parameter b of 0.54. The deviation from the theoretical value of 1 for first-order kinetics was presumably due to the influence of the flexible chain conformation of the shell, disturbing ideal crystallization during seeded growth (Fig. 8b and S46–S50†). Regardless, we attributed the fast kinetics of the current CDSA to the intrinsically rigid conformation of the P2 showing stretched conformation without chain folding.

Since the 1D nanofibers contained fluorescent P2 block and grew quickly to micron sizes, the entire CDSA could be visualized via a real-time video with a laser scanning confocal microscope (LSCM), even without additional dyes (Fig. S51 and S52†). Regardless, we attributed the fast kinetics of the current CDSA to the intrinsically rigid conformation of the P2 showing stretched conformation without chain folding.

Fig. 8 (a) Lengths (Ln) of the 1D nanofibers from P150-b-P233 over time (monitored over 13 h after adding the unimer solution to the seed micelles (Ln = 66.5 nm, Lw/Ln = 1.16)). TEM image was obtained after 10 min with U/S ratio = 5. (b) Table of kinetic data for various U/S ratios. Standard errors for the values A, k', and b were obtained from the fitting of eqn (S1).† A is the actual length growth obtained by Ln - Lseed (seed length). k’ is the rate constant. b is the fractional power of the exponential. (c) Representative LSCM images of Video S1† at time points of 10 and 80 s (scale bars = 10 μm). We calculated the Ln of the 1D nanofibers from those images.
Conclusions

In summary, we successfully prepared fully conjugated BCPS that underwent self-assembly into 1D nanofibers. Their lengths were controlled from 0.05 to 4.7 μm, utilizing the living CDSA technique via seeded growth or self-seeding. We were also able to tune their widths from 12 to 32 nm by modulating the DP of the core block. This excellent width control proportional to the DP of P2 was due to the fully stretched conformation of the conjugated P2 block without chain folding. As a result, the CDSA was rapid while maintaining excellent control of the conjugated nanostructures. This rapid kinetics of CDSA producing fluorocent 1D nanofibers enabled real-time monitoring of their growth using confocal fluorescence microscopy. Lastly, this living CDSA technique enabled the preparation of more complex BCMS. The fast formation of fully conjugated and fluorescent nanostructures offers an efficient method for preparation of uniformly sized polymeric optoelectronic materials with controllable length and width in narrow dispersity.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are thankful for financial support from the NRF, Korea through the following grants: Creative Research Initiative Grant, and Nano-Material Technology Development Program. We thank the National Center for Inter-University Research Facilities (NCIRF) at SNU for supporting CLSM and SR-SIM.

Notes and references

