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chine learning interprets and
predicts diagnostic isomer-selective ion–molecule
reactions in tandem mass spectrometry†

Jonathan Fine,‡a Judy Kuan-Yu Liu,‡a Armen Beck,a Kawthar Z. Alzarieni,a Xin Ma, a

Victoria M. Boulos,a Hilkka I. Kenttämaa *a and Gaurav Chopra *ab

Diagnostic ion–molecule reactions employed in tandemmass spectrometry experiments can frequently be

used to differentiate between isomeric compounds unlike the popular collision-activated dissociation

methodology. Selected neutral reagents, such as 2-methoxypropene (MOP), are introduced into an ion

trap mass spectrometer where they react with protonated analytes to yield product ions that are

diagnostic for the functional groups present in the analytes. However, the understanding and

interpretation of the mass spectra obtained can be challenging and time-consuming. Here, we introduce

the first bootstrapped decision tree model trained on 36 known ion–molecule reactions with MOP. It

uses the graph-based connectivity of analytes' functional groups as input to predict whether the

protonated analyte will undergo a diagnostic reaction with MOP. A Cohen kappa statistic of 0.70 was

achieved with a blind test set, suggesting substantial inter-model reliability on limited training data.

Prospective diagnostic product predictions were experimentally tested for 13 previously unpublished

analytes. We introduce chemical reactivity flowcharts to facilitate chemical interpretation of the

decisions made by the machine learning method that will be useful to understand and interpret the mass

spectra for chemical reactivity.
Introduction

Tandem mass spectrometry (MS/MS) is a powerful analytical
tool that is extensively used for the characterization of complex
mixtures in many elds, such as proteomics, petroleomics, and
drug discovery.1–4 Currently, the most commonly used MS/MS
technique to obtain structural information for ionized and
isolated mixture components is collision-activated dissociation
(CAD).5,6 In these experiments, the analyte ions are accelerated
and allowed to collide with an inert gas, such as helium. Upon
the collisions, part of the kinetic energy of the ions is converted
into their internal energy, resulting in fragmentation. This
approach is limited by the fact that isomeric ions oen generate
identical fragmentation patterns, making identication of
compounds via CAD mass spectra unreliable.4,7 To address this
issue, a MS/MS approach based on diagnostic, reliable and
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predictable gas-phase ion–molecule reactions has been devel-
oped.7–11 This approach can be used to identify specic func-
tional groups or their combinations in ionized and isolated
mixture components to thereby facilitate the differentiation of
isomeric ions, oen without the need for reference compounds.
No specialized instrumentation is needed for these experi-
ments. The only modication to any commercial ion trap or
multiquadrupole instrument is the addition of an inlet system
for the neutral reagents, which is straightforward.7,8,12,13

One of the neutral reagents used previously to differentiate
two isomeric drug metabolites is 2-methoxypropene (MOP).7 In
these experiments, protonation of the analytes was achieved
through atmospheric pressure chemical ionization (APCI) in
a linear quadrupole ion trap mass spectrometer. The proton-
ated analytes were transferred into the ion trap, isolated and
allowed to react with MOP that was continuously introduced
into the ion trap (Fig. 1). Some protonated analytes were
unreactive towardMOP and others transferred a proton toMOP.
The protonated analytes of the greatest interest here are those
that formed a diagnostic, stable addition product with MOP. All
generated product ions were ejected in a mass-selective manner
from the ion trap into external detectors to determine theirm/z-
values and relative abundances. This enabled the determina-
tion of reactions that had taken place. The product branching
ratios (dened as the abundance of a stable adduct divided by
the abundances of all product ions) were measured at several
Chem. Sci., 2020, 11, 11849–11858 | 11849
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Fig. 1 Schematic diagram of a linear quadrupole ion trap mass spectrometer equipped with an APCI source and an external reagent mixing
manifold (bottom).12,13 This instrument can be used to detect diagnostic ions formed between analytes protonated upon APCI and a neutral
reagent (introduced using the reagent mixing manifold) in MS/MS experiments occurring in the ion trap.
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reaction times and were constant over time. The diagnostic
addition product ions were only observed for the protonated
sulfoxide drug metabolite and not for its keto-isomer (Fig. 2).
This was veried via studies of several protonated model
compounds.8
Fig. 2 The diagnostic utility of employing neutral reagents, such as
MOP, to identify functional groups in protonatedmetabolites of a drug.
After the metabolites were (a) protonated and isolated, (b) they were
allowed to react with MOP and (c) the formation of a diagnostic
addition product (DP) as opposed to proton transfer (PT) or no reaction
was monitored. Only the protonated sulfoxide metabolites generated
the diagnostic addition product ion (DP) with MOP.

11850 | Chem. Sci., 2020, 11, 11849–11858
Interpretation of the data obtained for complex mixtures in
the above experiments is challenging and time-consuming due
to the large amount of the data. Therefore, we decided to
develop a chemical graph based interpretable machine learning
methodology to facilitate data interpretation and the prediction
of whether a given protonated analyte will form a diagnostic
product ion upon reactions with MOP. Previously, multilayer-
perceptron,14–16 Long-Short Term Memory17,18 (LSTM) and
Graph Convolution Networks19–22 (GCN) approaches have been
demonstrated to be suitable for predicting reaction outcomes
when a large number of known reactions are available. Unfor-
tunately, due to the specicity of the diagnostic ion–molecule
reactions of interest here, only a relatively small set of known
reactions exist. Furthermore, these models are difficult to
understand and yield no additional chemical insight. Although
one-shot and few-shot learning has proven useful in the litera-
ture for systems with a small number of observations,23–26 these
models are typically difficult to interpret and only limited
information can be obtained about the reactions. Therefore,
a machine learning methodology that can be interpreted by
humans is developed in this work and termed a “chemical
reactivity owchart.”

Previously, the proton affinity (PA) of an analyte was used to
predict whether a protonated analyte would undergo diagnostic
product formation, proton transfer, or no reaction withMOP.8 If
the PA of the analyte is lower than that of MOP, proton transfer
usually dominates. On the other hand, if the PA of the analyte is
greater than that of MOP, a diagnostic adduct may be formed.
However, accurate predictions between formation of the diag-
nostic adduct and no reactions were not possible. Nevertheless,
PA values may be used as a baseline for benchmarking potential
machine learning methods or as a source for additional input
features.
This journal is © The Royal Society of Chemistry 2020
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Fig. 3 (a) The distribution of diagnostic product branching ratios for
the initial training set of 36 reactions. (b) Structures for representative
analytes with diagnostic product branching ratios between 40 and
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Results and discussion
Choice of the machine learning model

Given the sparsity of data available for training a machine
learningmodel, traditional architectures known to perform well
with small amounts of data were evaluated. These machine
learning architectures include regularized logistic regres-
sion,27,28 decision tree models,29,30 partial least squares,31

generalized linear models,32 and k-nearest neighbor.33 Each of
these models solves classication problems in a very different
manner. For example, logistic regression attempts to assign
numeric weights to an input vector this vector is then used to
linearly transform the input into two probabilities for assign-
ment of the input as a given class. On the other hand, decision
trees (when trained for classication) attempt to reduce the
Shannon entropy of the predicted class by splitting the data
using a set of Boolean operations. This yields a owchart of
logical decisions that one can use to evaluate the decisions
made by the model (see the Methods section for details of this
procedure). The major advantage of decision tree models, with
analytes represented as an input bit vector of functional groups,
is that the resulting ow chart diagram can be interpreted by
chemists to gain a deeper understanding of the chemistry
resulting in a reaction taking place. This procedure is widely
used in both biology30 and chemistry34,35 to identify and inter-
pret how input features (in this case the collection of functional
groups) correlate with a property of interest (reactivity toward
MOP in this case). Recently, similar techniques have been
applied to reaction chemistry36 to understand how various
chemical moieties are related to the reactivity of a molecule.
Here, we used bootstrapping of several decision tree models to
ensure robustness of our model for prospective experimental
validations. Moreover, a comparison of the performance of
decision trees to other machine learning models was also per-
formed to ensure that efficacy was not compromised for the sole
sake of interpretability.

To develop a chemically interpretable machine learning
model, the presence or lack of a topology of a collection of
atoms (referred to as functional groups) was related to predicted
reactivity. The Morgan ngerprint algorithm37,38 was used to
represent such functional groups, avoiding the use of manually
created functional groups subject to human bias and interpre-
tation. Additionally, previous work indicates that the use of
Morgan ngerprints in machine learning is an effective
approach across chemical disciplines.39–41 Briey, this algo-
rithm functions by nding all subgraphs of a molecular graph
(i.e. the connectivity of the atoms in the molecule) and assigns
a number to these subgraphs calculated via a set of hashing
functions applied to each atom and its respective neighbor-
hood. This yields an integer which can be used as a surrogate
for the functional group. The size of these subgraphs was
determined by a radius parameter that is supplied by the user
a priori. Application of a small radius in machine learning has
been shown to avoid the potential for the same integer to
represent the same functional group, a phenomenon known as
a bit collision.42 In this work, the ability of models trained on
This journal is © The Royal Society of Chemistry 2020
different radii were also compared to ensure that the selection
of ngerprint radius is optimal for the task at hand.
Cutoff assignments for the machine learning model

Since the experimental outcome of a given analysis was either
proton transfer/no reaction, or the formation of a diagnostic
addition product ion (see Fig. 2), and a limited amount of data
were available for training, a binary classier is preferable to
other supervised machine learning models. The training set for
this classier included a set of 36 protonated analytes whose
reactions with MOP have been studied along with their product
branching ratios8,43,44 (see Table S1† for all MOP reactions). The
distribution of product branching ratios measured for the
diagnostic addition reaction (see Fig. 3a) shows a large gap
between 65–83% as no compounds have a diagnostic product
branching ratio between this percentage gap. This gap indicates
that a cutoff of 70% or greater for the branching ratio should be
used in this binary classier to determine whether a given
analyte will undergo the diagnostic addition reaction withMOP.

The selection of the above cutoff resulted in 8 protonated
analytes being classied as forming a diagnostic addition
product ion with MOP and 28 protonated analytes being
considered as non-diagnostic. Since this split was unbalanced
(i.e. more nondiagnostic reactions than diagnostic), the Cohen
70%.

Chem. Sci., 2020, 11, 11849–11858 | 11851
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kappa statistic45 was used to compare the success of different
models. A kappa statistic of zero indicates that the model
performs at random and a value of positive 1 indicates a perfect
classier (see Methods section for details). To further investi-
gate the effects of this cutoff value, models created with a 70%
cutoff were compared to those created with 10%, 20%, 30%,
40%, 50%, 60%, and 90% cutoffs to ensure that this choice was
logical with respect to how the models performed for reactions
not used to train the model. Note that a cutoff of 80% was not
considered as it produced the same set of analytes that under-
went the diagnostic reaction as the 70% cutoff.

A potential alternative to the 70% cutoff is 40% as this
represents the second-largest gap in the distribution of diag-
nostic product branching ratios (see Fig. 3a). This value is
Table 1 The probability for assignment of a correct reaction for all deci

# Test compound Formation of diagnostic producta 20%

1 Yes 51%

2 No 0%

3 No 0%

4 No 0%

5 No 59%

6 No 0%

7 Yes 100%

8 No 0%

9 No 100%

10 Yes 100%

11 No 100%

12 Yes 100%

13 Yes 100%

Kappa value — 0.56

a See Fig. S2–S14 for assignment of diagnostic production formation. b

calculated using density functional theory, see section Calculation of prot

11852 | Chem. Sci., 2020, 11, 11849–11858
approximately at the 67th quantile of the data and resulted in
a split of 13 analytes that underwent the diagnostic addition
reaction, compared to 23 analytes that did not. When consid-
ering the result of the binary classier with different cutoffs,
70% and 40%, the model classied four analytes, TEMPO (an N-
oxide radical), 5,5-dimethyl-1-pyrroline N-oxide, methyl phenyl
sulfoxide, and (ethenesulnyl)benzene (a sulfoxide) (see
Fig. 3b), differently. Conversely, with both cutoffs, the model
classied all sulfones, alcohols, and amines to undergo proton
transfer or no reaction instead of forming a diagnostic addition
product ion. The similarities and differences between the 70%
and 40% cutoffs could be used to further understand how the
model performs and assigns classications.
sion tree models

30% 40% 50% 60% 70%
Proton affinity
(kcal mol�1)

54% 50% 47% 100% 100% 214.43b

8% 0% 0% 0% 0% 225.23b

8% 0% 0% 33% 0% 229.51b

0% 0% 0% 0% 0% 188.57

58% 50% 44% 4% 0% 222.71b

0% 0% 0% 33% 0% 195.01

100% 100% 94% 100% 100% 224.15b

0% 0% 0% 33% 0% 214.36

100% 100% 100% 100% 100% 213.07

100% 100% 100% 61% 100% 228.46b

100% 100% 94% 100% 100% 205.64

100% 100% 88% 100% 100% 226.38b

100% 100% 100% 100% 100% 232.58b

0.56 0.56 0.53 0.70 0.70 0.40

Value greater than the proton affinity of MOP (214.42 kcal mol�1) as
on affinities in Methods for details.

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Chemical reactivity flowchart. (a) Analytes that form the diag-
nostic product (DP) or undergo proton transfer or no reaction (PT). (b)
Compounds identified as having a specific functional group feature
(left), such as a sulfoxide with at least one aliphatic carbon atom bound
to it (right). No structure is shownwhen the feature (sulfoxide) is absent
in the molecule that does not form a DP. (c) Flowchart for decision
making based on the presence or absence of the feature (sulfoxide). (d)
The decision tree model trained on a diagnostic product branching
ratio cutoff of 70%. The model classifies analytes as reactive or
unreactive towards MOP based on their functional groups determined
by the Morgan algorithm with a radius of 1 atom.
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To ensure that a decision tree model will perform well
prospectively, 13 compounds that were not present in the
training set (i.e., test set) were evaluated using a bootstrapped
set of models trained with different diagnostic branching ratio
cutoffs. In addition, models were trained using different
ngerprint radii to ensure that a radius of 1 is appropriate (see
ESI† for details). These 13 compounds (Table 1) were selected
from an in-house library of available compounds and the model
was prospectively tested using ion–molecule reactions with
MOP. These 13 compounds were selected based on a criterion
that either their functional groups were not present in the
compounds of the training set or all bootstrapped decision tree
models resulted in the prediction of formation of a diagnostic
addition product with MOP. The results are shown in Table S2
and Fig. S2–S14.†

The probabilities of the analytes to form a diagnostic
product as assigned by the radius 1 decision tree models are
given in Table 1 and for other radii in Table S3.† These tables
show that the 60% and 70% cutoffs produced the models best
suited for the external test set with a kappa value (0.70) that is
greater than for the other cutoff values. The prediction proba-
bilities for the analytes that underwent no diagnostic reaction
(#3, #5, #6, and #8) were zero in the 70% cutoffmodel but above
30% in the 60% cutoff model. Therefore, the 70% cutoff was
superior to 60% as it produced lower probabilities of diagnostic
addition product formation for analytes that predominantly
reacted via proton transfer or not at all. Additionally, other
machine learning methods, including regularized logistic
regression, k-nearest neighbor, and partial least squares clas-
sication (Tables S4–S7†), were evaluated. None of these
methods outperformed the 70% decision tree model trained
with a ngerprint radius of 1. Finally, the proton affinity model
achieved a kappa value of 0.40, indicating that the decision tree
model signicantly outperformed the manual approach of
identifying reactions based on proton affinities. One should
note that the proton affinities relevant to test reactions #1 and
#8 and the calculated proton affinity of MOP are all within
0.1 kcal mol�1 of each other. Therefore, the correct ordering of
these proton affinity values may not have real signicance.
Moreover, using the experimental value for the MOP proton
affinity instead of the calculated value results in a kappa value of
0.43, further demonstrating the superiority of the decision tree
model (kappa ¼ 0.70) over that of proton affinity calculations.

Given the straightforward interpretability of decision tree
models, we introduce a chemical reactivity owchart to ratio-
nalize the logic behind the 70% model used here to make
predictions. The decision tree ow chart for the 70% cutoff and
the ngerprint radius of 1 atom is given in Fig. 4 and a chart for
the 40% cutoff is provided in Fig. S1 (ESI†). The logic begins by
checking for the presence of a sulfoxide functionality with at
least one aliphatic carbon atom bound to it in the analyte and, if
found, the analyte is assigned as “reactive” (see Fig. 4d). Then,
the model checks for the presence of a nitrogen atom with three
substituents in a heteroaromatic ring (note that dashed lines
indicate an aromatic bond) and assigns the analyte as “reactive”
if such an atom is present. If neither functional group is
present, themodel checks for a junction between sp2 hybridized
This journal is © The Royal Society of Chemistry 2020
atoms and assigns analyte containing this group as “reactive”. If
this group is not present, themodel checks for a sulfoxide group
located next to one or more aromatic rings and assigns the
analyte as “reactive” if the sulfoxide group is between two
aromatic rings. Aer this, the model checks for a terminal
carbon bound to any atom and assigns all analytes lacking this
functionality as “unreactive”. Those analytes that contain this
Chem. Sci., 2020, 11, 11849–11858 | 11853
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Fig. 5 The decision tree model obtained by retraining the first model
by using the 70% cutoff and all 49 reactions (original 36 and new 13 test
reactions). This model is similar to the one obtained via a training set of
36 reactions but has an additional check for a nitro group which was
not included in the original model. The lack of any major changes from
themodel shown in Fig. 4 indicates that the final model is robust and is
able to incorporate new functional groups.
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functionality are checked for terminal oxygens or carbonyl
groups and compounds lacking these functionalities are
checked for a hydroxylamino group for nal “reactivity”
assignment. It should be noted that these features are identied
by the trained decision tree model and that they make chemical
sense in several cases, such as that compounds containing
sulfoxide group with at least one aliphatic carbon atom bound
to it (feature) generating the diagnostic product with MOP
(Fig. 4).

All cutoff models correctly predicted the two test sulfoxide
compounds (#10 and #13 in Table 1) to be “reactive” towards
MOP. This result can be explained by the fact that all protonated
sulfoxides in the training set except for one (tetrahy-
drothiophene 1-oxide, analyte #22 in Table S1 in ESI†) had
a reaction efficiency greater than 40%. Therefore, the model
predictions reect the true experimental conclusion regarding
sulfoxide compounds. This concept was reected by the pres-
ence of a sulfoxide group as the paramount feature in the model
(at the top of Fig. 4a–c). Similarly, all the models predicted that
analytes containing an N-oxide functionality are “reactive” (#7,
#9, #11, and #12). However, experimental results show that
compounds containing nitro groups (#11 and #9) are “unreac-
tive” (do not undergo a diagnostic addition reaction). These two
compounds represented the only two errors made by the 70%
cutoff model and these failures may be due to a nitro group not
being present in compounds in the training set. The proton
affinity model, however, correctly predicted these two nitro
compounds as “unreactive” towardsMOP, suggesting that when
new functional groups are added into the model, a proton
affinity verication step could be used to ensure that the new
reaction predictions are correct. Since proton affinity model
incorrectly predicted that compounds #2, #3, and #5 will form
diagnostic addition products and that compound #1 will not,
and none of these compounds contain functional groups
present in the training set, it is best to apply this verication
only if the compound contains functional groups not present in
compounds in the original training set.
Retraining the decision tree model on new reactions

To ensure that the introduction of new data does not cause
extensive changes to the decision tree model, a new model was
trained with the addition of 13 analytes to the initial 36 analytes
in the training set. The new model obtained by training with all
these 49 analytes is shown in Fig. 5. Theminimal changes in the
chemical features seen in this model indicate that the new
model does not have many logical changes as compared to the
previous model shown in Fig. 4. The rst three comparisons
were the same between both the original 36-analyte model and
the new 49-analyte model and the new model only introduced
four additional functional groups. Three of these new func-
tional groups were related to the nitro group present in the
compounds in the new training set: 4-nitropyridine N-oxide and
4-nitroquinoline N-oxide. Therefore, one can deduce that the
model has added an additional comparison to prevent these
compounds from being predicted as “reactive”. As more
protonated analytes with known reactivities towards MOP are
11854 | Chem. Sci., 2020, 11, 11849–11858
identied, this model can be retrained to incorporate these new
analytes, yielding improved predictions in the future while
retaining baseline performance and simplicity.
Conclusions

The work presented here demonstrated that a combination of
machine learning and tandem mass spectrometry experiments
based on diagnostic ion–molecule reactions can be used to
identify or rule out specic functional groups in protonated
analytes in a semiautomated fashion while generating results in
a manner readily understandable to chemists. When many diag-
nostic reactions are examined, and this information is combined
with additional information obtained from other mass spec-
trometry or spectroscopy evidence, identication of the analyte is
facilitated. This machine learning methodology combined with
an automated functional group identication method (Morgan
ngerprinting) with a decision tree model trained on only 36
analytes and was prospectively validated using 13 external analy-
tes of unknown experimental outcomes. The model correctly
predicted reactivity for 11 of the 13 analytes present in the test set
This journal is © The Royal Society of Chemistry 2020

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d0sc02530e


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

5 
O

ct
ob

er
 2

02
0.

 D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 7
:5

1:
30

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
without any additional proton affinity-basedQM calculations, and
13 of 13 analytes when an additional QM lter based on the
relevant proton affinities was applied. In addition to out-
performing other traditional machine learning models, the deci-
sion tree model is easily interpretable by humans using the
chemical reactivity owcharts shown in this work. Additionally,
the inclusion of new data resulted in only minor changes to the
model as opposed to the creation of an entirely newmodel, which
suggests a robust selection of chemical features.

Over the years, more than 20 different reagents have been
developed, with more developed every year, for the identication
of different functionalities in protonated analytes.4,7–9,11,13,43,44

Chemical diversity in the reagents results in increased reliability
of the identication. At this time, nine different reagents can be
tested simultaneously by using a nine-pulsed valve system
developed for rapid introduction of nine reagents while each
analyte in a mixture elutes from an HPLC column.46 The experi-
ment is automated. Therefore, nine reagents and many analytes
can be tested in one HPLC run. Integration with interpretable
machine learning methods will improve the decisions for the
selection of nine reagents for subsequent HPLC runs towards
development of autonomous systems.

While the integration of machine learning methods to gas-
phase ion–molecule reactions and data analysis is not widely
adopted nor commercially available currently, it is likely to
become much more common in the future when its full power
has been demonstrated. The methodologies presented herein
will pave the way for expanding the above MS/MS method to
include new diagnostic reactions for the identication of many
different functionalities in, for example, drug metabolites in an
easy, accurate, and automated manner. The ultimate goal of
this research is to develop methodology for the fast determi-
nation of unknown isomeric metabolites of medicinal
compounds via the identication of diagnostic product ions
formed with selected neutral reagents. In the future, a fully
automated pipeline for mixture component identication
incorporating multiple models similar to the one presented
here will be showcased along with how this methodology can be
used to aid in the development of new therapeutics. The
detailed output of all machine learning models is given in the
ESI† along with the MS/MS spectra measured for all MOP
reactions not previously reported in the literature. Additionally,
all computer code, machine learning inputs, and other relevant
scripts are provided on our GitHub page: https://
www.github.com/chopralab/mop_reactivity_analysis.
Methods
Safety statement

No specic safety protocols were required for this research as all
none of the analytical techniques used resulted in unsafe
chemical environments.
Materials

All chemicals were purchased from Sigma Aldrich and used
without further purication.
This journal is © The Royal Society of Chemistry 2020
Mass spectrometry

All experiments were performed using a Thermo Scientic
linear quadrupole ion trap mass spectrometer (LQIT) equipped
with an atmospheric pressure chemical ionization (APCI)
source and operated in positive ion mode. Sample solutions
were prepared at concentrations ranging from 0.01 to 1 mg
mL�1 with methanol as the solvent. The solutions were injected
into the APCI source through a syringe pump at a rate of 15
mL min�1 by using a 500 mL Hamilton syringe. In the APCI
source, typical ow rates for sheath and auxiliary gases (N2)
were 30 and 10 (arbitrary units), respectively. The vaporizer and
capillary temperatures were 300 and 275 �C, respectively. The
ions generated upon APCI were transferred into the ion trap.
The voltages applied to the ion optics were optimized for each
protonated analyte via the tune feature of the LTQ Tune Plus
interface. The neutral reagent, MOP, was introduced into
helium buffer gas line of an external reagent mixing manifold
via a syringe pump operating at a rate of 5 mL h�1.12,13 The
surrounding areas of the syringe port were heated to about
120 �C to ensure that MOP evaporated completely. MOP was
then diluted and directed into the ion trap by a constant ow of
helium gas, controlled by a leak valve. Protonated analytes were
isolated using an isolation width of 2 m/z units and a q value of
0.25, and then allowed to react with MOP in the ion trap for up
to 10 000 ms. Aer this, all ions were detected using external
electron multipliers. The MS/MS spectra measured for the new
analytes studied in this paper are given in Fig. S2–S14† for one
reaction time The diagnostic product branching ratio is the
fraction of product ions that have the mass of the analyte plus
a proton plus the mass of MOP relative to all product ions
generated. These values were measured at several reaction
times and found to be constant with time as no secondary
reactions took place. The reproducibility of these measure-
ments was found to be better than �10%. Other potential
product ions are MOP + proton and the diagnostic adduct
minus the mass of methanol.8,43,44
Creation and evaluation of the decision tree models

The prediction of adduct formation of a protonated analyte with
MOP is possible through a combination of ngerprinting
techniques and corresponding machine learning techniques.
For each reaction, the protonated analyte and adduct were
written as a stoichiometrically-balanced reaction-SMILES
string. The eld for the ‘name’ of the reaction is annotated
with the diagnostic product ratio as shown in Table S1.† This
reaction was then converted to a Morgan ngerprint37 using the
RDkit soware package47 with a radius of one, two, and three
atoms and a bit length of 2048 bits. For the sample case pre-
sented herein, 36 reactions (training set) of known protonated
analytes with the MOP reagent were examined8,42,43 in the
decision tree model and each reaction was assigned a binary
response of “no-hit” or “hit” based on the branching ratios of
the products. The decision tree models were created using, the
Julia implementation of Decision Tree, DecisionTree.jl (https://
github.com/bensadeghi/DecisionTree.jl) using a minimum leaf
size of 2 to reduce overtting to a single analyte. The decision
Chem. Sci., 2020, 11, 11849–11858 | 11855
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tree classication model increases the information gain (IG) of
a given classication (c, in this case simply “no-hit” or “hit”) by
decreasing the entropy (H) of a given set (S) which was calcu-
lated using eqn (1) using the probability of nding a specic
class (p(c)). Information gain is the difference in entropy for the
full set (S) and the sum of the entropies for all subsets (t) created
by all splits (A) as shown in eqn (2).29

HðSÞ ¼
X
c˛C

�pðcÞlog2pðcÞ (1)

IGðS;AÞ ¼ HðSÞ �
X

t˛TðAÞ
paðtÞHaðtÞ (2)

A bootstrapping technique was used to address the fact that
the creation of an individual decision tree model relies on the
selection of random input features to be used as splits. Through
this technique, 10 000 decision tree models were created for
each radius and cutoff value and the frequency of each func-
tional group used by the models was measured along with the
number of times a given test analyte was predicted to be
“reactive” toward MOP. The frequencies of the functional
groups were used to create the chemical reactivity owcharts
shown in Fig. 4, 5 and S1.†

For the logistic regression,27,28 partial least squares,31 gener-
alized linear models,32 and k-nearest neighbor predictions,33 the
Caret soware package48 was utilized to create and evaluate the
models. A simple grid search was performed to obtain a set of
optimal hyperparameters. The input features were the Morgan
ngerprint bit-vectors and the output was the binary outcome of
whether the protonated analyte would be “reactive” toward
MOP.
Calculation of the kappa statistic

The kappa statistic45 was calculated using the following terms.
True positive (TP) is the number of analytes predicted to be
reactive that were experimentally found to be reactive while
false positive (FP) is the number of analytes predicted to be
reactive but that were experimentally not found to be reactive.
Similarly, true negative (TN) is the number of analytes predicted
to be unreactive that were experimentally found to be unreactive
and false-negative (FN) is the number of analytes predicted to be
unreactive that were experimentally found to be reactive. Based
on these denitions, accuracy (Po) is dened using eqn (3).

Po ¼ TPþ TN

TPþ TNþ FPþ FN
(3)

Additionally, the chance probability (Pe) of the model
dened to predict the reactivity correctly was determined using
eqn (4).

Pe ¼
½TPþ FN FPþ TN �

�
TPþ FP

FNþ TN

�

ðTPþ TNþ FPþ FNÞ2 (4)

Finally, the kappa statistic was calculated using eqn (5).
11856 | Chem. Sci., 2020, 11, 11849–11858
k ¼ Po � Pc

1� Pc

(5)
Calculation of proton affinities

All quantum chemical calculations were performed using
Gaussian 16 revision B.01 (ref. 49) and the M06-2x density
functional.50 The 6-311++G(d,p) basis set was employed for all
compounds except for 3,5-diiodo-4-pyridone-1-acetic acid that
was calculated using the D-Gauss Double Zeta Valence Polarized
basis-set (DGDZVP) to account for the iodine atoms.51 The three-
dimensional structures for all analytes were constructed using
the ‘Clean Structure in 3D’ feature as implemented in Marvin-
Sketch.52 Then, GaussView53 was used to add protons to
generate protonated molecules (see Table S2† for the location of
the additional proton). The resulting structures were optimized
and the difference between the electronic energies for the
neutral and the protonated molecules was determined and
compared to the known proton affinity of a simple reference
compound used in an isodesmic reaction. Here, methanol was
used when the proton affinity was calculated for an oxygen
atom, ammonia was used when the proton affinity was calcu-
lated for a nitrogen atom, and 2-methyl propene is used for
MOP. See Table S2† for individual proton affinity values and the
associated content on https://www.github.com/chopralab/
mop_reactivity_analysis for the Gaussian 16 input and output
les respective to the aforementioned calculations.
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