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Catalytic enantioselective synthesis of carbocyclic
and heterocyclic spiranes via a decarboxylative
aldol cyclizationt

i ") Check for updates ‘

Cite this: Chem. Sci., 2020, 11, 7390

8 All publication charges for this article
have been paid for by the Royal Society

of Chemistry Kazato Inanaga,f Marco Wollenburg,i Shoshana Bachman, Nicholas J. Hafeman ©

and Brian M. Stoltz ®*

The synthesis of a variety of enantioenriched 1,3-diketospiranes from the corresponding racemic allyl B-
ketoesters via an interrupted asymmetric allylic alkylation is disclosed. Substrates possessing pendant

aldehydes undergo decarboxylative enolate formation in the presence of a chiral Pd catalyst and
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The enantioselective construction of spirocyclic compounds
remains an enduring challenge in organic synthesis, and has
been the subject of intensive investigation in recent years.'
Owing to their prevalence in bioactive natural products and
privileged ligand scaffolds, as well as their potential in drug
discovery, methods for the stereoselective preparation of these
unique motifs represent powerful technologies in synthetic
chemistry.>® At present, there are few reliable methods for the
direct catalytic, enantioselective synthesis of these valuable
building blocks. Of particular interest are spirocyclic
compounds bearing a chiral, quaternary carbon as the spiro
atom. Due to the difficulty associated with the enantioselective
preparation of all-carbon quaternary centers,* and the added
challenge of spirocyclization, a catalytic asymmetric approach
to these ring systems represents a significant challenge for
modern, asymmetric catalysis.

One particularly interesting and underexplored subclass of
spirocyclic compounds are 1,3-diketospiranes such as those
shown in Fig. 1A. While the preparation of racemic 1,3-diketo-
spiranes such as 1-5 is known and relatively straightforward,®
these scaffolds are significantly more difficult to prepare as
single enantiomers.® Depending upon the identity of each of the
rings within the spirocyclic framework, these compounds can
possess either axial (e.g. 1 and 3, Fig. 1B) or point chirality.
Previous enantioselective routes to these motifs have relied
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to a formal synthesis of the natural product (—)-isonitramine.

almost exclusively on chiral resolution technology or chiral
auxiliaries to prepare enantioenriched samples of 1-5, with only
2 examples of asymmetric catalysis being utilized in the context
of the synthesis of these compounds.*"

Given our laboratory's longstanding focus on the develop-
ment of catalytic methods for the asymmetric a-functionaliza-
tion of carbonyl compounds for the synthesis of quaternary
centers, in addition to the lack of currently available stereo-
selective methods for the synthesis of 1,3-diketospiranes, we
became interested in targeting this class of molecules.”® As an
inspiration, we turned to a seminal report by Tsuji and
coworkers (Fig. 2A) detailing a palladium-catalyzed aldol reac-
tion via decarboxylative enolate formation and subsequent
intramolecular trapping with a pendant aldehyde. Given our
mechanistic understanding of related asymmetric processes
wherein chiral Pd-enolates have been implicated, we hypothe-
sized that a chiral Pd-enolate might be able to trap the elec-
trophile in a stereocontrolled fashion. We envisioned that
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Fig. 1 Examples of 1,3-diketospiranes and their stereochemical
properties.
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Our study commenced with the development of an enan- 2b Protonation Decabonnate co,
tioselective variant of Tsuji's intramolecular aldol reaction.® H*
After examining a wide variety of Pd precatalysts, chiral ligands, Aldol Cyclization iy
and solvents (see ESI for detailst), we were delighted to find that /-'\P N, P
Pd“

exposure of substrate 2a to Pd(OAc), and (S)-t-Bu-PHOX in THF
delivered diastereomeric spirocycles 2b and 2c, albeit in low
yield and moderate diastereo- and enantioselectivity (Table 1,
entry 1). Upon further investigation, we found that the addition
of a Brgnsted acid to the reaction is crucial for good conversion
to the desired spirocyclic products (Table 1, entries 2 and 3),
and thus reasoned that it must play a critical role in the reaction
mechanism.

After surveying a variety of Brensted acids, we found that
phenols performed best, with 3,5-dimethylphenol providing the
highest combination of yield and enantioselectivity. Thus, the
use of Pd(OAc), (10 mol%) with (S)-t-Bu-PHOX and 3,5-dime-
thylphenol as the Brgnsted acid in 1,4-dioxane (0.1 M) at 40 °C

Table 1 Optimization of the asymmetric spirocyclization

Pd"

Intramolecular ©/V\

Fig. 3 Mechanistic proposal including Brgnsted acid-mediated cata-
lyst turnover (A~ represents conjugate base of the Brensted acid
additive).

proved optimal (entry 12), furnishing spirocyclic B-hydroxy
ketones 2b and 2c¢ in 90% isolated yield, 85% ee (major dia-
stereomer 2b) in an 85:15 d.r.*

o) 0o o o
0\ _(S-+Bu-PHOX (12.5 mol %) é? + i
w o %N
30-32°C, 13-23h
2a 2b 2c
Entry Acid Solvent % conv.*? dr. (b:c)* % ee’
1 None THF 48 42: 58 72 (53)
2 Aniline THF >99 69 : 31 58 (23)
3 Meldrum's acid THF >99 72:28 ( 3)
4 Acetic acid THF —£(77) 60 : 40 74 (45)
5 Phenol THF 71 74:26 81 (30)
6 Thymol THF >99 76 : 24 81 (31)
7 2-Methoxyphenol THF >99 67:33 82 (29)
8 2,6-Dimethoxyphenol THF >99 41:59 84 (44)
9 3,5-Dimethoxyphenol THF 76 63:37 83 (24)
10 3,5-Dimethylphenol THF 68 74:26 81 (42)
11/ 3,5-Dimethylphenol THF —°(91) 75 : 25" 83 (47)
12/¢ 3,5-Dimethylphenol 1,4-Dioxane —*(90) 85 : 15" 85 (73)

“ Determined by GC unless otherwise noted. ? Parenthetical value i s yield of isolated product. ©
Reactlon performed for 37 h. ¢ Consumption of 2a was monitored by TLC.

benzoyl ester; parenthetical value is ee of mlnor diastereomer. ¢

Determlned by chiral SFC after transformation to

/ Reaction performed at 40 °C. ¢ 15 mol% ligand. ” Determined by "H NMR.
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We envision that the catalytic cycle (Fig. 3) commences with
oxidative deallylation of B-ketoester 2a by a Pd(0) (M-1) species
to furnish Pd(u) carboxylate M-2. A transmetalation onto Pd(u)
species M-7 generates a new Pd(u) carboxylate (M-4) that can
then undergo rate-limiting decarboxylative enolate formation."*
Enolate M-5 then undergoes an intramolecular aldol cyclization
to Pd(u) alkoxide M-6, which enantioselectively sets the stereo-
chemistry at the quaternary spiro atom. At this point, the
Bronsted acid (ie., H') serves to protonate the resulting

Table 2 Enantioselective synthesis of 1,3-diketospiranes

View Article Online
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alkoxide, releasing the product (2b), and regenerating Pd(u)
species M-7 while the conjugate base (i.e., A”) acts as a nucleo-
phile by reductive deallylation of M-3 to regenerate Pd(0) species
M-1."> This proposed cycle accounts for the critical role of the
Bronsted acid observed in this reaction, as well as the fact that
a Pd(u) precatalyst may be employed. We envision that only
a small excess of phosphine ligand is required to produce
a limited amount of Pd(0) species M-1, to enter the p-ketoester
activation cycle.

1. (S)-+Bu-PHOX, Pd(OAc), o
3,5-Me,CgH3OH
1,4-dioxane, 35-40 °C

o o
é{i\_c{/\/
o " \cHo

2. DMP, CH,Cl,, 23 °C

0
1-4a, 2d 1-4
% %
Entry Aldol product yield d.r.? Oxidized product? yield % ee”
0 0
1 77 72:28 N 88 83 (95)7
HO o
1b 1
) 0
2 84 67 :33 ép 88 73
HO o
2e 2
o
3 90 85:15 & 93 84
o
2
o
4 82 76: 24 82 84 (94)?
o
3
5 92 66 : 34 93 81
4
6 76 67 :33 — — 84°
5b
7 94 62 : 38 — — 7%/

“ Determined by '"H NMR. ? Oxidized with DMP. © Determined by chiral GC. ¢ After recrystallization from hexane. ¢ Determined by chiral SFC after

transformation to benzoyl ester./ Determined by SFC.
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With optimal conditions for the spirocyclization in hand, we
next turned our attention to the application of this reaction
toward the synthesis of various 1,3-diketospiranes. Cyclic allyl p-
ketoesters of varying core ring sizes possessing aldehydes with
different tether lengths were synthesized and subjected to the
optimized spirocyclization conditions. We found that the
conditions developed performed generally well across various
ring sizes and tether lengths providing spirocyclic B-hydrox-
yketones in high yields and with high enantioselectivity, albeit
with moderate diastereoselectivity. The diastereomeric
mixtures obtained were generally difficult to separate by flash
chromatography, and thus, these mixtures were treated directly
with DMP to furnish the desired enantioenriched 1,3-diketo-
spiranes. Importantly, following oxidation, the modest diaste-
reomeric mixtures converged to enantioenriched diketones,
demonstrating that the primary enantiocontrol is occurring at
the quaternary center by differentiation of the enantiotopic
faces of the enolate. Additionally, recrystallization of spiro[4.4]
nonanedione 1 and spiro[5.5]Jundecanedione 3 in hexanes
provided these products in excellent levels of enantioenrich-
ment (94% and 95% ee, respectively). The relative configura-
tions of the spiro B-hydroxyketone diastereomers 1b/c, 2e/f, and
3b/c (Table 2, entries 1, 2 and 4) were determined by comparing
chemical shifts to literature values,” while absolute configura-
tion of the quaternary carbon atom in 1 and 2 (entries 1 and 2)

Table 3 Enantioselective synthesis of spirocyclic B-hydroxy lactams
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was determined by comparing optical rotations with reported
literature values.**

Given the success of our protocol for the synthesis of 1,3-
diketospiranes, we next became interested in expanding the
scope of this procedure for the preparation of other spirocyclic
1,3-dicarbonyl systems. As N-protected lactams have previously
been shown to perform exceptionally well in our Pd-catalyzed
asymmetric allylic alkylation reactions,* and owing to the
prevalence of N-heterocyclic spirocycles in natural products and
bioactive molecules, we turned our attention to this class of
substrates.

Gratifyingly, we found that, after switching to thymol or
acetic acid as the Brgnsted acid, aldehyde-containing N-benzoyl
lactams 7a-10a (Table 3) proved competent substrates for our
spirocyclization protocol. Lactam substrates generally furnish
outstanding yields of diastereomeric mixtures of spirocyclic B-
hydroxy lactams in up to 78:22 dr. Importantly, the diaste-
reomers of this substrate class are readily separable by flash
column chromatography on silica. While the pyrrolidinone
substrates provide the corresponding azaspirocycles 7b/c and
8b/c in high yield, the dr's and ee's are diminished (entries 1
and 2). By contrast, the major diastereomers of the 6,5-azas-
pirocycle 9b (entry 3) and the 6,6-azaspirocycle 10b (entry 4)
could be prepared with excellent ee, while the minor diaste-
reomers 9 and 10c were obtained in only moderate ee.

0 0
o o Pd(OAc), —h) —)
(S)-t-Bu-PHOX > m H m
BzN o/\/ BzN + BzN
( m 1 432?,:(::“3 o Hé " HO
CHO 35-40°C
7-10a 7-10b 7-10c
Entry Products % yield dr.(b:c) % ee” of b, ¢
o o
an\b'o B2N” N
1 H 94 50:50 55,31
HO HO
7b 7c
0 o)
BzN" X BzN”
2 b 87 67 :33 77, 32
HO HO
8b 8c
3b 91 78:22 89, 79
4 93 58:42 93, 69

10c

“ Determined by chiral SFC. ? Acetic acid used as Brensted acid.
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1. OEt

0 1. n-BuLi, THF o o . /\/\/km
Bt then L +BUOK, PhMe, 80 °C
HN BzCl BzN o \F EBudK, e, 80
2.LDA, THF 2. HCI, acetone/H,0
—78°C, then 0-23°C
o .
11 12 69% yield over
veP o 2 steps
ref. 8¢
o 0 Pd(OACc), (10 mol %)
-Bu-| o
BaN 0 \F (S)-t-Bu. PHO-X (15 mol /:)
CHO thymol, 1,4-dioxane, 40 °C
54% yield, 93% ee
10a 10b
NH; (aq.) LAH
—_—
THF, 0 to 23 °C THF
95% yield ref. 13
13 (+)-isonitramine
Scheme 1 Formal synthesis of (—)-isonitramine.

Debenzoylation of 6,6-azaspirocycle 10b furnishes lactam 13,
a synthetic intermediate previously employed in the synthesis of
the alkaloid (—)-isonitramine®** thus completing a 7-step
enantioselective synthesis of this natural product (Scheme 1).
Furthermore, the stereochemistry of 13 (and thus of 10b) could
be confirmed by chemical correlation with this known inter-
mediate (Scheme 1). The absolute and relative stereochemistry
of all other azaspirocycles has been determined in analogy to
compound 8b (Table 3, entry 2), which was determined by X-ray
diffraction.

In conclusion, we have reported a catalytic, enantioselective
method for the construction of spirocyclic compounds con-
taining all-carbon quaternary centers. This transformation
provides unprecedented access to enantioenriched 1,3-diketo-
spiranes of several sizes as well as spirocyclic f-hydroxy lactams
which are useful for natural product synthesis, as evidenced by
our application of this chemistry to the synthesis of (—)-iso-
nitramine in 7 steps from commercially available starting
materials. We envision that this method will be applicable to
a wide range of potential target molecules, as well as provide
access to a variety of valuable chiral building blocks.
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