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have been paid for by the Royal Society
of Chemistry Herein we report a new synthetic entry to the strained cyclophane alkaloid natural product, haouamine A.
The successful strategy featured a rhodium-catalyzed diazo-insertion reaction to install the all-carbon
quaternary center and a rhodium-catalyzed intramolecular aziridination reaction to establish the
nitrogen-bearing stereocenter, of the target molecule. Most notably, a late-stage, site-selective and
strain-accelerated oxidation of a “deoxygenated” macrocyclic intermediate was successfully

implemented, and in doing so provided a novel solution to the infamous biphenol cyclophane system of
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Introduction

Strained cyclophanes are intriguing structural motifs with
unusual physical properties, chemical reactivities, and
methods for their preparation." Due to the strain imposed by
the macrocyclic framework, the constituent aryl ring(s) within
the cyclophane often experiences stress that leads to a distor-
tion from planarity. Consequently, one of the most common
tactics for the construction of strained cyclophanes exploits
a conformational flexible “masked” aryl precursor bearing sp®
hybridized carbon center(s) for the macrocyclization event,
followed by an aromatization-driven generation of the aryl
ring(s) to render the targeted strained cyclophane system. In
two instructive examples, Baran and co-workers disclosed
contrasting approaches in their first syntheses of the indeno-
tetrahydropyridine natural product, haouamine A (1,
Scheme 1).> In their first-generation synthesis,>* an intra-
molecular [4 + 2] cycloaddition followed by an enthalpic and
entropic driven retro-[4 + 2]/aromatization event successfully
delivered the strained cyclophane system of haouamine A for
the first time. A second-generation synthesis followed shortly
after where an intramolecular N-alkylation of a cyclohexenone
precursor bearing sp® hybridized carbon centers, followed by
oxidative aromatization, rendered a more practical solution.*”
In view of this state of affairs,* we hypothesized a “late-stage”
oxidation® of a “deoxygenated” macrocyclic precursor (2) may
provide an alternative solution to the biphenol cyclophane
system of haouamine A (Scheme 2a). While this strategic
maneuver benefits from greatly simplified synthetic precursors
and broadens the selection of synthetic transformations for
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their preparation, site-selectivity of this unprecedented late-
stage oxidation/oxygenation is expected to pose a serious
challenge. Furthermore, we also envisaged the application of
two rhodium-catalyzed processes ((a) diazo-insertion® and (b)
intramolecular aziridination;” Scheme 2b) starting from two
readily accessible building blocks 4 and 5 to provide a novel
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Scheme 1 Structures of haouamine A (1), atrop-haouamine A (atrop-
1), haouamine B (la) and reported syntheses of the strained
cyclophane.

This journal is © The Royal Society of Chemistry 2020


http://crossmark.crossref.org/dialog/?doi=10.1039/d0sc02299c&domain=pdf&date_stamp=2020-08-11
http://orcid.org/0000-0001-8782-3090
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d0sc02299c
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC011031

Open Access Article. Published on 24 June 2020. Downloaded on 10/16/2025 4:53:54 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article
a.
MeO. MeO. o
H "Late-Stage
MeO Oxidation" MeO —d H

-y H o
X allylic oxidation H
X benzylic oxidation
X alkene oxidation

MeO 2 X o-amino oxidation MeO' 3

X N-oxide formation

O Undesired oxidation @ Desired oxidation

b ome gzormmrmees 1
OH .. MeO,C : HO b.
OBn ! OH I
4 b: intramolecular H~
a: diazo-insertion aziridination

>
Bn: benzyl /©
N MeO
2
MeO 6 7

MeO
5 co,Me COH
2
MeO
R |
TBSO H

d. "Late-Stage

Oxidation" 0"
O ¢ aromatization
[ref 3b] Ts: p-toluene-
MeO : MeO sulfonyl
3 haouamine A (1) 9
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macrocycle 2; (b) proposed synthesis of haouamine A (1) in this work
from building blocks 4, 5, and 8.

and practical synthetic entry to the indeno-tetrahydropyridine
core of haouamine A via amino-alcohol 7.*%*

Results and discussion

As shown in Scheme 3a, the synthesis of haouamine A (1)
commenced with the preparation of amino-alcohol 7. Inspired
by the protocol originally developed by Wang and co-workers,®
rhodium-catalyzed diazo-insertion reaction engaging benzocy-
clobutanol 4 (ref. 8) and diazoester 5 (ref. 9) proceeded smoothly
to afford tertiary alcohol 6 in good yield. Notably, this reaction
took place with significantly improved yield at room tempera-
ture instead of the elevated temperature (100 °C) initially re-
ported by Wang, and was routinely performed on multi-gram
scale with further reduced catalyst loading (2 mol% to
0.8 mol%). In preparation for the ensuing intramolecular azir-
idination (16 to 17), hydroxy methyl ester 6 was elaborated to
alkenyl alcohol 15 via oxidative cleavage of diol 12, a two-step
deoxygenation of keto ester 13 and reduction of alkenyl
methyl ester 14. On treatment with chlorosulfonyl isocyanate,
primary alcohol 15 was converted to sulfamate 16 in readiness
for the intramolecular aziridination. Analogous to the reaction
conditions originally developed by the Du Bois laboratory,”
rhodium-catalyzed intramolecular aziridination of 16 took
place at a slightly elevated temperature (40 °C) to furnish
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aziridine 17 in high yield as the sole product (e.g. nitrene CH-
insertion product(s) was not observed). Sequential reductive
transformations on 17 that involved rupture of its aziridine (Pd/
C, H,) and cleavage of the sulfamate (AlH;-EtNMe,) yielded
amino-alcohol 7 with spectroscopic data in full accordance with
literature reports,*® thereby validated our developed reaction
sequence. Furthermore, practicality of the developed sequence
has been demonstrated in generating multi-gram quantities (>7
grams. For details, see ESIT) of amino-alcohol 7 for the ensuing
synthetic investigations.

The synthesis of bicyclic carboxylic acid 8 is outlined in
Scheme 3b. Inspired by the recent advances in CH-
functionalization of phenylacetic acid derivatives, Pd(OAc),-
catalyzed cross-coupling between quinolinamide 21 (ref. 10)
and cyclohexanone 19 (ref. 11) derived vinyl iodide 20 under the
aerobic ortho-alkenylation conditions described by Chen and
co-workers*” smoothly delivered bicycle 22 as the only detect-
able product. Hydrolytic amide-bond cleavage through the Boc
derivative of quinolinamide 22 completed the synthesis of
carboxylic acid 8 together with recovered 8-aminoquinoline
directing group.*

Annulation of the tetrahydropyridine domain of haouamine
A onto amino-alcohol 7 was realized through an adaptation of
the reaction sequence described by Weinreb*® and Wipf
groups,** through the intermediacy primary alcohol 23 and
intramolecular aldol-condensation of aldehyde 24, to deliver
lactam 25 uneventfully (Scheme 4).** In preparation for the
macrocyclization event and the completion of macrocycle 2/2a,
TBS ether 25 was converted to its corresponding tosylate 27
followed by a Ru-catalyzed amide reduction™ to afford amine 9.
Intramolecular N-alkylation of amino-tosylate 9 under high-
dilution conditions>*** (where the inclusion of Nal proved
crucial) proceeded smoothly to deliver macrocycle 2/2a as
a mixture of diastereoisomers (Scheme 4). Notably, diastereo-
isomeric amino-tosylates (9, d.r. 1 : 1) exhibited different rate of
macrocyclization that resulted the formation of diaster-
eoisomerically enriched macrocycle (2:2a ~ 2.8 : 1) together
with unreacted and diastereoisomerically enriched amino-
iodide intermediate (which could be re-subjected to the mac-
rocyclization condition to afford additional supply of macro-
cycle 2/2a) after 16 hours at 90 °C. On the other hand, inspired
by the recently reported palladium-catalyzed intramolecular
cross-coupling™® featured in the herquline syntheses,'”” macro-
cyclic Suzuki reaction of boronic ester-aryl bromide 29 was also
attempted but failed to deliver macrocycle 2/2a (Scheme 5a).
Notwithstanding the conformational and mechanistic differ-
ences between intramolecular N-alkylation and Suzuki cross-
coupling, these results appear to substantiate the importance
of site selection for a successful macrocyclization event. This
finding is particularly noteworthy and path-pointing for future
synthetic investigations in this field since it demonstrated for
the first time that by simply replacing a constituent aromatic
ring of the haouamine biphenol cyclophane system with a sp®
hybridized “masked” aryl precursor may not guarantee the
desired ring closure to take place.

With macrocycle 2/2a in hand, the highly anticipated site-
selective oxidation was pursued in earnest (Scheme 4). Having
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Scheme 3 (a) Preparation of amino-alcohol 7; (b) preparation of bicyclic carboxylic acid 8. Reagents and conditions: (a) 11 (1.05 equiv.), nBuLi

(2.5 M in hexanes, 1.05 equiv.), THF, —78 °C, 50 min, 90%; (b) 5 (1.05 equiv.), [Rh(COD)(OH)I, (0.008 equiv.), toluene, 0 to 25 °C, 3 h, 77%; (c)
Pd(OH), (5 wt% on carbon, 18% wt/wt), H, (1 atm, balloon), MeOH, 25 °C, 15 h; (d) BAIB (1.0 equiv.), CH,Cl,, 25 °C, 3.5 h, 94% over 2 steps; (e)
KHMDS (0.7 M in toluene, 1.1 equiv.), TF,NPh (1.3 equiv.), THF, =78 °C, 2 h, 99%; (f) PACl,(PPhs), (0.05 equiv.), nBuzN (3.0 equiv.), HCO,H (2.0
equiv.), DMF, 60 °C, 1.5 h, 96%; (g) LiAlH4 (1.1 equiv.), Et,O, 0 to 25 °C, 1.5 h, 97%; (h) CISO,NCO (2.5 equiv.), HCO,H (2.5 equiv.), pyridine (2.5
equiv.), CHsCN/DMA (7 : 9), 25 °C, 7.5 h, 67%; (i) Rh(Oct)4 (0.02 equiv.), MgO (2.3 equiv.), BAIB (1.2 equiv.), CH,Cl,, 25t0 40 °C, 4 h, 87%; (j) Pd/C
(10 wt% on carbon, 45% wt/wt), H, (1 atm, balloon), EtOAc, 25 °C, 3 h, 94%; (k) AlH3-EtNMe, (0.5 M in toluene, 6.0 equiv.), toluene, 25 to 110 °C,
6 h; () NoH4-H,O (4.0 equiv.), MeOH, 25 °C, 14 h; then I, (2.0 equiv.), EtsN (10.0 equiv.), Et,O, 0 to 25 °C, 25 min, 48% over 2 steps; (m) 20 (1.5
equiv.), 21 (1.0 equiv.), Pd(OAc), (0.1 equiv.), PivOH (0.2 equiv.), KHCOs3 (2.0 equiv.), 1,2-dichloroethane, O,, 100 °C, 14 h, 53% (2 cycles); (n) Boc,O
(3.0 equiv.), DMAP (0.5 equiv.), CH3CN, 60 °C, 16 h; then LIOH-H,O (8.5 equiv.), THF/H,O (3 : 1), 25 to 60 °C, 2 h, 78% over 2 steps. BAIB =
(diacetoxyiodo)benzene; COD = cyclooctadienyl; DMA = N,N’-dimethylacetamide; DMAP = N,N’-dimethylaminopyridine; DMF = N,N'-
dimethylformamide; EtOAc = ethyl acetate; KHMDS = potassium bis(trimethylsilyllamide; Rh,(Oct)4 = rhodium(i) octanoate, dimer; Tf,NPh = N-

phenyl-bis(trifluoromethanesulfonimide).

conducted an exhaustive study of conventional oxidation
protocols  (osmium-catalyzed  dihydroxylation, peracid-
mediated epoxidation, hydroboration-oxidation, metal-
catalyzed and SeO,-mediated allylic oxidation. For details, see
ESIT), and recognizing the possibility to directly access the
previously reported enone intermediate 3/3a,** we opted the
SeO,-mediated allylic oxidation as the focal point of our inves-
tigations on macrocycle 2/2a. After extensive experimentations,
we discovered that while prolonged treatment with SeO, at
elevated temperature (100 °C) indeed generated analytically
detectable amounts of enones 3 and 3a, this condition proved
highly capricious and difficult to obtain chromatographically
pure material. Alternatively, performing the reaction at 45 °C for
5 hours cleanly afforded the allylic alcohol intermediate (28 and
28a) that could be easily isolated, and subsequent oxidation
with PCC smoothly delivered a readily separable mixture of
enones 3 and 3a. It is worth-noting that allylic oxidation of
model substrate 22a under the identical reaction condition only
proceeded in ~25% conversion (Scheme 5b), suggesting the
enhanced reactivity of olefin 2/2a may be a consequence of its
strained macrocyclic system." This mechanism-based selection
of oxidation/oxygenation protocol proved crucial to achieve the
overall selectivity for this challenging late-stage transformation

8134 | Chem. Sci, 2020, 1, 8132-8137

(Scheme 4a).* Furthermore, conversion of allylic alcohols 28/
28a to enones 3/3a was ineffective under Dess-Martin period-
inane, Swern, and MnO, oxidation conditions. Enones 3 and 3a
exhibited spectroscopic data in complete accordance to those
reported in the literature, and their conversion to haouamine A
and atrop-haouamine A, respectively, have been reported.*”
Finally, optically active alkenyl alcohol 15 could be conveniently
obtained through a resolution process to provide an asymmetric
entry to haouamine A (Scheme 5c).

Conclusions

In conclusion, a new synthetic entry to the cyclophane alkaloid
natural product haouamine A (1) has been realized. Most
notably, a late-stage, site-selective, and strain-accelerated
oxidation/oxygenation of macrocycle 2 was successfully
implemented to render a novel solution to the biphenol
cyclophane domain of haouamine A. In doing so, a simplified
precursor has been identified for the first time to facilitate
future chemical investigations of the haouamines by the
synthetic community. The construction of the indeno-
tetrahydropyridine core of haouamine A (1) developed herein
also showcased two highly efficient and practical rhodium-

This journal is © The Royal Society of Chemistry 2020
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PCC (2.0 equiv.), Celite®, CH,Cl,, 25 °C, 4 h, 3: 58%, 3a: 28%. DMP = Dess—Martin Periodinane; EDC = N-(3-dimethylaminopropyl)-N’-eth-
ylcarbodiimide; EtOAc = ethyl acetate; PCC = pyridinium chlorochromate; TBAF = tetra-n-butylammonium fluoride; TMDSO = 1,1,3,3-
tetramethyldisiloxane.
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catalyzed carbon-carbon and carbon-nitrogen bond forming developed herein and ample supply of amino-alcohol 7 should
processes, namely a diazo-ester (5) insertion to benzocyclo- enable a ready access to other members of the haouamine
butanol 4 and an intramolecular aziridination of sulfamate 16, family and designed analogues, which is currently under
respectively. Collectively, the modular synthetic approach investigation in our laboratory.
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