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In situ K-edge X-ray absorption spectroscopy of the
ligand environment of single-site Au/C catalysts
during acetylene hydrochlorinationt
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The replacement of HgCl,/C with Au/C as a catalyst for acetylene hydrochlorination represents a significant
reduction in the environmental impact of this industrial process. Under reaction conditions atomically
dispersed cationic Au species are the catalytic active site, representing a large-scale application of
heterogeneous single-site catalysts. While the metal nuclearity and oxidation state under operating
conditions has been investigated in catalysts prepared from aqua regia and thiosulphate, limited studies
have focused on the ligand environment surrounding the metal centre. We now report K-edge soft X-ray
absorption spectroscopy of the Cl and S ligand species used to stabilise these isolated cationic Au
centres in the harsh reaction conditions. We demonstrate the presence of three distinct Cl species in the

materials; inorganic Cl™, Au—Cl, and C-Cl and how these species evolve during reaction. Direct evidence
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Accepted 23rd June 2020 of Au-S interactions is confirmed in catalysts prepared using thiosulfate precursors which show high
stability towards reduction to inactive metal nanoparticles. This stability was clear during gas switching

DOI: 10.1039/d0sc02152k experiments, where exposure to C,H, alone did not dramatically alter the Au electronic structure and
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Introduction

The commercialisation of carbon-supported gold catalysts (Au/
C), as a replacement for toxic mercuric chloride (HgCl,/C),
represents a significant reduction in environmental impact of
large scale vinyl chloride monomer (VCM) production via acet-
ylene hydrochlorination.’™ Since the prediction that Au would
be an effective catalyst,® intensive studies to understand and
optimise these catalysts have been on-going.®® These catalysts
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consequently did not deactivate the thiosulfate catalyst.

were originally developed using strongly acidic and oxidising
solvents, including impregnation of HAuCl, from aqua regia
(Au/C-AR).**2 The preparation and use of such Au/C catalysts at
an industrial scale represents an economic and technical
challenge, which hindered the validation of this type of catalyst.
Moreover, the high activity of these Au/C materials is often
coupled with poor lifetimes under extended testing. The
reduction of the active cationic Au to metallic nanoparticles and
the development of acetylene-oligomers on the catalyst surface
at strong acid sites introduced from the aqua regia are the
primary deactivation mechanisms.""* In comparison, catalyst
preparation from aqueous HAuCl, results in the formation of
large Au nanoparticles which have limited activity.™ Alternative
solvents to aqua regia, such as “organic aqua regia (OAR)”, have
been developed and utilised for the preparation of mono and
bimetallic catalysts;'*>'® however, despite the appreciable cata-
Iytic performances this still does not provide a solution to large
scale catalyst synthesis.

To obtain effective catalysts using aqueous metal-precursor
solutions, strongly coordinating ligands are required to
prevent nanoparticle formation.'”*® Johnston and collabora-
tors,"** reported the use of soft donor ligands such as thio-
sulphate could produce a class of active and stable catalysts due
to the increased stability constants of the Au-S species
compared to the Au-Cl, avoiding the use of aggressive impreg-
nation conditions. This catalyst (Au/C-S;03) has been

This journal is © The Royal Society of Chemistry 2020
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industrially validated as a replacement for the HgCl,/C. The
synthesis is based on the in situ formation of a Au-thiosulfate
complex before immobilisation onto carbon and the active form
of the catalyst has been shown to consist of atomically dispersed
cationic Au species under reaction conditions. We have previ-
ously demonstrated by operando X-ray Absorption Spectroscopy
(XAS) that catalysts containing chloride or sulphur ligands had
the same structure/activity correlation, with a Au(i) spectro-
scopic feature being proportional to VCM productivity and
catalysts were shown to be comprise of atomically dispersed Au
centres.” The two catalysts (Au/C-AR and Au/C-S,03) displayed
differing induction periods; the Au/C-AR required 3 h to reach
steady state activity, due to initial oxidation of Au(1) to Au(m) and
subsequent re-equilibration of metal oxidation states, while Au/
C-S,0; achieved steady state immediately due to higher stability
of the Au(i) species with a similar Au() to Au(m) ratio. In analogy
with homogenous Au complexes,* the choice of ligand and
solvent, used during the catalyst preparation plays a major role
in determining performance and stability.**>

a)

—— Au/C-AR
—— AU/C-8,0,

0.6

Normalised Absorption
>

0.4 4

0.2
0.0 T T T T U
2815 2820 2825 2830 2835 2840
Energy (eV)
C ;
) 25 —e—Au/C-AR
—=— Au/C-S,0,
—— AU/C-H,0
;\? 20 A
| =
kel LH
o
2 154
=
<]
(6]
)
$ 104
>
©
Q
<
5
0 T T T

0 20 40 60
Time (min)

Fig. 1

T T T T T T 1
80 100 120 140 160 180 200

View Article Online

Chemical Science

We now report a study using in situ K-edge S and Cl X-ray
absorption spectroscopy, under relevant reaction conditions,
to examine Cl and S speciation in the Au/C-AR and Au/C-S,0;
catalysts and correlate this to the observed catalytic activities.
We show how the nature of the Cl and S evolve during the
induction periods and at steady state to give information about
the metal ligand environment and provide further information
towards designing effective catalysts. The stability of the Au
metal centre in the Au/C-S,0; was studied in a operando Au L-
edge XAS experiment, where reaction gases were switched to
expose the catalyst to conditions that have already shown to
deactivate the Au/C-AR catalyst.

Results and discussion

Initially, ex situ normalised Cl K-edge XANES spectra of fresh
Au/C-AR and Au/C-S,0;3 were compared (Fig. 1a). For compara-
tive purposes a Au/C-H,O catalyst containing Au nanoparticles
was also analysed (Fig. S1f). Three characteristic features,
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(a) Comparison of the normalised ex situ Cl K-edge XANES of the freshly prepared Au/C-AR (blue solid line) and Au/C-S,05 (black solid

line), (b) Cl(2p) core-level spectra for Au/C-AR and Au/C-S,05 with associated binding energies; 197.7 eV — Au—Cl/NaCl (red), 200 and 202 eV -
C—Cl functional groups (blue) and 203.4 and 205.2 eV loss structure associated with Cl species (orange). (c) Catalytic activity of the Au/C-AR
(- @-, black), Au/C-S,03 (- M-, red) and Au/C-H,O (- # -, blue) (test conditions: 90 mg catalyst, 23.5 mL min~* C,H,, 23.7 mL min~* HCland 2.7
mL min~t Ar, 200 °C). (d) XANES of gold chloride standards. KAuCl, (black solid line), Au,Clg (blue solid line) and AuCl (red solid line).
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labelled as A, B and C, were observed in the XANES spectra of
the catalysts with varying relative intensity. The absolute
amount of Cl, determined from raw XANES spectra before data
reduction® differs in each sample (Fig. S2t); Au/C-AR has
significantly more Cl (0.32) than Au/C-S,0; (0.08) as expected
from a preparation method using aqua regia compared to
aqueous thiosulphate solution; the Au/C-H,O sample has lower
amounts of Cl than either of the previous catalysts (0.03). These
results are in accordance with Cl(2p) core-level XPS spectra
(Fig. 1b and S3t), which verifies this difference in Cl concen-
tration with Au/C-AR having 1.98 at% surface Cl and the Au/C-
S,03 0.25 at% (Table S17).

The XANES feature at 2828 eV, labelled (A), is assigned to the
Cl1s — 4p dipole allowed transition of an inorganic Cl™ species
and it is comparable to the ex situ recorded reference material
NaCl (Fig. S41). The second feature at 2824-2826 €V, labelled
(B), which is the predominant feature in Au/C-AR and
a shoulder of the main edge for the Au/C-S,03, can be assigned
to a 1s — 3p* transition and associated with C-Cl function-
ality.>* This observation is in accordance with the assignments
of XPS binding energies; Au-Cl/NaCl (197.7 eV), C-Cl groups
(200 and 202 eV) and loss structure associated with high levels
of carbon chlorination (203.4 and 205.2 eV)* (Fig. 1b and S37).
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Variation in the position of XANES C-Cl features is associated
with the aliphatic/aromatic nature of the carbon species and the
degree of chlorination;*® higher C-Cl energies, as seen in Au/C-
AR, suggest a high degree of chlorination of the carbon surface.
The high relative C-Cl content in Au/C-AR is rationalised as
a result of chlorination from the highly acidic and oxidising
aqua regia preparation. The XANES spectra of the Au/C-H,O
catalyst is similar to Au/C-S,03; however feature B (C-Cl) is more
pronounced; aqueous impregnation of HAuCl, on to the carbon
support results is the deposition of metallic Au(0) nanoparticles
and presumably consequent formation of a greater amount of
C-Cl species.'**®

Bare activated carbon as received was also shown to contain
both CI™ and C-Cl species, but in negligible amounts compared
to the catalysts; both XANES and XPS results suggest that after
washing the carbon support with water (C-H,O) the inorganic
Cl™ functionality was removed while treatment aqua regia (C-
AR) was shown to be able to introduce C-Cl functionality
(Fig. S5, S6 and Table S2t). The influence of water and aqua
regia on the modification of the carbon surface, with and
without the HAuCl, metal precursor, has been also analysed via
O 1s XPS. As expected, the aqua regia impregnation led to the
highest oxygen content (Table S3t1). However, the oxygen
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Fig.2 ClK-edge XANES during the heating ramp of Au/C-AR (a) and Au/C-S,05 (b) at start of heating ramp (black), maximum pre-edge intensity
(red) and end of heating ramp (blue). (c) Pre-edge intensity against temperature for Au/C-AR (- @ -, black) and Au/C-S,03 (- -, red).
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content does not seem to have direct influence on the catalysts'
steady state activity when comparing the Au/C-AR and Au/C-
S,03 in our previous studies (catalytic data shown in Fig. 1c);
this evidence also agrees with previous studies performed also
on metal-free catalysts.”

The third feature in the Cl XANES at 2821 €V, labelled (C), is
attributed to the Cl 1s — mixed CI 3p and Au d orbital transi-
tion and is a pre-edge feature.”® The intensity of feature is
dictated by the degree of covalency in the Au-Cl bond and is
therefore sensitive to the electronic structure of the Au and its
oxidation state. The hybridisation of Au 5d-6s orbitals, due to
relativistic affects, allows the formally d'® electronic configura-
tion of Au(1) to have molecular orbitals with Cl of sufficient
character for electronic dipole allowed transitions. The feature
is pronounced in Au/C-AR, while less intense in Au/C-S,0;
(Fig. 1a), showing that less Cl is associated with the Au and/or
that the nature of the Au-Cl bonding is different, due to
a change in bond covalency or lower oxidation state in the fresh
Au/C-S,0;. Feature C is also negligible in the Au/C-H,O catalyst,
in which the Au-Cl bond is almost absent (Fig. S11).** Given Au/
C-S,0; is prepared from a gold-thiosulfate complex made from
HAuCl,, Au-Cl species could persist from the precursor. It is not
possible to determine if the Au-Cl species is a discrete AuCl,
species or a partially chlorinated Au(S,03), species, raising the
question if multiple Au speciation exists. However, the clear
difference in catalytic stability and induction behaviour of this
catalyst shows that most Au centres in Au/C-S,0; are signifi-
cantly different from the Au-Cl, in Au/C-AR (Fig. 1c). Similar
considerations can be made in the comparison between the Au/
C-AR and Au/C-H,O. From analysis of the Au-Cl pre-edge for the
catalysts it is possible to determine if the dimeric Au,Cl, species
are present. The dimeric Au,Clg structure has two bonding Cl
environments and Au-Cl bond lengths, ie. terminal and
bridged. This is reflected in the XANES spectrum of the dimeric
standard (Au,Clg) as a splitting of the pre-edge (Fig. 1d). On
inspection and consistent with monomeric standard (KAuCly),
the XANES of both catalysts showed a single feature (Fig. 1d),
indicating no significant population of Au dimers where
present, supporting the observations made previously that the
Au is present as mono-dispersed cationic species."*

To understand the evolution of Cl species during the acety-
lene hydrochlorination reaction, in situ Cl K-edge XANES char-
acterisation of Au/C-AR and Au/C-S,0; was performed. On
heating to reaction temperature (200 °C) under He (Fig. 2a—c),
the position of feature A, associated with inorganic Cl™ species,
remains unchanged for both catalysts, with a slight decrease in
normalised intensity in Au/C-S,0;. On the other hand, changes
in feature C, associated with Au-Cl, were evident for both
catalysts. In particular, the intensity of the pre-edge increased
between 100-120 °C for the 2 catalysts, before reducing on
further heating to 200 °C (Fig. 2¢ and S77). This behaviour can
be explained as following: on heating the catalysts the Au is
oxidised to a higher oxidation state AuCl,, through migration of
Cl from the carbon to the Au. This causes an increase in
intensity of feature C as there is an increased Cl coordination
number (CN) and a lower occupancy of the 5d-3p hybridized
orbital. The small decrease in the C-Cl band in Au/C-S,0;

This journal is © The Royal Society of Chemistry 2020
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concurrent with the increase in feature C supports this
hypothesis; the absence of any notable C-Cl population change
in Au/C-AR is attributed to the significantly higher initial signal
intensity, masking any small change in signal from Cl migra-
tion. The reduced intensity of feature C above 110-130 °C is due
to the decomposition of Au(ur) Cl to Au(i) Cl, where fully occu-
pied d orbitals limit the pre-edge feature,” in agreement with
Au L;-edge experiments.® This observation suggests that the C-
Cl species can be mobile and interact with the Au species at
elevated temperatures by acting as a reservoir of Cl function-
ality. It is important to acknowledge that while changes between
Cl environments can be inferred, the intensities of allowed 1s
— 4d transitions cannot be proportionately compared with
feature C, which is dependent on Cl 3p-Au 5d/6s hybridisation.

The catalysts were then characterised during the acetylene
hydrochlorination reaction (Fig. 3a—c). Over a 100 minutes of
reaction, the overall Cl concentration modestly increased for
Au/C-S,0; and was unchanged for Au/C-AR, which remained
higher than the Au/C-S,0; throughout (Fig. S8, S9 and Table
S1t) which suggests that gaseous HCI cannot significantly
chlorinate the carbon surface. Given the comparable VCM
productivities between the catalysts (Fig. 1c),** there seems to be
no correlation between the total Cl concentration within the
catalysts and catalytic activity. Moreover, it suggests that the Au
complex and carbon surface within Au/C-S,0; catalyst which is
not highly chlorinated during the preparation is relatively
resistant to possible chlorination phenomena directly from HCI
and it remains significantly different to the highly chlorinated
surface of the Au/C-AR. Cl(2p) XPS of the used catalysts (Fig. S10
and Table S171) show a slight increase in Cl content in the Au/C-
S,0; catalyst after reaction, especially of the inorganic ClI
species, which is attributable to a certain level of chlorination of
the metal centre under reaction condition.

Comparison of the normalised Cl-edge XANES spectra (Fig. 3
and S97), show variation in feature C (Au-Cl) during reaction in
both catalysts; shown as a function of reaction time-on-line in
Fig. 3c. Feature C intensifies, broadens and shifts to higher
energy during the first 20 min and then decreases, suggesting
changes in the Au-Cl bonding, Au oxidation state and Au-Cl,
geometry during reaction.” Broadening possibly indicates
multiple Au-Cl bond lengths or Au-Cl species. These observa-
tions are in line with those observed from operando Au L;-edge
XAFS." The comparable changes in feature C with respect to
reaction time (Fig. 3¢) suggest that the Au-Cl species are similar
for both catalysts. However, the significantly lower Cl concen-
tration in Au/C-S,0; compared to Au/C-AR throughout the
reaction suggests fewer Au-Cl species in Au/C-S,0;. Given all
the Au within this catalyst is cationic and atomically dispersed,
this lower Cl signal shows that most of the Au is coordinated to
other non-chloride ligands, most probably S ligands,
throughout the reaction and that the Au in this catalyst does not
become excessively chlorinated or convert to a purely AuCl,
species while operating. Under operation Au/C-S,0; contains
multiple Au speciation, a robust Au-S complex and a minority
Au-Cl species analogous to Au/C-AR.

Another difference between the two catalysts Cl speciation,
under reaction conditions, is the change in C-Cl species,

Chem. Sci., 2020, 11, 7040-7052 | 7043
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In situ Cl K-edge XANES spectra of (a) Au/C-AR and (b) Au/C-S,05 catalysts during acetylene hydrochlorination at: beginning of the

reaction (black line) max of pre-edge intensity (red line) and at steady state (blue line). (c) Change in pre-edge intensity with reaction time for Au/

C-AR (- @ -, black) and Au/C-S,05 (-l -,red).

feature B. During heating to 200 °C and during reaction this
gradually reduces in intensity for Au/C-S,0; (Fig. 3a). This
behaviour can be attributed to the migration of Cl from the
carbon to the Au centre, confirming the Cl(2p) XPS results on
the used sample (Fig. S10%). Although the corresponding
feature appears to remain stable in Au/C-AR, this is again due to
the high C-Cl concentration making small differences difficult
to observe. The relatively high amount and possible mobility or
evolution of C-Cl species in the Au/C-AR catalyst could also
explain the induction period typically observed in this type of
catalyst.” On heating of the catalyst, we first observe an increase
in the amount of Au(m), confirmed by both XAS of the Au L;-
edge™ and Cl K-edge, before conversion to Au(i) beyond the
thermal decomposition temperatures of AuCl;, which is
approximately 130-160 °C. This observation of Au(m) is likely
the result of oxidation of Au(i) rather than the disproportion-
ation reaction (3AuCl — 2Au + AuCl;) as we do not observe
metallic Au in these or our previous experiments."* We have
previously shown that exposure to HCI alone does not result in
the oxidation of Au(i) to Au(m) species and that the induction

7044 | Chem. Sci, 2020, N, 7040-7052

period observed is related to the formation of Au(ur) on exposure
to both reactants with activity increasing as the ratio of Au(i) to
Au(m) equilibrates. The presence of large amounts of surface
chlorination could facilitate evolution of Cl, from the surface at
reaction temperature which is a strong enough oxidant to
convert AuCl into AuCl; in addition to residual NO, species
remaining from the preparation. The evolution of these species
could be accelerated by the large initial exotherm passing
through the bed on introduction of the reactant gases and only
when the evolution of oxidant has subsided can the catalyst
equilibrate to a Au(i)/Au(m) ratio determined by catalytic turn-
over and steady state activity.

This behaviour is observed to a much lesser extent for Au/
C-S,03, due to the C-Cl reservoir being quickly depleted. The
increased C-Cl in Au/C-AR results in a more extensive
oxidation of the Au(1) chloride like species to a Au(m) type
chloride species and consequently the process of Au(i)
reformation, which is correlated to activity, is considerably
slower, resulting in a notable induction period as the species
equilibrate.

This journal is © The Royal Society of Chemistry 2020
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Simple impregnation of the metal precursor, as in the agua
regia preparation, is however preferable to the in situ formation
of the Au-thiosulphate complex followed by its impregnation
onto the carbon support required in the preparation of Au/C-
S,0;. Clearly the use of an alternative non-chlorinated/organic
solvent to aqua regia for the dissolution of the HAuCl, metal
precursor could be an efficient solution for the preparation of
active, stable and scalable Au/C catalysts for this reaction.
Recently we have shown that catalysts can be prepared using
organic solvents, such as acetone.? It is important to note that
these catalysts which are prepared using HAuCl, and without
aqua regia (and therefore without a high Cl content) did not
have an induction period and behaved analogously to Au/C-S,0;
catalysts. The Cl K-edge XANES of a catalyst prepared using
HAuCl, and an acetone solvent is shown in Fig. 4. Critically, the
C-Cl feature is notably less intense than that seen in Au/C-AR,
confirming the relationship of this species to the catalytic
induction period. Although the Au/C-acetone catalyst does not
have a pronounced induction period and is similar in initial
activity to the Au/C-S,0; catalyst, a proportion of the Au within
the catalyst was found to reduce to form Au(0) nanoparticles.
This reduction was not observed for Au/C-S,0; catalysts, sug-
gesting that in addition to limiting C-Cl surface species the
presence of sulphur species increases the stability of the Au()
active site.

To understand the role of sulphur-based ligands in Au/C-S,0;
in situ S K-edge XANES experiments were also performed. The S,
— S3p, electronic transitions are extremely sensitive to the sulphur
oxidation state.>* Moreover, in the case of oxyanions, where the
sulphur can be present in various oxidation states, the spectrum
originated will show one feature (or edge) for each oxidation states
of the element in the sample. Sulphur compounds have unique
patterns of transitions on the absorption edge, making the sulphur
K-edge XANES suitable for qualitative determination of sulphur
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Fig. 4 Comparison of the normalised ex situ Cl K-edge XANES of the
freshly prepared Au/C-acetone (dashed orange line) and Au/C-AR
(black solid line).
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species in samples with complex composition by using appropriate
reference materials.*>*

Fig. 5a shows the S K-edge XANES of Au/C-S,0; and Na;S,0;
(XANES spectra of other standards materials recorded are re-
ported in Fig. S11}), where the sulphide can be differentiated
from the more oxidised sulphate like species. While the formal
oxidation state of sulphur in thiosulfate ions is debated,**® it is
clear that species of comparable, but not identical, oxidation
state are present in Na;S,03 and Au/C-S,0;. Features in Na,S,03
at 2472 and 2482 eV, associated with 1s — 3p transitions of the
different sulphur environments, are shifted to higher energy in
Au/C-S,0; (2473 and 2483 eV) (Fig. 5a). However, features
observed in Na,S,0;, between at 2477-2479 eV which are not
satisfactorily explained in the literature, are absent in Au/C-
S,0;. Abinitio DFT simulations of the XANES spectra of [S,05]*~
show that these undefined features can be assigned to transi-
tions to excited states where atomic orbitals of the 2 S atoms

Ry f— Au/C-S,0,

—— Na,S,0;
254

2.0

Normalised Absorption
o
1

0.5

0.0
2465

T T T T 1
2480 2485 2490 2495 2500

Energy (eV)

T T
2470 2475

b)

4.5+

Normalised Absorption

T T T T 1
2480 2485 2490 2495 2500
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T
2475

T
2470

Fig. 5 S K-edge XANES of the Au/C-S,0s. (a) Ex situ XANES normal-
ised absorption spectra of Au/C-S,0s3 (red solid line) with Na,S,03
standard (blue solid line). (b) In situ XANES normalised absorption
spectra during reaction time-on-line: start of reaction (red solid line)
and after 20 minutes (red dashed line).
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Fig. 6 Sulphur selected orbital K-edge XANES obtained by DFT simulations. (a) Excited state responsible for transition at 2477 eV. (b) Comparison
of simulated S K edge in thiosulfate 82032’ and model structures. (c) S(2p) core-level spectra for Na,Au(S,O3), and the Au/C-S,05 catalyst with
associated binding energy; two sulphur states in the former (56 and $2~ at 166.7 and 162.1 eV) and several sulphur states in the catalyst, attributed
to Au-S (162.6 eV), S-S (163.8 eV), S—H (164.8 eV), SO (168.1 eV) and SO4 (169.6 eV), consistent with disproportionation.

and O 2p from thiosulfate are strongly hybridized (Fig. 6a).
[S;05]*" interaction with the carbon support (via C-r orbitals)
only weakly affect these excited states (Fig. 6b). A relevant
decrease of the intensity of the corresponding peaks could only
be reproduced by including a strong chemical interaction in the
models for the simulations (such as the addition of H covalently
bonded to O of SO3, or the chemical binding of S,0; to the C-
based support, whose spectra are shown in Fig. 6b). The
absence of these features in Au/C-S,0; therefore suggests that
the thiosulphate ligand has not remained intact on deposition
onto the carbon and has potentially undergone a dispropor-
tionation reaction to $*~ and SO;>". Furthermore, the XANES
simulations of the model structures where a strong chemical
interaction is consistently included, also successfully predict an
increase in the energy of the first electronic transition to

7046 | Chem. Sci,, 2020, 11, 7040-7052

2473 eV consistent with the shift of the first peak observed in
experimental spectra shown in Fig. 5 between Na,S,0; and Au/
C-S,0;.

XPS analysis of the Au/C-S,0; catalyst supports this suppo-
sition. Fig. 6¢ shows the S(2p) region for Na;Au(S,03), and Au/C-
S,0;; with two sulphur states in the former (S®" and S*~ at 166.7
and 162.1 eV) and several additional sulphur states in the
catalyst, attributed to Au-S (162.6 eV), S-S (163.8 eV), S-H (164.8
eV), SO; (168.1 eV) and SO, (169.6 eV), consistent with dispro-
portionation. The presence of Au-S bonds in Au/C-S,0;
proposed based on XPS binding energy and splitting of the
XANES S>~ feature, as seen in NazAu(S,0;), (Fig. S11f),
confirms that the Au is predominantly bound to the sulphide
species. To understand the dynamic nature of S within Au/C-
S,03, in situ S K-edge XANES studies were performed. During

This journal is © The Royal Society of Chemistry 2020
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Fig.7 Au Ls-edge XANES of Au/C-S,03 and Au/C-AR during the sequential gas exposure experiments. (a) Au/C-S,03 and (b) Au/C-AR at steady
state for steps i (red line), steps ii (blue line) and steps iii (black line). (c) Au/C-S,03z and (d) Au/C-AR at steady state for stepsiiii (black line), steps iv

(green line) and steps v (purple line).

heating to reaction temperature under an inert atmosphere, the
two main absorption edges did not change in intensity or
position (Fig. S127), in contrast with Cl speciation. Demon-
strating that S speciation in Au/C-S,0; was more thermally
stable than the Cl species.

Introduction of reaction gases resulted in a shift in the
absorption-edge of the S>~ bound to Au, during the first 20 min
of reaction, while the SO;>~ group remains stable (Fig. 5b and
S1371). The shift to higher absorption-edge for the sulphide
species shows a decrease in electron density and oxidation of
this S species bound to Au. We suggest that Au(i) oxidation,
caused by C-Cl surface species on the carbon is suppressed by
the polarisable Au-S bond. Therefore, in addition to the
significantly lower concentration of C-Cl species, the active
Au(1) species in Au/C-S,0; do not over oxidise and the catalyst is
immediately active. This supports the proposed detrimental
role of the Cl excess on the carbon surface. The S 2p XPS of the
Au/C-S,0; catalysts before and after reaction (Fig. S14 and Table
S4+) show that multiple sulphur states can be observed as in
Fig. 6¢c with identical speciation assignments. It should be

This journal is © The Royal Society of Chemistry 2020

noted however, binding energies for the species differ by ca.
0.2-0.6 eV, the smaller difference attributable to experimental
errors and uncertainty in peak fits whilst the larger difference
may again be attributed to agglomeration of sulphur species
and/or higher uncertainty in the peak fits due to the signal to
noise in the data.

The stability of the S containing Au/C-S,0; catalyst was
investigated at the L;-edge using an “accelerated deactivation
test”, in which the catalyst is sequentially exposed to; (i) HCI +
C,H,, (ii) HCI only, (iii) HCI + C,H, (iv) C,H, only and finally (v)
HCI + C,H, during one experiment. We have already reported
that exposure to HCl only (i.e. in the absence of C,H,) resulted
in Au/C-AR catalytic performance being perturbed on the re-
introduction of C,H,, resulting in a second induction period
to regain steady state activity."*” Also, Au/C-AR rapidly deacti-
vates after treatment with only C,H,.*” This deactivation was
attributed to an interaction with AuCl, and C,H, that on the re-
introduction of HCI causes the formation of Au(0) nano-
particles. To clarify the influence of the individual reactants on
the Au/C-S,03, the VCM productivity (Fig. S15t) and the Au L;-
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edge XANES (Fig. 7) and EXAFS (Fig. 8 and Table 1) were
correlated during an operando experiment in a fixed bed reactor.
XANES and EXAFS spectra of the Au/C-AR catalyst, reported
previously,*” are also shown for comparison. These previous
studies show that under steady state reaction conditions
a combination of Au(i) and Au(u) chloride/sulphur compounds
are present, with EXAFS determined coordination numbers
matching those determined from XANES analysis, by white line
height or linear combination fitting."**”

After a small drop in productivity over the first 20 min time-
on-line Au/C-S,0; remained stable for the complete test dura-
tion with minimal deactivation despite periods of being
exposed to only HCI or C,H,. The XANES spectra of Au/C-S,0;
showed a slight decrease in white-line height, as seen for Au/C-
AR, under the HCI environment. It is clear that for both catalysts
the Au(ui/1) centres are not strongly influenced by the dilute HC1
stream and that neither catalyst is oxidised to a higher degree of
chlorination under these conditions. This is corroborated by
the EXAFS which shows no change in the Au-Cl/S

FT K3y(k) (A%)

o

¢)

FT K3y(k) (A*)

View Article Online

Edge Article

(indistinguishable by EXAFS) coordination number of 2.5 or
bond lengths between reaction (i) and under HCI (ii).

The difference in catalyst performance on re-introduction of
both reactants following HCI treatment (step iii) between Au/C-
S,0; and Au/C-AR is therefore due to the C-Cl content on the
two respective support structures. Namely, the absence of
significant C-Cl content in Au/C-S,0; resulting in an immediate
return to reactivity, without an induction period. Under a C,H,
flow, the energy of the absorption edge increased for Au/C-S,03,
with the observed white-line shifting from 11 921.6 eV to
11 922.7 eV. Comparison with the change in XANES seen for Au/
C-AR under identical C,H, conditions showed similar trends to
that observed for Au/C-S,0;. The change in white-line for both
catalysts is attributed to an uncharacterised Au-acetylene
interaction.’” However, the extent of the edge shift was signifi-
cantly less for Au/C-S,0; than that seen for Au/C-AR. The
Fourier transformed Au Ls-edge EXAFS (Fig. 8) showed
a decrease in the magnitude of the signal at 1.8 A for both

b)

FT K3 (k) (A4

d)

FT K3y (k) (A%)

Fig. 8 Au Lz edge EXAFS Fourier Transform magnitudes of Au/C-S,0z and Au/C-AR during the sequential gas exposure experiments. (a) Au/C-
S,0zand (b) Au/C-AR at steady state for steps i (red line), steps ii (blue line) and steps iii (black line). (c) Au/C-S,03 and (d) Au/C-AR at steady state

for steps iii (black line), steps iv (green line) and steps v (purple line).
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Table 1 EXAFS Fitting for Au Ls-edge data of Au/C-S,03 and Au/C-AR catalysts during sequential gas experiments

Coordination

number 202 (A%)°

R (A) E; (eV) R factor

Reaction step” Scattering path” Au/C-S,0; Au/C-AR° Au/C-S,0; Au/C-AR

Au/C-S,0; Au/C-AR° Au/C-S,0; Au/C-AR® Au/C-S,0; Au/C-AR®

i Au-Cl 2.5(1) 2.5(1) 0.0037 2.27(1)  227(1)  2(1) 1(1) 0.011 0.012
ii Au—Cl 2.5(1) 2.4(1) 2.27(1)  2.27(1)  1(1) 3(1) 0.012 0.07
iii Au—Cl 2.6(2) 2.5(1) 2.28(1)  2.27(1)  2(1) 3(1) 0.022 0.04
iv (model 1Y Au-Cl 2.2(3) 2.0(4) 0.006(2)  0.011(2) 2.28(1)  2.29(2)  1(2) 1(2) 0.031
iv (model 2)  Au-Cl (1) 1.6(1) 0.9(2) 0.0037 2.28(2)  2.30(3)  1(1) 1(4) 0.020 0.037
Au-c? 1 1 0.0090 2.28(1)  2.04(7)
v Au-Cl 2.2(1) 1.7(3) 0.0037 2.27(1)  2.26(1)  1(1) 2(2) 0.019 0.017
Au-Au? 1.0(4) 0.6(4) 0.007 2.88(2)  2.84(5)
u

¢ EXAFS data taken under steady state conditions. ? Fitting of multiple Au-Cl paths was attempted for all spectra. Only is step iv did this provide
realistic fits. © Au/C-AR data published in ref. 37. ¢ Au-C CN fixed at 1. ® Debye-Waller and amplitude reduction factors were determined from fitting
of KAuCl, with a fixed CN of 4 or Au(0) with fixed CN of 12./ Debye-Waller fitted for model 1 (step iv).

catalysts. Again, the dampening of the signal was notably less
for Au/C-S,0; under C,H, relative to Au/C-AR.

The damping of oscillations seen for Au/C-AR was previously
attributed to out of phase multiple Au-Cl path lengths.*” The
catalyst was considered to be Au(i) based on the edge position
but with a significant change in geometry. The rational for this
interpretation being that y space data showed a damping of
oscillations across the k range under C,H,, with no change in
the phasing between a catalyst under C,H, (step iv) or under
steady state reaction conditions (step i-iii) (Fig. S167), sugges-
tive of no new scatter being present and an increase in disorder.
However, an unresolved question of the cause of this affect, in
addition to the significant change in the XANES of both the Au/
C-AR and Au/C-S,0; catalysts under C,H,, prompts consider-
ation of an alternative interpretation of the data. A compelling
hypothesis being that in addition to Au-Cl paths there is a Au-C
path attributable to Au-C,H, bonding. Therefore, the fitting of
the EXAFS data of Au/C-AR and Au/C-S,0; catalysts under C,H,
was performed using two models; (1) a single Au-Cl path with
a floated 2¢” parameter to account for an increased structural
disorder due to multiple Au-Cl paths or (2) fitting Au-Cl and
Au-C paths.

Both models provided reasonable fits of the data. Model 1
showed a significant increase in 20> from 0.0037 A under
steady state (step i) to values under C,H, of 0.006(2) A®> and
0.011(2) for Au/C-AR and Au/C-S,0; respectively. Model 2
provides a viable Au-C path length of 2.04(7) A which, despite
the significant error, fits with distances seen for Au(1) s-bonded
alkyne complexes at 1.98 A.*® Freeing of the Au-Cl/S coordina-
tion number showed that this path was more significant in Au/
C-S,05 and suggest that more free Au() is present in this cata-
lyst than Au/C-AR. Comparison of the fits shows, however, no
statistical improvement on the addition of a Au-C path, further
this model significantly misrepresented the first oscillation of
the x space data where a soft scatterer would be best repre-
sented (low k distances, Fig. S171). It is concluded, that whist
compelling to evoke Au-alkyne complex formation it could not
be definitively proven with the current data. Regardless of the

This journal is © The Royal Society of Chemistry 2020

fitting model used it is clear that C,H, has a similar influence
on Au/C-S,0;, although it is far less dramatic than that seen for
Au/C-AR.

The effect of reintroduction of both reactant gases in step v
on Au speciation was notably different for the two catalysts.
While Au/C-AR was found to deactivate after the re-introduction
of HCl, Au/C-S,0; remained relatively stable with only minimal
deactivation. As stated previously, the growth of Au(0) respon-
sible for deactivation in Au/C-AR, occurred only after re-
introduction of HCl (step iv) and not under C,H,.*”” Au-Au
paths could be fitted for both catalysts at the end of reaction
step iv, at all other points during the reaction no acceptable fit
of this path was found. The proportion of Au(0) could not
accurately be determined by EXAFS due to the large error in Au-
Au coordination numbers.

Conclusion

S and Cl K-edge XANES have been used to gain further insight
into the structure-activity relationship of cationic Au catalysts
in acetylene hydrochlorination. Three Cl species; unreactive
inorganic Cl, covalently bound C-Cl and Au-Cl species are
found on Au/C-AR and Au/C-S,0;. The concentration of these
species was significantly higher in Au/C-AR. Au-Cl species are
dynamic during heating and under reaction conditions, with
changes in Au-Cl bond hybridisation and bond length. In
addition, surface bound C-Cl is found to be titrated from the
carbon surface during reaction suggesting the potential
importance of these surface groups in influencing Au-Cl
speciation. High concentrations of C-Cl, as seen in Au/C-AR,
therefore result in a catalytic induction period. The presence
of Au-Cl in Au/C-S,0; was concluded to be from a minority
phase that coexists with Au-S species. The presence of intact
[S,0;]*" ligands could not be confirmed on deposition of the Au
complex onto the carbon support. However, the S species
present were found to be stable under reaction conditions and
stabilises Au(i) to produce a robust and commercially viable
acetylene hydrochlorination catalyst.

Chem. Sci., 2020, 11, 7040-7052 | 7049
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Experimental
Catalysts preparation

1 wt% gold supported on activated carbon catalysts were
prepared by wet impregnation of the HAuCl, precursor dis-
solved in aqua regia or water (denoted as Au/C-AR and Au/C-H,0O
respectively). Activated carbon was initially ground to obtain
a 100-140 mesh powder. The gold precursor, HAuCl, xH,O
(Alfa Aesar, 99.9% (metals basis), Au 49%) was dissolved in aqua
regia (3 parts by volume HCI [(Fisher, 32 wt%)]: 1 part by volume
HNO; [(Fisher, 70 wt%)]) or water. The gold precursor solution
was then added drop-wise with stirring to the acid washed,
steam activated wood carbon. Stirring was continued at
ambient temperature for 1 hour or until NO, production
subsided. The product was then dried for 16 h at 140 °C under
an inert flow of nitrogen. A different procedure was employed
for the preparation of the 1 wt% Au/C-S,0; catalyst: an aqueous
HAuCl,-3H,0 solution was mixed with an aqueous solution of
sodium thiosulfate, Na,S,0;, in order to obtain a NaAuS,0;
complex. The mixture obtained was added slowly in aliquots to
the support while stirring. The product was then dried at 110 °C
overnight under a nitrogen flow.

Catalysts testing

In situ K-edge XANES experiment. A microreactor was
located inside an environmental chamber or vacuum vessel that
allow a vacuum or a helium atmosphere. Thus, specifics
microreactor (flow cell) and reaction conditions have been used.
The set-up (vacuum vessel and cell) used have been developed
by Thompson and Newton and it is widely described elsewhere
in the literature.®® The flow cell is placed in the core of the
environmental chamber.

Within this setup the dedicated space for the catalyst bed is
very limited and the amount of catalyst used was ca. 10 mg. For
this reason, the total flow has been reduced to 5 mL min '
C,H,/He (2.5 mL min~") HCl/He (2.5 mL min~"). Dilute gas
mixtures were used C,H,/He (4.97% balanced in He, Air Lig-
uide) and HCIl/He (5.00% balanced in He, Air Liquide). The
gases were dried, using moisture traps, prior to introduction to
the reactor setup. In all cases, the reactor was purged with He
(99.99%, Air Liquide), heated to 200 °C at a ramp rate of
2.5 °C min~" and held at temperature for 30 min, all under
a flow of He (5 mL min '), prior to admitting the hydro-
chlorination reaction mixture. The outlet gas line was con-
nected to a mass spectrometer (Hiden QGA), to detect VCM
during reactions and showed that the catalysts were
functioning.

Operando Au Ls-edge XAS and laboratory activity test. The
catalysts were tested using a completely automated reactor
system with the same setup as previously described.™ All of the
predilute gases 5% C,H,/Ar (BOC), 5% HCI/Ar (BOC), and Ar
(99.99% BIP, Air Products) were dried using moisture traps
before being introduced into the reactor. In all cases the reactor
was heated to 200 °C at a ramp rate of 5 °C min~ " and held at
this temperature for 30 min under a flow of argon prior to
admitting the hydrochlorination reaction mixture. The tests
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were performed using a fixed-bed polyimide (Kapton) micro-
reactor containing the catalysts, keeping the total flow of 50
mL min~" and a total gas hourly space velocity (GHSV) of
~14 000 h™*. When both reactants were present, the C,H, : HCI
ratio was kept at a constant value of 1 : 1.02.

The reaction mixture was analysed on-line by mass spec-
trometry (Hiden QGA), and Professional Edition software was
used for both qualitative and quantitative analyses. The catalyst
activity presented is shown in terms of productivity toward vinyl
chloride monomer (VCM). The response factor of the mass
spectrometer toward VCM was correlated with the productivity
(mol kg, ' h™') obtained by using a Varian 450 gas chro-
matograph equipped with a flame ionization detector (FID).
Chromatographic separation and identification of the products
was carried out using a Porapak N packed column (6 ft x 1/8”
stainless steel).

The sequential flow experiment was performed simulta-
neously monitoring the Au Lz-edge XAS and catalytic activity.
Reaction sequence employed the following gas compositions:
step i = HCI/C,H,/Ar, step ii = HCl/Ar, step iii = HCl/C,H,/Ar,
step iv = C,H,/Ar, and step v = HCI/C,H,/Ar. The duration of
each step in the sequence was not the same. The gas compo-
sition during the experiment was altered only when no further
change in the XAS spectra was observed.

Catalysts characterisation

X-ray absorption spectroscopy (XAS). In situ and ex situ
XANES spectra have been acquired at the BM28 (XMaS) beam-
line at the European Synchrotron Radiation Facility (ESRF),
situated on the soft end of an ESRF dipole magnet, which
provides a wide range of X-ray techniques making use of white
beam and monochromatic energies in the range of 2.4 to 15
keV. At the BM28 it is possible to run a so-called XESCAN.MAC -
Extended Escan: Variable point density. In particular, it is
possible to perform energy scan for multiple consecutive energy
regions, with equal or different step (variable point density).
The sample chamber was purged with helium for at least an
hour to remove air introduced during sample loading. The
beam upstream of the sample chamber is contained within
a helium-filled tube to minimise X-ray absorption by the air. The
fluorescent signal was detected using a silicon drift diodes
detector. All spectra have been acquired in fluorescence mode.

In situ and ex situ XAFS at the Au L;-edge and ClI K-edge have
been also acquired at the B18. The Cl K-edge X-ray absorption
spectra (XAS) have been measured to probe chloride-gold
bonding. Spectra for the Au/C-AR samples at different time-
on-line were recorded ex situ at the Cl K absorption edge in
fluorescence mode, using beamline B18 of the Diamond Light
Source, Harwell, UK. The measurements were performed using
a QEXAFS setup with a fast-scanning Si (111) double crystal
monochromator and a 36 element Ge fluorescence detector.
The K-edge absorption spectrum of Cl when bound to a transi-
tion metal shows a pre-edge feature due to the forbidden 1s —
3d transition. This transition becomes partially allowed and
therefore observed when the Cl p-orbitals mix with the metal d-
orbitals. The position of the pre-edge feature is dependent on

This journal is © The Royal Society of Chemistry 2020
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several factors, namely (i) the CI 1s energy, related to the charge
on the chloride, and (ii) the metal d-orbital energy which is itself
determined by both the oxidation state of the metal and the
coordination number. The intensity of the pre-edge feature is
dependent on the mixing of the Cl orbitals and metal d-orbitals
and so the bonding characteristic of the Cl to the metal.

X-ray photoelectron spectroscopy (XPS). XPS was carried out
using a Thermo Scientific K-alpha photoelectron spectrometer
with microfocused monochromatic Al K,, radiation operating at
72 W (6 mA x 12 kV), the value of the C(1s) peak under the
operating conditions was found to be 284.5 eV, typical of acti-
vated carbons with graphic character as per carbon supports
used here. The resulting spectra were processed in CasaXPS
(v2.3.21) using a Shirley type background removal, Scofield
cross-sections and an electron energy dependence of —0.6.

DFT simulations. Within the framework of DFT simulations,
we used the software package ORCA v4.1 (ref. 40) and compared
two levels of DFT theory, including generalised-gradient func-
tionals (BP86 and PBE)** and hybrid functionals (B3LYP),"
obtaining comparable spectral simulations for the S K edge.

We tested the consistency of the results obtained with 6-
311G*, triple-{ split-valence plus polarization and double-{
split-valence basis set for both S and O atoms. Here we show the
results obtained with def2-TZVP basis set. Geometries of the
molecules were relaxed within an energy tolerance of 5.0 x 10 °
a.u. and a maximum displacement of 4.0 x 10~° a.u. The
electronic properties of the ground state were converged to an
energy threshold of 1.0 x 10~7 a.u. Sulphur K edge spectra were
then calculated within the TD-DFT formalism for the excited
states.*® A rigid shift has been applied consistently among all
the spectra shown in Fig. SIM17 to align them at the energy of
the experimental S K absorption spectra.
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